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Mandelbrot’s Extremism

Jan Beirlant∗ Wim Schoutens† Johan Segers‡

December 6, 2004

Abstract

In the sixties Mandelbrot already showed that extreme price swings are more
likely than some of us think or incorporate in our models. A modern toolbox for
analyzing such rare events can be found in the field of extreme value theory. At
the core of extreme value theory lies the modelling of maxima over large blocks
of observations and of excesses over high thresholds. The general validity of these
models makes them suitable for out-of-sample extrapolation. By way of illustra-
tion we assess the likeliness of the crash of the Dow Jones on October 19, 1987, a
loss that was more than twice as large as on any other single day from 1954 until
2004.

JEL: C 13; C 14
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1 Introduction
The stock market doesn’t like Central Limit Theory: in finance, the well-mannered
bell curve of the Gaussian distribution isn’t so normal at all. It likes it hotter, spicier,
more extreme. Indeed, extreme price swings are more likely than some of us think or
incorporate in our models. This insight, which Mandelbrot already had in the sixties,
long before the Black-Scholes model was ruling Wall Street, is one of many messages
that he has been trying to convey to the financial community for decades now (see e.g.
[8]).

The problem with the Normal (Gaussian) distribution lies in the tails. Financial data
more often than not exhibit power-law tails, to be treated further on. First evidence of
this phenomenon was written down by Mandelbrot in a research report [9] in 1962 (see
also [10]), published one year later in [11] and extended in [12] (reprints appeared later
several times). Power-law tail behavior was found in the movements of interest rates
and prices of cotton, wheat, and railroad stocks. In comparison, Normal tails decay to
zero much too fast.

The shortcomings of the Normal distribution are dramatically illustrated by e.g.
looking at the Dow Jones Industrial Average. Table 1 lists the ten largest relative down
moves of the Dow over the last fifty years (1954–2004).
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Date Closing logreturn
19-Oct-87 1738.74 -0.2563
26-Oct-87 1793.93 -0.0838
27-Oct-97 7161.15 -0.0745
17-Sep-01 8920.70 -0.0740
13-Oct-89 2569.26 -0.0716
08-Jan-88 1911.31 -0.0710
26-Sep-55 455.56 -0.0677
31-Aug-98 7539.07 -0.0658
28-May-62 576.93 -0.0588
14-Apr-00 10305.77 -0.0582

Table 1: Ten largest down moves of the Dow (1954–2004)

Under the Black-Scholes regime, what is the probability that the Dow will suffer
a big loss tomorrow? Everything depends of course on the volatility that you plug
in. Figure 1 shows the annualized historical volatility estimated on the basis of, say, a
three-year window. Clearly, volatility is not constant and behaves stochastically – an-
other point where Mandelbrot’s was a pioneer [13]. In the figure, volatility is typically
below 25%. Let us calculate for a 25% vol the frequency of a negative logreturn of
-0.0582 or even worse. Under the assumption of Normality, it happens just once every
35 years. In reality, we have witnessed ten in the last 50 years! If the mathematician
Thales (c.624–c.546 BC) – one of the ancient derivatives traders – would have been
granted eternal live, he would according to the Normal distribution have seen only one
down move of -0.0716 or worse up to now. In the last fifty years we had five! A Homo
Sapiens would likely have witnessed only one down move of -0.0838 or worse up to
now. In a particularly bad month, October 1987, there were two! What is the probabil-
ity of a down move of -0.25 or worse: It is of the order once in the 1053 years (in US
language: 100 sexdecillion years, UK language: 100000 octillion years). In contrast,
the Big Bang only happened around 15 × 109 years ago. The present generation must
be really exceptional that God allowed the Dow to crash in October 1987.

What are the main problems with the Black-Scholes model? First of all, it postu-
lates a Normal distribution for logreturns, completely missing the observed tail behav-
ior. Secondly, the environment is changing and the volatility is behaving stochastically
over time. Thirdly, the sample paths of the driving Brownian motion are continuous,
whereas there is clear evidence that in reality stock prices like to jump.

The first and third problem could be overcome by letting the price dynamics be
driven by more flexible processes, allowing for jumps and fatter tails. Moreover,
stochastic volatility models are nowadays finding their ways into the business. We
especially mention the introduction of stochastic volatility by letting stocks operate in
their own “trading time” or “business time”, an idea dating back to [13] and nowadays
being implemented in e.g. a Lévy-process driven market. For details and an overview
on Lévy process models, their stochastic volatility extensions and their applications in
derivatives pricing we refer to [15].

In this paper we focus on the modelling of extreme values and the correspond-
ing tail behavior. Extreme value theory is by now a well-developed area of statistics
and finds applications in many areas of research: besides finance, it is/can be used
in hydrology, cosmology, insurance, pollution and climatology, geology, etc. A basic
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Figure 1: Dow Jones Industrial Average – Historic Volatility (1954–2004)

reference text is [2].

2 The tale a tail has to tell
The Normal distribution with mean µ and variance σ2 exhibits a quadratic decay near
infinity of the logarithm of its probability density function:

log fNormal(x; µ, σ2) = − (x − µ)2

2σ2
− log

(

σ
√

2π
)

∼ − 1

2σ2
x2 (1)

as x → ±∞.
A power-law distribution, suggested by Mandelbrot to model the tails of financial

returns, has a completely different decay. The distribution goes back to Vilfredo Pareto
(1848–1923, economist and very unfortunate speculator on the LME), who suggested
it in 1896 as a model for personal income. The distribution of a random variable X is
said to follow a power-law or Pareto distribution with shape parameter α > 0 and scale
parameter β > 0 if

Pr[X > x] = (x/β)−α, for x ≥ β. (2)

The distribution lives on (β,∞), but it is its tail decay that is important to arrive at
improved tail extrapolation.

The logarithm of its density function is given by

log fPareto(x; α, β) = log
(

αβ−αx−α−1
)

∼ −(α + 1) log(x) (3)

as x → +∞.
The difference between the light-tailed Normal distribution (1) and the heavy-tailed

Pareto distribution (3) is huge. We rely on the power of the image to imprint this
message.

Consider the sample of negative daily logreturns of the Dow Jones Industrial Av-
erage for the 50-year period from November 9, 1954, until November 8, 2004. We
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Figure 2: (a) Negative daily logreturns in the range from 0.01 up to 0.05 for the Dow
(1954–2004) versus sample exceedance probabilities (1954–2004). (b) Similarly for a
Normal random sample with the same mean and variance.

compare it with a sample of the same size from a Normal distribution with the same
mean and variance. In particular, since the focus in this sample is on the larger losses,
we focus on the larger values in the two samples.

Figure 2(a) shows the negative daily logreturns of the Dow in the range from 0.01
up to 0.05, corresponding to losses from 1% up to 5% approximately, versus their
sample exceedance probabilities. The most striking feature of the plot is its linearity in
loglog-scale. In contrast, panel (b) of the same figure shows the analogous plot for the
Normal sample. The plot is distinctly concave, suggesting much smaller exceedance
probabilities for the larger losses.

A risk measure currently gaining in popularity is the expected shortfall, defined
as the expected excess over a given (high) level, conditionally on this level being ex-
ceeded. The sample version of the expected shortfall over a certain level is simply the
average of the excesses over that level. The expected shortfall over the 1000 largest
negative daily logreturns of the Dow are plotted in Figure 3(a). Note that the expected
shortfall is increasing with the level: the higher the level being exceeded, the higher the
excess by which it will be exceeded! Once more, this is in sharp contrast with panel (b)
of the same figure: for a Normal sample with the same mean and variance, the expected
shortfall decreases rapidly (note the different axes). In a light-tailed world, given that
you exceed a high level, you hardly exceed it at all. But in a heavy-tailed world, once
you know you’ll get hit, you may get hit much harder than expected!

3 Extreme value theory

3.1 Block maxima
Let St be the closing price of the Dow at the end of day t. The negative logreturn at
day t is given by

Xt = log St−1 − log St.
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Figure 3: (a) Expected shortfall over 1000 largest negative daily logreturns of the Dow
(1954–2004). (b) Similarly for a Normal random sample with the same mean and
variance.

Large down movements of the Dow correspond to high Xt. In particular, the highest
Xt in a certain period of time corresponds to the biggest loss of the Dow in that period.
Correctly quantifying the possible magnitude of this worst one-period event should be
an important ingredient in a prudent risk assessment. Whereas the Normal model is
totally inappropriate for this purpose, much more satisfactory tools are available in the
field of extreme value theory.

Divide the sample of negative daily logreturns X1, . . . , Xn into blocks of (approx-
imately) equal size, say m. For instance, m equal to 20, 60 or 250, corresponds ap-
proximately to months, quarters or years, respectively. For each such block, consider
the largest observation. That is, we record the largest one-day loss on the Dow for each
month, quarter or year. In this way, we obtain for every block size m a sample of block
maxima.

For different block sizes m we get different samples. Figure 4(a) shows non-
parametric density estimates for the samples of monthly, quarterly and yearly maxima.
The features of these densities depend on the block size m: for larger m, the loca-
tion moves to the right and the dispersion increases. This corresponds to intuition: the
larger the block size, the larger we expect the block maxima to be.

The shapes of these densities may be compared by bringing the different samples
of block maxima to a common location and scale. Figure 4(b) shows non-parametric
density estimates for the studentized1 samples of monthly, quarterly and yearly max-
ima. Up to differences in location and scale, the distributions of the three samples seem
to have grossly the same shape.

Now the following postulate does not sound too unreasonable:

Block-maximum postulate. Up to location and scale, the distribution of
block maxima stabilizes as the block size grows indefinitely large.

In mathematical terms, we postulate the existence of scaling constants am > 0, center-
ing constants bm, and a non-degenerate2 cumulative distribution function (cdf) G such

1Studentizing a sample means subtracting its mean and dividing by its standard deviation.
2A cdf G is non-degenerate if there exists x such that 0 < G(x) < 1.
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Figure 4: (a) Non-parametric estimates of the densities of monthly, quarterly and yearly
maxima of negative daily logreturns of the Dow (1954—2004). (b) Similarly for stu-
dentized samples of maxima.

that for all large m the distribution of a−1

m (max{X1, . . . , Xm} − bm) can be approxi-
mated well by G; or technically

lim
m→∞

Pr[a−1

m (max{X1, . . . , Xm} − bm) ≤ x] = G(x). (4)

For the sake of exposition, let us assume that the variables Xt are independent and
identically distributed with common cdf F (x) = Pr[Xt ≤ x]. These assumptions are
of course unreasonable for a time series of daily logreturns stretching over a fifty-year
period. However, the conclusions we will arrive at remain valid under much weaker
assumptions involving for instance periodicity and temporal dependence decaying suf-
ficiently fast over time.

There are two basic questions related to equation (4):

(i) Which cdfs G can arise in the limit?

(ii) Given the limit cdf G, how does the cdf F of the variables Xt look like?

The answers to these questions will lead us to the very essence of heavy tails.
The answer to question (i) is surprisingly simple and dates back to a result by Fisher

and Tippett from 1928, see [4]: the limit cdf G in (4) must be a member of the three-
parameter family of extreme value distributions. In a parametrization due to Jenkinson
and von Mises, the general form of such a cdf is

G(x; γ, µ, β) =



















exp

(

−
(

1 + γ
x − µ

β

)

−1/γ
)

if γ 6= 0,

exp

(

− exp

(

−x − µ

β

))

if γ = 0.

(5)

for all x such that 1+γ(x−µ)/β > 0. The shape parameter γ (sometimes also denoted
by ξ) is commonly referred to as the extreme value index, while µ and β > 0 are just
parameters for location and scale, respectively.
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Figure 5: (a) Non-parametric and parametric density estimates for quarterly maxima of
negative daily logreturns of the Dow (1954—2004). (b) Maximum likelihood estimates
and 95% confidence intervals for γ as function of the number of block maxima.

By a combination of the block-maximum postulate with the Fisher-Tippett result,
the distribution of maxima over sufficiently large blocks may be modelled by an ex-
treme value distribution (5); the scaling and centering constants am and bm for block
maxima are incorporated into the location and scale parameters µ and β of the ex-
treme value distribution G. The validity of this approach is confirmed by Figure 5(a),
comparing a non-parametric density estimate for quarterly maxima with the density of
the fitted extreme value distribution, the parameters of the latter being estimated by
maximum likelihood.

We wish to stress the point that we did not a priori impose the extreme value distri-
bution as a model for maxima over large blocks. Rather than that, the model arises as
an inevitable consequence from the block-maximum postulate. This yields some extra
justification of the model apart from its apparent goodness of fit, which could also be
achieved by other sufficiently flexible parametric families of distributions.

If we repeat the exercise of fitting an extreme value distribution to samples of block
maxima for different block sizes, then we expect the estimated location and scale pa-
rameters to change with the block size while the shape parameter or extreme value
index γ should remain roughly constant. Figure 5(b) shows the various maximum like-
lihood estimates of γ together with 95% confidence intervals. The estimates are plotted
against the number of block maxima, which is equal to the total number of observations
in the sample (12 587) divided by the block size.

Although it is hard from the plot to draw any precise inference on the value of the
extreme value index γ, there seems little doubt that it is positive. Now one can also
prove that for positive γ the tail of an extreme value distribution looks like the tail of a
Pareto distribution with shape parameter α = 1/γ:

1 − G(x; γ, µ, β) ∼ constant × x−1/γ , as x → ∞.

In contrast, according to a Normal model for the daily logreturns, the limiting model
for maxima of large blocks would be an extreme value distribution with extreme value
index equal to zero, the so-called Gumbel distribution. The tail of the Gumbel dis-
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Figure 6: (a) Non-parametric density estimates for scaled excesses over thresholds u
of negative daily logreturns of the Dow (1954–2004). (b) Non-parametric and gener-
alized Pareto density estimate for excesses over 0.015 of negative daily logreturns of
the Dow (1954–2004).

tribution, however, decays exponentially fast to zero for large x, much faster than the
power-law tail above.

3.2 Threshold exceedances
Now let us turn to question (ii): if maxima over increasingly large blocks can be
modelled by an extreme value distribution with extreme value index γ, what can be
said about the cdf F of the individual negative logreturns Xt? Since the maximum
of a large block with high probability will be a value with only a small probabil-
ity of being exceeded, the only knowledge to be inferred will be on the behavior of
F (x) = Pr[Xt ≤ x] for increasingly large x.

To gain some feeling for the problem, let us focus on those negative logreturns
Xt that exceed a high threshold u, that is, those losses of at least a given size. The
threshold u is high in the sense that it is exceeded by only a small percentage of the
observations. For each such u, we obtain a sample of threshold excesses Xt − u from
those observations Xt that exceed u. Different thresholds u lead to different samples
of excesses, the samples getting smaller as the threshold increases. For the negative
daily logreturns of the Dow, the thresholds u of 0.01, 0.015 and 0.02 are exceeded by
respectively 10%, 4.2% and 1.8% of the observations.

Samples of excesses corresponding to different thresholds can be compared by
bringing them to a common scale, for instance by dividing them by their respective
standard deviations. Unlike for block maxima, no additional centering is needed. Fig-
ure 6(a) shows non-parametric density estimates of the samples of scaled excesses over
the thresholds u equal to 0.01, 0.015 and 0.02. Up to differences in scale, the distribu-
tions of the samples of excesses over the different thresholds roughly coincide.

This leads us to formulate the following postulate:

Excess postulate. Up to scale, the distribution of excesses over a high
threshold stabilizes as the threshold u grows indefinitely large.
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Figure 7: Maximum likelihood estimates and 95% confidence intervals for extreme
value index γ based on negative logreturns of the Dow (1954–2004) for various thresh-
olds as function of the number of threshold exceedances. (a) Generalized Pareto model.
(b) Extended Pareto model [1].

In mathematical terms, we require the existence of positive scaling constants a(u) and
a non-degenerate cdf H such that for all large u the distribution of the scaled excess
(X − u)/a(u) can be approximated well by H ; or technically,

Pr[(Xt − u)/a(u) ≤ x | Xt > u] =
1 − F (u + a(u)x)

1 − F (u)
→ H(x) (6)

as u increases to the upper end-point of the support of F .
Pickands [14] showed that the excess postulate is equivalent to the block-maximum

postulate: convergence in distribution of scaled and centered block maxima is equiv-
alent to convergence in distribution of excesses over high thresholds. Moreover, the
limit distributions are related in the following way. The limit distribution G for block
maxima is an extreme value distribution with shape parameter γ if and only if the limit
distribution H for threshold excesses is a generalized Pareto distribution with the same
shape parameter γ:

H(x; γ, β) =

{

1 − (1 + γx/β)−1/γ if γ 6= 0,
1 − exp(−x/β) if γ = 0,

(7)

this for all x > 0 such that 1 + γx/β > 0. The parameter β > 0 is just a scale
parameter which can depend on the chosen scaling a(u) of the threshold exceedances.

The excess postulate together with Pickands’ result suggests to model excesses over
a high threshold by a generalized Pareto distribution (7). For negative daily logreturns
of the Dow, Figure 6(b) compares a non-parametric estimate of the density of excesses
over the threshold u equal to 0.015 with the fitted generalized Pareto density. The
generalized Pareto parameters have been estimated by maximum likelihood.

This fitting exercise for various thresholds u, hopefully leads to estimates of the ex-
treme value index γ that do not vary too much. Figure 7(a) shows maximum likelihood
estimates and 95% confidence intervals for a range of thresholds as a function of the
number of threshold exceedances. The scale on the horizontal axis is chosen so as to
facilitate a comparison with the estimates for γ using block maxima in Figure 5(b).
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A disturbing feature of the plot is that the estimates for γ vary strongly according
to the chosen threshold. This is basically due to the model error that arises when
treating the limit relation (6) as an exact equality for high enough threshold. Explicitly
modelling the approximation error results in an extension of the generalized Pareto
model described in [1], see also [2], pp. 117–118. The corresponding estimates of the
extreme value index in Figure 7(b) are much more stable over various thresholds and
suggest a value for the extreme value index γ around 0.3.

Now fix a high threshold u and fit a generalized Pareto distribution to the excesses
over u. Then we arrive at the following model for F in the region [u,∞): for x ≥ u,

1 − F (x) = {1− F (u)}1 − F (u + (x − u))

1 − F (u)

≈ {1− F (u)}{1 + γ(x − u)/β}−1/γ . (8)

Here 1 − F (u) can be estimated by the sample proportion of exceedances over the
threshold u, while γ and β can be estimated by fitting a generalized Pareto distribution
to the excesses over u.

In particular, we see that for positive extreme value index γ, the right tail of the cdf
F of the negative logreturns behaves like a Pareto distribution with index α = −1/γ:

1 − F (x) ∼ constant × x−1/γ , as x → ∞.

In contrast, the Normal model for F would entail an exponential rather than a polyno-
mial decay to zero of the tail function 1 − F . As a consequence, exceedance probabil-
ities over high levels would be grossly underestimated.

4 Return levels and return periods
The return period of a high level x is defined as the number of years T = T (x) such
that exceedances over x are observed once every T years on average. If there are 250
observations per year, as is the case for daily returns of the Dow, this means that the
probability of exceeding x should be 1/(250T ). Hence the return period T (in years)
for a high level x is formally defined through the relation

1 − F (x) =
1

250T
.

Conversely, the return level given a return period T is defined as that level x = x(T )
solving the previous equation. It can be thought of as that value x that is exceeded once
every T years on average.

Now suppose that you are given the sample of negative daily logreturns of the
Dow in the fifty-year period 1954–2004 excluding the crash of October 19, 1987. The
largest observation in your sample is about 0.084. Then what would be your estimate
of the return period of a negative logreturn of 0.25 as observed on that particular day in
October 1987? Or conversely, what would be your estimate of return levels with return
periods of fifty years and more? As explained in the introduction, to such questions,
the Normal model would give completely misleading answers.

Instead, the tail model (8) is based on a very general theory with only a minimum
of assumptions. Extrapolating from the generalized Pareto model fitted to exceedances
over a high threshold yields estimates of return levels corresponding to periods longer
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Figure 8: Maximum likelihood estimates and profile likelihood 95% confidence inter-
vals for (a) high return levels and (b) high return periods (in years) for negative daily
logreturns of the Dow based on generalized Pareto model for excess negative logre-
turns over 0.02 excluding the crash of October 19, 1987.

than the observation period and return periods corresponding to levels that are higher
than observed so far.

Figure 8 shows maximum likelihood estimates and profile likelihood 95% confi-
dence intervals for high return periods and high return levels. The estimates are based
on the generalized Pareto model fitted to negative daily logreturns of the Dow exceed-
ing 0.02 and excluding the event of October 19, 1987. Also shown on the plots are the
largest negative logreturns versus their empirical return periods.

The negative logreturn of October 19, 1987, clearly stands out as the lone circle in
the upper right of the two plots. According to panel (a), it falls within the confidence
interval for the return level with a return period 200 years. Similarly, according to
period (b), the confidence interval for the return period of a negative daily logreturn of
0.25 contains a period of 200 years. So, although unlikely, the event on October 19,
1987, is according to this elementary extreme value analysis far from impossible at all.
And, maybe this generation is not that exceptional under an abnormal God.

5 Conclusion
The Normal distribution is a particularly inadequate model for the larger values in fi-
nancial data. In contrast to the Normal’s exponentially light tails, time series of returns
on interest rates, commodity prices and stock prices often exhibit power-law tail be-
havior, as already revealed by Mandelbrot’s pioneering work in the sixties. In reality,
large price movements occur much more often than can be accounted for by the Normal
model.

A modern toolbox for analyzing such rare events can be found in the field of ex-
treme value theory. A few very simple diagnostic plots already show the huge dif-
ference between the occurrence of larger losses for the Dow Jones versus those in a
Normal pseudo-random sample with the same mean and variance.

At the core of extreme value theory lies the modelling of maxima over large blocks
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of observations by the three-parameter family of extreme value distributions or, equiva-
lently, excesses over high thresholds by the two-parameter family of generalized Pareto
distributions. The use of these two families of distributions is an inevitable conse-
quence of some very general assumptions, the block-maximum postulate or the excess
postulate.

These models can be used to compute return levels for return periods longer than
the observation period and to compute return periods of levels that have not been sur-
passed thus far. Doing the exercise for the Dow Jones shows that the single-day loss of
about 25% on October 19, 1987, is far from impossible given the other data, although
the second largest loss in the period 1954–2004 is not larger than 9%. For how to hedge
in crash scenarios we refer to e.g. [7].

Not treated in this paper have been the effects of temporal dependence, which may
cause large losses to cluster over time, in periods of high volatility for instance. More
refined models designed to account for such temporal dependence for extremes include
Poisson process models and Markov chain models [2, 3]. Another issue is that of
the choice of threshold defining the excesses to which to fit the generalized Pareto
distribution. Recently developed techniques offer a solution through stabilizing the
estimates over a large range of thresholds [1, 2].
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