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1 Introduction

In operations research, sequencing situations are characterized by a finite number of jobs lined up in
front of one (or more) machine(s) that have to be processed on the machine(s). A single decision maker
wants to determine a processing order of the jobs that minimizes a cost criterion and takes into account
possible restriction on the jobs (e.g. due dates, precedence constraints, etc.) This single decision maker
problem can be transformed into a multiple decision maker problem by taking agents into account who
own at least one job. In such a model a group of agents (coalition) can save costs by cooperation. For the
determination of the maximal cost savings of a coalition one has to solve the combinatorial optimization
problem corresponding to this coalition.

This approach has been taken first in Curiel et al. (1989). They introduce sequencing games, which
arise from one-machine sequencing situations, and showed that these games are convex, and thus, bal-
anced. Moreover, they introduce and characterize an allocation rule that divides the maximal cost savings
that can be obtained by complete cooperation.

The paper by Curiel et al. (1989) has inspired researchers to study the interaction between scheduling
theory and cooperative game theory. Hamers et al. (1996) and Van Velzen and Hamers (2002) investigate

1Corresponding author. CODE and Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona,
Edifici B, 08193 Bellaterra, Spain. Tel. (34) 93 581 1720; Fax. (34) 93 581 2012; e-mail: fklijn@pareto.uab.es. This
author’s research has been supported by a Marie Curiel Fellowship of the European Community programme "Improving Human
Research Potential and the Socio-economic Knowledge Base" under contract number HPMF-CT-2001-01232.
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the class of sequencing situations as in considered Curiel et al. (1989). The first paper focuses on the
structure of a subset of the core, the split core, and the second paper introduces new classes of balanced
sequencing games.

Van den Nouweland et al. (1992), Hamers et al. (1999) and Calleja et al. (2002) investigate se-
quencing games that arise from multiple-machine sequencing situations. These papers focus on the
balancedness of the related sequencing games.

In the class of sequencing situations considered in Curiel et al. (1989) no restrictions like ready
times or due dates are imposed on the jobs. Hamers et al. (1995) included ready times (or release
dates) on the one-machine sequencing situations considered by Curiel et al. (1989). In this case the
corresponding sequencing games are balanced, but are not necessarily convex. For a special subclass,
however, convexity could be established. Similar results are also obtained in Borm et al. (2002), in
which due dates are imposed on the jobs.

This paper is in the same line as Hamers et al. (1995) and Borm et al. (2002). Here, precedence
relations are imposed on the job in one-machine sequencing situations. Precedence relations prescribe
an order in which jobs have to be processed. More specifically, some jobs can only be processed if some
other job(s) have already been processed. In practice many examples can be found where precedence
relations play a role. For example, scheduling programs on a computer. In many cases one program
needs the output of another program as input data. Another situation where precedence relations are
involved is in the manufacturing of a car. Before you can paint the car you need to have the chassis,
before you can place the wheels you need already the axles, etc. In this paper we establish a convexity
result for sequencing games that arise from sequencing situations in which chain precedence relations
are involved.

There are several arguments to ask for convexity. Convex (or supermodular) games are known to
have nice properties, in the sense that some solutions concepts for these games coincide and others have
intuitive descriptions. For example, for convex games the core is the convex hull of all marginal vectors
(cf. Shapley (1971) and Ichiishi (1981)), and, as a consequence, the Shapley value is the barycentre of
the core (Shapley (1971)). Moreover, the bargaining set and the core coincide, the kernel coincides with
the nucleolus (Maschler et al. (1972)) and the τ -value can easily be calculated (Tijs (1981)).

The paper is organized as follows. In Section 2 we introduce one-machine precedence sequencing
situations and the related precedence sequencing games. We present our convexity result in Section 3.
In the Appendix we prove rather technical lemmata needed for the convexity result of Section 3.

2 Precedence sequencing situations and games

In this section we describe a one-machine sequencing situation in which precedence relations hold for
the jobs. Moreover, we define the corresponding sequencing games.

In a one-machine precedence sequencing situation there is a queue of agents, each with one job,
before a machine (counter). Each agent (player) has to process his job on the machine. The finite set
of agents is denoted by N , and its cardinality by |N | = n. A processing order is defined by a bijection
σ : N → {1, ..., n}. Specifically, σ(i) = k means that player i is in position k. A precedence relation
P on the jobs of the players is defined as follows: if (i, j) ∈ P then the job of player i has to precede
the job of player j. Obviously, for any P we have that if (i, j) ∈ P then (j, i) /∈ P . A processing order
is called feasible with respect to P if for all (i, j) ∈ P it holds that i precedes j in that order. The set
of all feasible processing orders of N with respect to P is denoted by Π(N,P). The processing time pi
of the job of agent i is the time the machine takes to handle this job. We assume that every agent has a
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linear cost function ci : [0,∞) → IR+ defined by ci(t) = αit with αi > 0. Further it is assumed that
there is an initial feasible order σ0 : N → {1, ..., n} on the jobs of the players before the processing of
the machine starts.

A precedence sequencing situation as described above is denoted by (N,P, σ0, p, α), whereN is the
set of n players, P the set of precedence relations, σ0 : N → {1, ..., n} the initial order, p = (pi)i∈N ∈
IR

N
+ the vector representing the processing times and α = (αi)i∈N ∈ IR

N
+ the vector denoting the cost

coefficients.
For an order σ the set of predecessors of player i ∈ N is Pr(σ, i) = {j | σ(j) < σ(i)}. Then

the completion time C(σ, i) of the job of agent i with respect to some feasible order σ is equal to
pi +
∑

j∈Pr(σ,i) pj. The total costs cσ(S) of a coalition S ⊆ N is given by

cσ(S) =
∑

i∈S

αi(C(σ, i)).

The (maximal) cost savings of a coalition S depend on the precedence relationP and the set of admissible
orders of this coalition. We call a processing order σ ∈ Π(N,P) admissible for S with respect to the
initial order if it satisfies the following condition:

Pr(σ0, j) = Pr(σ, j) for all j ∈ N\S.

This condition implies that the completion time of each agent outside the coalition S is equal to his com-
pletion time in the initial order, and that the agents of S are not allowed to jump over players outside S.
The set of admissible orders for a coalition S is denoted by Σ(S,P).

Given a precedence sequencing situation (N,P, σ0, p, α) the corresponding precedence sequencing game
is defined in such a way that the worth of a coalition S is equal to the maximal cost savings the coalition
can achieve by means of an admissible order. Formally we have for any S ⊆ N,S 
= ∅ that

v(S) = max
σ∈Σ(S,P)

{
∑

i∈S

(αiC(σ0, i))−
∑

i∈S

(αiC(σ, i))}.

A coalition S is called connected with respect to σ0 if for all i, j ∈ S and k ∈ N , σ0(i) < σ0(k) < σ0(j)
implies k ∈ S. A connected coalition S ⊆ T is a component of T if i ∈ T\S implies that S ∪ {i} is
not connected. The components of T form a partition of T , denoted by T/σ0. The definition of an
admissible order of a coalition S says the players of S are not allowed to jump over players outside the
coalition. This implies that an optimal order is such that the players in each component are rearranged
optimally. Hence, for any coalition T ,

v(T ) =
∑

S∈T/σ0

v(S). (1)

The following example illustrates a precedence sequencing game in case the precedence relation is a
tree.

Example 2.1 Let (N,P, σ0, p, α) be a precedence sequencing situation, where N = {1, 2, 3, 4},P =

{(1, 2), (2, 4), (1, 3)}, σ0 = (1, 2, 3, 4), p = (1, 1, 1, 1) and α = (1, 2, 3, 4). Then the worth of the
connected coalitions is v({i}) = 0 for i = 1, 2, 3, 4, v({1, 2}) = 0, and
v(S) = 1 if S = {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}. �
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Note that (1) implies that precedence sequencing games are σ0-component additive games, and, thus,
balanced (cf. Curiel et al. (1994)). Recall that a game (N,v) is called balanced if its core is non-empty.
The core consists of all vectors that distribute v(N), i.e., the revenues incurred when all players in N
cooperate, among the players in such a way that no subset of players can be better off by seceding from
the rest of the players and acting on their own behalf. That is, a vector x ∈ IR

N is in the core of a game
(N, v) if

∑
j∈N xj = v(N) and

∑
j∈S xj ≥ v(S) for all S ⊂ N .

3 Convexity of precedence sequencing games

In this section we will establish the convexity of the precedence sequencing games corresponding to situ-
ations in which the precedence relations consist of parallel chains and the initial order is a concatenation
of these chains.

The following example shows that precedence sequencing games that arise from a sequencing situ-
ation in which the precedence relation is a tree need not be convex. Recall that a game (N, v) is called
convex if for any i, j ∈ N, i 
= j and any S ⊆ N\{i, j} it holds

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S) ≥ 0. (2)

Example 3.1 Consider the precedence sequencing game of Example 2.1. Then

v({2, 3, 4})− v({2, 3})− v({3, 4}) + v({3}) = −1 < 0,

which implies that (N,v) is not convex. �

Let (N,P, σ0, p, α) be a precedence sequencing situation. Then P is said to be a network of parallel
chains if each player precedes at most one player and is preceded by at most one player, i.e., for each
i ∈ N it holds that |{j ∈ N : (i, j) ∈ P}| ≤ 1 and |{j ∈ N : (j, i) ∈ P}| ≤ 1. A chain is an ordered
set of players (i1, . . . , ik) for which (il, il+1) ∈ P for each l ∈ {1, . . . , k − 1} and for which there does
not exist a player j ∈ N such that (j, i1) ∈ P or (ik, j) ∈ P .

Let (N,P, σ0, p, α) be a precedence sequencing situation where P is a network of parallel chains,
1, . . . , C say. The set of players in chain c = 1, . . . , C is denoted by P (c). The sets P (c) (c = 1, . . . , C)
define a partition ofN . We assume that σ0 is some concatenation of these chains, i.e., P (c) is connected
for all c = 1, . . . , C. Without loss of generality we assume that the order of the chains is 1, . . . , C. The
following example illustrates a concatenation of chains.

Example 3.2 Let (N,P, σ0, p, α) be a precedence sequencing situation, where N = {1, 2, 3, 4, 5, 6},
P = {(1, 2), (3, 4), (4, 5), (5, 6)}, p = (1, 1, 1, 1, 1, 1), and α = (2, 5, 6, 6, 3, 6). The only two possible
initial orders are (1, 2, 3, 4, 5, 6) and (3, 4, 5, 6, 1, 2), because P (1) = {1, 2} and P (2) = {3, 4, 5, 6}.

�

For determining the precedence sequencing game corresponding to a sequencing situation in which
the precedence relation is a concatenation of chains, we need an optimal order for each coalition. There-
fore, we need the following additional notations and definitions. For any T ⊆ N , T 
= ∅, we define

α(T ) :=
∑

i∈T

αi, p(T ) :=
∑

i∈T

pi, u(T ) :=
α(T )

p(T )
,
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where u(T ) is called the urgency index of coalition T .
By the component additivity of the precedence games (see (1)), we can restrict ourselves to calculat-

ing the worth of connected coalitions. Let S be a connected coalition. Then there are chains c and c+ k
such that S ∩ P (c + l) 
= ∅ for all l = 0, . . . , k and S ∩ P (c − 1) = S ∩ P (c + k + 1) = ∅. For any
l = 0, . . . , k, let chl(S) = S ∩ P (c+ l) = {il1, . . . , i

l
nl
} be the (non-empty) intersection of S with the

players of chain c+ l. Each chl(S) owns in a natural way the ordering induced by σ0, i.e., for chl(S) it
holds that σ0(il1) < σ0(i

l
2) < . . . < σ0(i

l
nl
). Note that chl(S) = P (c+ l) for all l = 1, . . . , k − 1.

Before stating Sidney’s algorithm, we introduce the concepts of heads and tails. A head of a chain
c = (i1, . . . , ik) is a set T ⊆ P (c) such that T = {i1, . . . , il}. Similarly, a tail of c is a set T ⊆ P (c)
such that T = {il, . . . , ik}.

Now Sidney’s algorithm provides a way to calculate an optimal order of the members of S given
precedence relations that consist of parallel chains and an initial order that is a concatenation of chains.

Procedure: Optimal order of connected S
Step 1: Construction of Sidney-components
For every l = 0, . . . , k, find the following coalitions:
T l
1 := {il1, . . . , i

l

tl
1

}, the largest head of chl(S) that satisfies

u({il1, . . . , i
l

tl
1

}) = max
1≤q≤nl

u({il1, . . . , i
l
q}).

Form > 1

T l
m := {il

tl
m−1

+1
, . . . , il

tlm
}, the largest head of chl(S)\(∪

m−1
i=1 T

l
i ) that satisfies

u({il
tl
m−1

+1
, . . . , i

l

tl
m

}) = max

tl
m−1

+1≤q≤nl

u({il
tl
m−1

+1
, . . . , i

l
q}).

Let ml be the number of sets we obtain in this way. Then, ∪r=1,...,ml
T l
r = chl(S). The sets T l

r

(l = 0, . . . , k and r = 1, . . . ,ml) are called the Sidney-components of S.
Step 2: Ordering Sidney-components
Order the Sidney-components of S in weakly decreasing order with respect to their urgency indices.

The following theorem follows from Sidney (1975).

Theorem 3.3 An order σS that results from the procedure is admissible and optimal for S.

Example 3.4 Let (N,P, σ0, p, α) with σ0 = (1, 2, 3, 4, 5, 6) be defined as in Example 3.2. Let S =

{2, 3, 4, 5, 6}. Then ch0(S) = {2} and ch1(S) = {3, 4, 5, 6}. Following the first step of Sidney’s
algorithm we obtain T 01 = {2}, T 11 = {3, 4} and T 13 = {5, 6}, with u({2}) = 5, u({3, 4}) = 6 and
u({5, 6}) = 4

1
2
, respectively. From the second step of the algorithm and Theorem 3.3 it follows that

processing the jobs in the order σS = (1, 3, 4, 2, 5, 6) is optimal for coalition S given the precedence
relation P .
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Let (N,v) be the precedence sequencing game corresponding to (N,P, σ0, p, α). It follows from (1)
and the optimality of σS ∈ Σ(S,P) that v(S) = (2 ∗ 5 + 3 ∗ 6 + 4 ∗ 6 + 5 ∗ 3 + 6 ∗ 6)− (2 ∗ 6 + 3 ∗
6 + 4 ∗ 5 + 5 ∗ 3 + 6 ∗ 6) = 2. �

The following lemmata describe relations between urgency indices, which facilitate the proof of our
main result.

Lemma 3.5 Let S, T ⊂ N be disjoint and non-empty. If u(S) ≥ u(T ), then u(S) ≥ u(S ∪ T ) ≥ u(T ).
If u(S) = u(T ), then u(S) = u(S ∪ T ) = u(T ).

Proof. Suppose u(S) ≥ u(T ). It holds that α(S)

p(S)
= u(S) ≥ u(T ) =

α(T )

p(T )
. Therefore α(S)p(T ) ≥

α(T )p(S). Addingα(S)p(S) orα(T )p(T ) to both sides givesα(S)(p(S)+p(T )) ≥ (α(S)+α(T ))p(S)

and (α(S) + α(T ))p(T ) ≥ α(T )(p(S) + p(T )), respectively. Hence, u(S) = α(S)

p(S)
≥ α(S)+α(T )

p(S)+p(T )
=

u(S ∪ T ) and u(S ∪ T ) = α(S∪T )

p(S∪T )
≥ α(T )

p(T )
= u(T ).

Now suppose u(S) = u(T ). Then it holds that α(S)p(T ) = α(T )p(S). Adding α(S)p(S) to both
sides gives α(S)(p(S) + p(T )) = (α(S) + α(T ))p(S), and equivalently, u(S) = u(S ∪ T ). �

Lemma 3.6 Let S,T,W ⊂ N be disjoint and non-empty. If u(W ) ≥ u(T ) ≥ u(S), then
u(S ∪ T ∪W ) ≥ u(S ∪ T ).

Proof. Because u(T ) ≥ u(S) it follows from Lemma 3.5 that u(T ) ≥ u(S ∪ T ) ≥ u(S), and therefore
u(W ) ≥ u(S ∪ T ). Applying Lemma 3.5 again gives u(W ) ≥ u(S ∪ T ∪W ) ≥ u(S ∪ T ). �

Lemma 3.7 Let T ⊆ N , T 
= ∅ and let T l
1, . . . , T

l
ml

be the Sidney-components of T for some chain l.
Then u(T l

1) > u(T
l
2) > · · · > u(T l

ml
).

Proof. Follows immediately from the definition of the Sidney-components and Lemma 3.5. �

To prove our main result we need the following notation. For two coalitionsU, V ⊆ N with U∩V =

∅, we define2

g(U,V ) := (α(V )p(U)− α(U)p(V ))+.

Note that g(U,V ) ≥ 0. For any two non-empty sets U,V ⊆ N it holds that g(U, V ) > 0 if and only if
u(V ) > u(U). Extending to two collections U,V ⊆ 2

N with U ∩ V = ∅ for each U ∈ U , V ∈ V , we
define

G(U ,V) :=
∑

U∈U,V ∈V

g(U,V ). (3)

Theorem 3.8 Let (N,P, σ0, p, α) be a precedence sequencing situation whereP is a network of parallel
chains and σ0 a concatenation of chains. Then the corresponding precedence sequencing game (N, v)
is convex.

2For x ∈ IR we write x+ = max{0, x}.
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Proof. The initial order is a concatenation of chains. Without loss of generality we assume that the order
of the chains is 1, 2, . . . , C. We have to show that (2) holds for every i, j ∈ N, i 
= j and S ⊂ N\{i, j}.

First suppose that i and j are in different components of S ∪ {i, j}. Then applying (1) implies 2).
Therefore we only consider situations in which i and j are in the same component of S∪{i, j}. Because
precedence games are σ0-component additive, it is sufficient to consider situations where S ∪ {i, j} is
connected. Without loss of generality assume that σ0(i) < σ0(j). Now define (see Figure 1 for an
illustration)

S1 := {k ∈ S : σ0(k) < σ0(i)},

S2 := {k ∈ S : σ0(i) < σ0(k) < σ0(j)},

S3 := {k ∈ S : σ0(j) < σ0(k)}.

i j

S1 S2 S3

Figure 1: The sets S1, S2, and S3

We distinguish between two cases.

CASE 1: S1 ∪ S3 = ∅, i.e., S = S2.
Suppose that i and j are in the same chain. In that case no reordering of the players is admissible,

and therefore v(S ∪{i, j}) = v(S ∪{j}) = v(S ∪{i}) = v(S) = 0 and (2) holds. So now suppose that
i is an element of chain c∗ and j is an element of chain d∗, where c∗ < d∗. For convenience we introduce
the following sets.

For V = S∪{i, j}, S∪{i} letC1(V ) be the collection of Sidney-components of V that are contained
in c∗ and that are not Sidney-components of S ∪ {j}. Note that C1(S ∪ {i, j}) = C1(S ∪ {i}), because
P (c∗) ∩ (S ∪ {i, j}) = P (c∗) ∩ (S ∪ {i}).

For V = S ∪ {j}, S let C1(V ) be the collection of Sidney-components of V that are contained in c∗

and that are not Sidney-components of S ∪ {i, j}. Note that C1(S ∪ {j}) = C1(S).
For V = S∪{i, j}, S∪{j} letC4(V ) be the collection of Sidney-components of V that are contained

in d∗ and that are not Sidney-components of S ∪ {i}. Note that C4(S ∪ {i, j}) = C4(S ∪ {j}).
For V = S ∪ {i}, S let C4(V ) be the collection of Sidney-components of V which are contained in

d∗ and which are not Sidney-components of S ∪ {i, j}. Note that C4(S ∪ {i}) = C4(S).

See for an example Figure 2. Note that the end of C1 and the beginning of C4 coincide in all four
situations. This follows straightforwardly from Lemma A.1 of the Appendix.
Moreover from Lemma A.2 it follows that

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

7



chain c*

chain c*

chain c* chains c*+1 up to d*-1

chain c*

chain d*

chain d*

chain d*

chain d*

S

i

i

j

jS {i,j}(

S {j}(

S {i}(

C3(.)C2(.)C1(.) C4(.)

Figure 2: The sets C1(.) up to C4(.)

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j}))−G(C1(S ∪ {i}), C4(S ∪ {i}))

−G(C1(S ∪ {j}), C4(S ∪ {j})) +G(C1(S), C4(S)) (4)

From Lemma A.1 it follows that C1(S ∪ {i, j}) and C4(S ∪ {i, j}) contain only one element (i.e.,
Sidney-component). Let U∗ be the unique element of C1(S ∪ {i, j}) and let V ∗ be the unique element
of C4(S ∪ {i, j}). Substituting this in (4) we obtain

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

= G({U∗}, {V ∗})−G({U∗}, C4(S ∪ {i}))

−G(C1(S ∪ {j}), {V
∗}) +G(C1(S), C4(S))

= g(U
∗

, V
∗

)−
∑

V ∈C4(S∪{i})

g(U∗, V )

−

∑

U∈C1(S∪{j})

g(U, V ∗) +
∑

U∈C1(S),V ∈C4(S)

g(U,V ), (5)

where the second equality holds by (3). Hence, (2) is satisfied if expression (5) is nonnegative.

Subcase 1a: Suppose g(U∗, V ∗) = 0, i.e., u(U∗) ≥ u(V ∗). Because V ∗ is a Sidney-component,
it follows from the definition of Sidney-components that u(V ∗) ≥ u(V1), where V1 is the first Sidney-
component in C4(S ∪ {i}). Hence, u(U∗) ≥ u(V1), and g(U∗, V1) = 0. From Lemma 3.7 it follows
that
∑

V ∈C4(S∪{i}) g(U
∗, V ) = 0. Similarly, it can be shown that

∑
U∈C1(S∪{j}) g(U,V

∗) = 0 and∑
U∈C1(S),V ∈C4(S) g(U,V ) = 0, and therefore expression (5) is nonnegative.

Subcase 1b: Suppose g(U∗, V ∗) > 0, i.e., u(V ∗) > u(U∗). Define
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V ∗(a) := ∪V ∈C4(S∪{i}):g(U∗,V )>0V

V ∗(b) := V ∗\V ∗(a).

From Lemma 3.7 it follows that V ∗(a) is a head of V ∗ that consist of the players of those Sidney-
components of C4(S ∪ {i}) with higher urgency index than U∗. Note that j ∈ V ∗(b), and therefore
V ∗(b) 
= ∅. Similarly we define

U∗(b) := ∪U∈C1(S∪{j}):g(U,V ∗)>0U

U∗(a) := U∗\U∗(b).

From Lemma 3.7 it follows that U∗(b) is a tail of U∗ that consist of the players of those Sidney-
components of C1(S ∪ {j}) with lower urgency index than V ∗. Note that i ∈ U∗(a) and therefore
U∗(a) 
= ∅. Rewriting the first two terms of (5) we obtain

g(U∗, V ∗)−
∑

V ∈C4(S∪{i})

g(U∗, V )

= g(U∗, V ∗)−
∑

V ∈C4(S∪{i}):V⊆V ∗(a)

g(U∗, V )

= α(V ∗)p(U∗)− α(U∗)p(V ∗)−
∑

V ∈C4(S∪{i}):V⊆V ∗(a)

(α(V )p(U∗)− α(U∗)p(V ))

= α(V ∗)p(U∗)− α(U∗)p(V ∗)− α(V ∗(a))p(U∗) + α(U∗)p(V ∗(a))

= α(V ∗(b))p(U∗)− α(U∗)p(V ∗(b)), (6)

where the second equality follows from u(V ∗) > u(U∗) and u(V ) > u(U∗) for all V ∈ C4(S ∪ {i})
with V ⊆ V ∗(a). Rewriting the last two terms of (5) we obtain

∑

U∈C1(S∪{j})

g(U,V ∗)−
∑

U∈C1(S),V ∈C4(S)

g(U,V )

≤

∑

U∈C1(S∪{j}):U⊆U∗(b)

g(U, V ∗)−
∑

U∈C1(S),V ∈C4(S):U⊆U∗(b),V⊆V ∗(a)

g(U, V )

≤

∑

U∈C1(S∪{j}):U⊆U∗(b)

(α(V ∗)p(U)− α(U)p(V ∗))

−

∑

U∈C1(S),V ∈C4(S):U⊆U∗(b),V⊆V ∗(a)

(α(V )p(U)− α(U)p(V ))

= α(V ∗)p(U∗(b))− α(U∗(b))p(V ∗)− α(V ∗(a))p(U∗(b)) + α(U∗(b))p(V ∗(a))

= α(V ∗(b))p(U∗(b))− α(U∗(b))p(V ∗(b)). (7)

The first inequality follows from the definition of U∗(b). The second inequality follows from g(U,V ) ≥
α(V )u(U)− α(U)p(V ) for all U, V ⊆ N .

Substituting (6) and (7) in (5) we obtain
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v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

≥ α(V ∗(b))p(U∗(a))− α(U∗(a))p(V ∗(b)). (8)

To show that expression (8) is nonnegative, we will prove that u(V ∗(b)) ≥ u(V ∗) and u(U∗) ≥

u(U∗(a)). This implies, using the assumption u(V ∗) > u(U∗), that u(V ∗(b)) > u(U∗(a)). As a
result expression (8) is nonnegative.

Suppose that V ∗(a) = ∅, then V ∗(b) = V ∗ and hence u(V ∗(b)) = u(V ∗). So suppose that V ∗(a) 
= ∅

and suppose that u(V ∗(a)) > u(V ∗(b)). Then using Lemma 3.5 it follows that u(V ∗(a)) > u(V ∗) >
u(V ∗(b)). This implies that V ∗ is not a Sidney-component of S ∪ {i, j}, which is a contradiction.
Hence, u(V ∗(b)) ≥ u(V ∗(a)) and using Lemma 3.5 it follows that u(V ∗(b)) ≥ u(V ∗). The proof that
u(U∗) ≥ u(U∗(a)) runs similarly.

CASE 2: S1 ∪ S3 
= ∅.
First suppose that S = S2 ∪ S3, i.e., S1 = ∅. Let S3 = {h1, . . . , hq} where σ0(h1) < · · · < σ0(hq).

Then

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

= v(S2 ∪ S3 ∪ {i, j})− v(S2 ∪ S3 ∪ {i})− v(S2 ∪ S3 ∪ {j}) + v(S2 ∪ S3)

= v(S2 ∪ S3 ∪ {i, j})− (v(S2 ∪ {i}) + v(S3))− v(S2 ∪ S3 ∪ {j}) + (v(S2) + v(S3))

= v(S2 ∪ S3 ∪ {i, j})− v(S2 ∪ {i})− v(S2 ∪ S3 ∪ {j}) + v(S2)

= v(S2 ∪ {i, j})− v(S2 ∪ {i})− v(S2 ∪ {j}) + v(S2) (9)

+ v(S2 ∪ S3 ∪ {i, j})− v(S2 ∪ {i, j})− v(S2 ∪ S3 ∪ {j}) + v(S2 ∪ {j}) (10)

where the second equality holds because S2 ∪S3 ∪{i} and S2 ∪S3 are disconnected. We will show that
expression (9) as well as expression (10) is nonnegative.

From Case 1 it follows that

v(S2 ∪ {i, j})− v(S2 ∪ {i})− v(S2 ∪ {j}) + v(S2) ≥ 0,

which shows that expression (9) is nonnegative.

Now let T1 = S2 ∪ {j}, and for l ∈ {2, . . . , q} let Tl = S2 ∪ {j, h1, . . . , hl−1}. From Case 1 it follows
that for each l ∈ {1, . . . , q}

v(Tl ∪ {i, hl})− v(Tl ∪ {i})− v(Tl ∪ {hl}) + v(Tl) ≥ 0.

Now it holds that

q∑

l=1

(v(Tl ∪ {i, hl})− v(Tl ∪ {i})− v(Tl ∪ {hl}) + v(Tl))

10



=
q∑

l=1

(v(Tl ∪ {i, hl})− v(Tl ∪ {i})) +
q∑

l=1

(−v(Tl ∪ {hl}) + v(Tl))

= (v(Tq ∪ {i, hq})− v(T1 ∪ {i})) + (−v(Tq ∪ {hq}) + v(T1))

= v(S2 ∪ S3 ∪ {i, j})− v(S2 ∪ {i, j})− v(S2 ∪ S3 ∪ {j}) + v(S2 ∪ {j}) ≥ 0,

which shows that expression (10) is nonnegative. Hence (2) holds if S3 
= ∅ and S1 = ∅. A similar
argument shows that (2) holds if S1 and S3 are both non-empty. �

Finally we illustrate that convexity is lost if the initial order is not a concatenation of chains.

Example 3.9 Let us consider the precedence sequencing situation (N,P, σ0, p, α) given byN = {1, 2, 3},
P = {(1, 3)}, σ0 = (1, 2, 3), p = (1, 1, 1), and α = (1, 2, 3). Hence, σ0 is not a concatenation of chains.
Let (N, v) be the corresponding precedence sequencing game. It can easily be verified that

v({1, 2, 3})− v({2, 3})− v({1, 2}) + v({2}) = 1− 1− 1 + 0 < 0.

So (N,v) is not convex. �

Appendix

Lemma A.1 Let (N,P, σ0, α, p) be a precedence sequencing situation with P a network of parallel
chains and let σ0 be a concatenation of chains. The sets C1(S ∪ {i, j}) and C4(S ∪ {i, j}) contain
precisely one element (i.e., Sidney-component).

Proof. We will show that C1(S ∪ {i, j}) contains a single element. If i is the only player in P (c∗) ∩
(S ∪{i, j}), then C1(S∪{i, j}) = {{i}}. So assume that i is not the only player in P (c∗)∩ (S ∪{i, j})
and suppose that the Sidney-component of S ∪ {i, j} containing i is {i} ∪m−1

l=1 Al ∪ B, where Al is
a Sidney-component of S ∪ {j} for each l ∈ {1, . . . ,m} and where B is a proper head of Am, i.e.,
B 
= ∅ and B 
= Am. Then it holds that u({i} ∪m−1

l=1 Al ∪ B) ≥ u({i} ∪m−1
l=1 Al). Now suppose that

u(B) < u({i}∪m−1
l=1 Al). Then from Lemma 3.5 it follows that u({i}∪m−1

l=1 Al∪B) < u({i}∪m−1
l=1 Al),

which is a contradiction. Hence, u(B) ≥ u({i} ∪m−1
l=1 Al).

Because Am is a Sidney-component of S ∪ {j}, it holds that u(Am\B) ≥ u(B). Hence, we have
u(Am\B) ≥ u(B) ≥ u({i} ∪m−1

l=1 Al). From Lemma 3.6, by using S = {i} ∪m−1
l=1 Al, T = B and

W = Am\B, we obtain that u({i} ∪m
l=1 Al) ≥ u({i} ∪m−1

l=1 Al ∪ B), which is a contradiction to
the assumption that the Sidney-component of S ∪ {i, j} containing i is {i} ∪m−1

l=1 Al ∪ B. Therefore,
the Sidney-component of S ∪ {i, j} containing i is of the form {i} ∪m

l=1 Al, and we conclude that
C1(S ∪ {i, j}) contains a single element. Similarly it can be shown that C4(S ∪ {i, j}) contains one
element. �

Lemma A.2 Let (N,P, σ0, α, p) be a precedence sequencing situation with P a network of parallel
chains let σ0 be a concatenation of chains. Let (N,v) be the corresponding precedence sequencing
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game. It holds that

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j}))−G(C1(S ∪ {i}), C4(S ∪ {i}))

−G(C1(S ∪ {j}), C4(S ∪ {j})) +G(C1(S), C4(S)).

Proof. Besides the already introduced setsC1(V ) andC4(V ), where V = S∪{i, j}, S∪{i}, S∪{j}, S,
we introduce the following collections of Sidney-components (for an illustration see Figure 2). For
V = S ∪ {i, j}, S ∪ {i} let C2(V ) be the collection of Sidney-components of V that are contained in c∗

and that are also Sidney-components of S ∪ {j}.
For V = S ∪ {j}, S let C2(V ) be the collection of Sidney-components of V that are contained in

c∗ and that are also Sidney-components of S ∪ {i, j}. Note that C2(S ∪ {i, j}) = C2(S ∪ {i}) =
C2(S ∪ {j}) = C2(S).

For V = S∪{i, j}, S∪{j} letC3(V ) be the collection of Sidney-components of V that are contained
in d∗ and that are also Sidney-components of S ∪ {i}.

For V = S ∪ {i}, S let C3(V ) be the collection of Sidney-components of V that are contained in
d∗ and that are also Sidney-components of S ∪ {i, j}. Note that C3(S ∪ {i, j}) = C3(S ∪ {i}) =
C3(S ∪ {j}) = C3(S).

For l ∈ {c∗ + 1, . . . , d∗ − 1} let Dl be the collection of Sidney-components that are contained in
chain l.

Finally, for V = S ∪ {i, j}, S ∪ {i}, S ∪ {j}, S let C12(V ) = C1(V ) ∪ C2(V ) and let C34(V ) =
C3(V ) ∪C4(V ).

For T = S ∪ {i, j}, S ∪ {i}, S ∪ {j}, S it holds that

v(T ) =
d∗−1∑

l=c∗+1

[G(C12(T ),Dl) +G(C12(T ), C34(T ))]

+
∑

l,m∈{c∗+1,...,d∗−1}:l<m

G(Dl,Dm) +
d∗−1∑

l=c∗+1

G(Dl, C34(T )).

Now it is straightforward, using C12(S ∪ {i, j}) = C12(S ∪ {i}), C12(S ∪ {j}) = C12(S),
C34(S ∪ {i, j}) = C34(S ∪ {j}) and C34(S ∪ {i}) = C34(S), to show that

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

= G(C12(S ∪ {i, j}), C34(S ∪ {i, j}))−G(C12(S ∪ {i}), C34(S ∪ {i}))

−G(C12(S ∪ {j}), C34(S ∪ {j})) +G(C12(S), C34(S)).

= G(C1(S ∪ {i, j}), C4(S ∪ {i, j}))−G(C1(S ∪ {i}), C4(S ∪ {i}))

−G(C1(S ∪ {j}), C4(S ∪ {j})) +G(C1(S), C4(S)),

which proves the lemma. �
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