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Abstract

Fictitious play can be seen as a numeric iteration procedure for determining
the value of a game and corresponding optimal strategies. Although convergence
is slow, it needs only a modest computer storage. Therefore it seems to be a good
way out for analyzing large games. In this paper we consider a weakened form of
…ctitious play, which can be interpreted that players at each stage do not have to
make the best choice against the total of past choices of the other player but only
an increasingly better one. Theoretical bounds for convergence are derived. Fur-
thermore it is shown that this new form can speed up convergence considerably in
practice. The method is related to generalizations in which the game matrix itself
becomes better known as the number of stages increases. Finally, the convergence
of the strategies themselves is discussed.
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1 Introduction

Consider a two-person zero-sum game in strategic form with pay-o¤ aij if player I uses
strategy i and player II strategy j (i = 1; : : : ; r and j = 1; : : : ; s). Let A = (aij) 2 Rr£s

denote the corresponding pay-o¤ matrix.
We are interested in calculation the value v(A) of the game and corresponding op-

timal strategies of the players for large values of r and s . We have in mind that aij is
a given simple function of (i; j) as is often the case for games arising in practice. For
such games the usual LP-techniques are often not feasible. The computer memory needs
the size r £ s of all elements of A. Although memory in computers becomes larger and
larger, this is often too large. Cases in which A is sparse are rare. Therefore we became
interested in an old method refered to as …ctitious play. In its basic form only a size
r + s of one row and one column of A is needed. The convergence to the game value
v(A) is much slower than that with LP. But far large r and s we may say that something
is better than nothing. We can get rough estimates in a reasonable time and often this
is the …rst step in the analysis for obtaining easy-to-remember approximations.

The idea of …ctitious play goes back to Brown [1949, 1951]. The validity of this
method was proved by Robinson [1950]. Shapiro [1958] provided a priori bounds for
v(A) of convergence rate O(n¡1=(r+s¡2)). For literature concerning non-zero or more-
person games we refer to the recent paper Krisha and Sjöström(1998).

Fictitious play can be seen as an in…nite stage learning process where at each stage
the players choose a pure strategy which, among the pure strategies, would have been
the best against the total of past choices of the other player. In Vrieze and Tijs [1982]
the method is extended to the situation in which the game matrix A is not exactly
known in advance, but where at each state n 2 N an approximation A(n) is given,
where A(n) ! A. A priori bounds are not given but its convergence to the game value
v(A) is established.

The purpose of this paper is fourfold. Firstly, in section 2 we weaken the idea of
playing best against the past of the other player to increasingly better and admit in
each stage mixtures of pure strategies as well. In this way convergence can be speed up
considerably (this is shown in section 3). We give a priori bounds of the type of Shapiro
[1958] leading to su¢cient conditions for convergence. The proof is based on the main
theorem in section 5 and is worked out in section 6.

Secondly, in section 3 we discuss the speed of convergence of generalized …ctitious
play. It will appear that in practice convergence takes place far beyond the theoretical
Shapiro-bounds. We will illustrate this on random chosenly game matrices and various
implementations of increasingly better.

Thirdly, in section 4 we pay attention to the convergence of the corresponding strate-
gies of the players.

Fourthly, in section 7 we will show that the developed framework covers the gener-
alization of Vrieze and Tijs [1982].

The paper concludes in section 8 with some remarks.
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2 A generalized form of …ctitious play

In this section we de…ne a weaker form of …ctitious play and state a priori bounds for
the game value.

We write N = f1; 2; : : : g and N0 = f0g [ N. Row-vectors are denoted by upper
indices and column vectors by lower indices. So for a given pay-o¤ matrix A 2 Rr£s its
rows are in Rr and its columns in Rs. The simplex of mixed strategies of player I is
¢r = fp 2 Rr : pi ¸ 0; § pi = 1g and that of player II ¢s = fq 2 Rs : qj ¸ 0; § qj = 1g.

De…nition 2.1 For a given pay-o¤ matrix A 2 Rr£s we call the sequence (U(n) 2
Rr; V (n) 2 Rs)n2N0 a vector system with update sequence (¸(n) 2 ¢r; ¹(n) 2 ¢s)n2N if

U(n) = U(n¡ 1) +A¹(n) (2.1)

V (n) = V (n¡ 1) + ¸(n)A. (2.2)

The corresponding …ctitious play sequences (p(n) 2 ¢r)n2N of player I and (q(n) 2
¢s)n2N of player II are de…ned by

p(n) =
1

n

nX

k=1

¸(k) (2.3)

q(n) =
1

n

nX

k=1

¹(k). (2.4)

We interprete Ui(0) as player I’s initial estimate of what he expects to win should he
play his strategy i. Similarly, Vj(0) is the initial estimate of the loss of player II should
he play his strategy j.

From (2.1), (2.3) and (2.2), (2.4) it follows

U(n) = U(0) + nAq(n) (2.5)

V (n) = V (0) + np(n)A: (2.6)

So, Ui(n) is the estimate of player I’s total gain of his strategy i after stage n if player
II plays his mixed strategy q(n) build up so far. Similarly for Vj(n) and player II.

There exists a simple relation between the U(n); V (n) and the game values v(A); v(A0)
where A0 denotes the transpose of A. This is contained in the following lemma.

Lemma 2.2 For all n 2 N :

1

n
fminV (n)¡maxV (0)g � v(A) � 1

n
fmaxU(n)¡minU (0)g (2.7)

1

n
fminU(n)¡maxU (0)g � v(A0) � 1

n
fmaxV (n)¡minV (0)g: (2.8)
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Proof. We only use (2.5) and (2.6). We have

1

n
fminV (n)¡maxV (0)g � 1

n
minfV (n)¡ V (0)g = min p(n)A

� minmax
p
pA = v(A) � maxmin

q
Aq � maxAq(n)

� 1

n
maxfU (n)¡ U(0)g � 1

n
fmaxU(n)¡minU(0)g

and this proves (2.7). Similarly, for (2.8):

1

n
fminU(n)¡maxU (0)g � 1

n
minfU(n)¡ U (0)g = minAq(n) =

= min q0(n)A0 � v(A0) � maxA0p(n) = max p(n)A

� 1

n
maxfV (n)¡ V (0)g � 1

n
fmaxV (n)¡minV (0)g:

Remark. For reasons of symmetry we have included (2.8) in the lemma, although this
relation is only used in the proof of lemma 5.3.

Relations (2.7),(2.8) suggest the notations (for n 2 N0):
½
¢UV (n) = maxU(n)¡min V (n)
¢V U(n) = maxV (n)¡minU(n): (2.9)

Then (2.7) can be rewritten in two ways

¡1
n
maxV (0) � v(A)¡ 1

n
minV (n) � 1

n
(¢UV (n)¡minU (0)) (2.10)

1

n
minU (0) � 1

n
maxU(n)¡ v(A) � 1

n
(¢UV (n) + maxV (0)): (2.11)

Together with (2.5) and (2.6) it follows that

0 � v(A)¡min p(n)A � 1

n
f¢UV (n) + ¢V U(0)g (2.12)

0 � maxAq(n)¡ v(A) � 1

n
f¢UV (n) + ¢V U (0)g: (2.13)

The relations (2.10) - (2.13) make clear that the condition

¢UV (n)=n ! 0 (2.14)
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is crucial. Under this condition we see from (2.10) and (2.11) that min V (n)=n and
maxU(n)=n converge to v(A). From (2.12) we get that the sequence (p(n))n2N of player
I is extended maxmin (i.e. for any " > 0 there exists a N such that p(n) is "-maxmin
for all n ¸ N). In the same way it follows from (2.13) that (q(n))n2N of player II is
extended minmax. More precise statements follow from (2.10) - (2.13) if we can give
bounds for ¢UV (n).

Without further conditions for the update sequences ¸(n); ¹(n) we cannot come
farther than the following lemma. We introduce the scale factor

a = max
i;j
aij ¡min

i;j
aij: (2.15)

We exclude the trivial case of constant pay-o¤s by assuming throughout this paper that
a > 0.

Lemma 2.3

¡¢V U (0) � ¢UV (n) � ¢UV (0) + na: (2.16)

Proof. The …rst inequality of (2.16) follows immediately from (2.10). Using (2.5),
(2.6) and (2.15) the second inequality follows from

¢UV (n) = maxU(n)¡min V (n)
= maxfU (0) + nAq(n)g ¡minfV (0) + np(n)Ag
� maxU(0) + nmax aij ¡minV (0)¡ nmin aij
= ¢UV (0) + na:

Note that the second inequality in (2.16) is just not su¢cient to guarantee that¢UV (n)=n !
0. We have to make additional assumptions for the update sequences ¸(n) and ¹(n).

Basic …ctitious play chooses at stage n for player I a pure strategy i(n) for which
Ui(n)(n¡1) = maxU (n¡1) and for player II a pure strategy j(n) for which Vj(n)(n¡1) =
min V (n ¡ 1). This corresponds to the unit row vector ¸(n) = ei(n) 2 ¢r and the unit
column vector ¹(n) = ej(n) 2 ¢s. Then the update ¸(n)A from V (n¡ 1) to V (n) is row
i(n) of A, and the update A¹(n) from U (n ¡ 1) to U(n) is column j(n) of A. In case
that these choices are not uniquely determined, mixtures ¸(n) and ¹(n) of corresponding
optimal unit vectors can be considered as well. In the following we introduce an even
more weakened form in which strategies close to maxU(n¡ 1) and min V (n¡ 1) can be
included as well. The accuracy is speci…ed by some °(n) ¸ 0.

De…nition 2.4 For given A 2 Rr£s we say that the update sequence (¸(n) 2 ¢r; ¹(n) 2
¢s)n2N of the vector system of de…nition 2.1 has the (non-negative) accuracy sequence
(°(n))n2N if

¸i(n) = 0 if Ui(n¡ 1) < maxU(n ¡ 1)¡ a°(n) (2.17)
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¹j(n) = 0 if Vj(n¡ 1) > minV (n ¡ 1) + a°(n); (2.18)

where the scale factor a of A is de…ned in (2.15).

A priori bounds for the game value are given by the following theorem.

Theorem 2.5 Consider the vector system of de…nition 2.4 with r + s ¸ 3. If

0 � °(n) � ±(n) with (±(n))n2N non-decreasing (2.19)

then

¢UV (n) � ¢UV (0) + an
r+s¡3
r+s¡2fcr+s + 2±(n)c=(c ¡ 1)g; (2.20)

with c ¸ c0; where

c0 ¼ 1:696 (the unique real root of c30 ¡ c20 ¡ 2 = 0): (2.21)

Proof. The proof is based on the main theorem 5.1 in section 5 and is completed
in section 6.

Note that (2.20) holds for each n 2 N. So with (2.10) - (2.13) we have a priori bounds
for the di¤erences v(A) ¡ minV (n)=n, maxU(n)=n ¡ v(A)) and v(A) ¡ min p(n)A,
maxAq(n)¡ v(A). The order of convergence to 0 depends on the sum r+ s of rows and
columns of A and the bound ±(n) for the accuracy °(n) for the updates. Su¢cient for
(2.14) is

±(n) = o(n1=(r+s¡2)): (2.22)

The special case of theorem 2.5 with ±(n) ´ 0 is a generalization of Shapiro [1958]:
the order of n is the same but his constants are larger: c = 2 instead of (2.21) and
a = max jaijj instead of (2.14). Our proof is based on an extension of the concept of
eligibility. In section 6 we will make clear that in this way the order of n cannot be
improved. The constant c can be replaced by more accurate expressions. In section 3
we investigate the order of convergence in practice.

3 A numeric evaluation

The weakened form of …ctitious play as discussed in section 2 admits all kinds of choices
for the initial values U (0); V (0) and the update sequences ¸(n); ¹(n) dependent on the
accuracy sequence °(n). In view of (2.17),(2.18) we write for n 2 N:

I(n) = fi : Ui(n¡ 1) ¸ maxU (n¡ 1)¡ a°(n)g (3.1)
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J(n) = fj : Vj(n¡ 1) � min V (n¡ 1) + a°(n)g : (3.2)

So ¸(n) is restricted to I(n) and ¹(n) to J(n). We are free in choosing ¸(n) and ¹(n)
on these sets. Convergence to the game value v(A) is proved for °(n) = ±(n) satisfying
(2.22). We will only consider choices independent of the way pure strategies are indexed.

Throughout this section we assume that

U(0) = 0; V (0) = 0: (3.3)

This seems to be the obvious choice. The bounds (2.10),(2.11) take a simple form.
For n = 1; ¸(1) and ¹(1) are arbitrary since from (3.3) we get I(1) = f1; : : : ; rg ; J(1) =

f1; : : : ; sg.
One simple choice is to take the uniform distribution:

½
¸(1) uniform on f1; : : : ; rg
¹(1) uniform on f1; : : : ; sg : (3.4)

Another choice is to take ¸(1) maxmin and ¹(1) minmax under the pure strategies:

8
<
:

¸(1) uniform on fi0 : min
j
ai0j = max

i
min
j
aijg

¹(1) uniform on fj0 : max
i
aij0 = min

j
max
i
aijg : (3.5)

Although (3.5) is somewhat more di¢cult to start with than (3.4), for games with a
saddlepoint convergence can be achieved in one step (take °(n) = 0).

For n ¸ 2 the simpliest choice is
½
¸(n) uniform on I(n)
¹(n) uniform on J(n):

(3.6)

The drawback of this choice can be that obtained optimal strategies are disturbed again
in the next stage if we take the uniform distribution. Therefore perhaps a better idea is
to choose ¸(n) in such a way that on I(n) we change p(n¡1) to p(n) only proportionally;
similarly on J(n) for q(n ¡ 1) to q(n). More precisely,

8
>>>><
>>>>:

¸i(n) =

(
1= #I(n) if

P
k2I(n) pk(n ¡ 1) = 0

pi(n ¡ 1)
.P

k2I(n) pk(n¡ 1) if i 2 I(n)

¹j(n) =

(
1= #J(n) if

P
k2J(n) qk(n¡ 1) = 0

qj(n¡ 1)
.P

k2J(n) qk(n¡ 1) if j 2 J(n)

(3.7)

Indeed, if
P

k2I(n) pk(n¡ 1) > 0 then pi(n)=pi(n¡ 1) = (n¡ 1)=n+¸i(n)=pi(n¡ 1) does
not depend on i 2 I(n); similarly for qj(n)=qj(n¡ 1) = (n¡ 1)=n+ ¹j(n)=qj(n¡ 1). To
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make the arguments more precise, consider the extreme case that °(n) ´ 0 and that at
stage n we have that I(n) and J(n) are the sets of the reduced game of A with p(n¡1)
maxmin and q(n¡ 1) minmax. So I(n) = I and J(n) = J with

I = fi : pi > 0 for some p 2 ¢(0)g (3.8)

J = fj : qj > 0 for some q 2 ¢(0)g; (3.9)

where ¢(0) denotes the set of optimal maxmin strategies of player I and ¢(0) the set of
minmax strategies of player II (see e.g. Karlin[1959], theorem 3.1.1). Since qj(n¡1) = 0
for all j =2 J = J(n) we get from (3.7) that ¹(n) = q(n¡1). This implies q(n) = q(n¡1)
and therefore U(n)=n = Aq(n) = Aq(n ¡ 1) = U (n ¡ 1)=(n ¡ 1). Since °(n) ´ 0 this
implies I(n+ 1) = I(n). In the same way we get p(n) = p(n¡ 1) and J(n+ 1) = J(n).
So (3.7) maintains optimality once it is obtained. More general, we expect that the
choice (3.7) does not disturb already good strategies. Of course, the drawback can be
that it does not improve bad strategies as well.

The important question is how these choices behave in practice. After some pre-
liminary tests we observed that convergence is much faster than the theoretical bound
of section 2 suggests. So we performed a large scale experiment to analyze weakened
…ctitious play in practice.

For several …xed choices of the dimension (r; s) we generated game matrices A with
elements drawn at random. More precisely, we always took a11 = 1 and ar1 = 0; a1s =
0; ars = 0 with probabilities (r ¡ 1)=(rs¡ 1), (s¡ 1)=(rs¡ 1), 1¡ (r + s¡ 2)=(rs¡ 1),
respectively. The other rs ¡ 2 elements were drawn from the uniform distribution on
(0; 1). So for all such matrices A the scale factor of (2.15) is a = 1.

For each matrix A the initial choice was varied between (3.4) and (3.5), the update
sequences between (3.6) and (3.7), and the accuracy sequences °(n) according to

°(n) = dn± (3.10)

with values d = 0; 0:1; 0:2; 0:5; 1 and ± = 0; 0:01; 0:05; 0:1; 0:4 (in fact we replaced d = 0
by d = 10¡5 for numerical reasons; the value ± = 0:5 was canceled after some trials
because too often convergence did not take place). This leads to a design of 2£2£5£5 =
100 combinations per matrix. For each combination the iteration was continued to the
smallest n for which ¢UV (n)=n < 10¡2. The ideas behind this rather large value are to
save computer time and that in practice more accurate results are not needed at all.

For each combination we registered all kind of data such as the number of iterations
n, the computer time, the game value and the LS-estimate of the equation

log ¢UV (k)=k = r + ½ log k; k = 1; : : : ; n (3.11)
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(only if the game had no saddlepoint). According to (2.19),(2.20) and (3.11) the value
of ½ should be compared with the theoretical order (r + s ¡ 3)=(r + s ¡ 2) ¡ 1 + ± =
± ¡ 1=(r + s ¡ 2). Graphical inspection of the estimated equation showed a good …t in
almost all cases.

To be speci…c, for r = s = 5 our …rst generated matrix A was

A =

2
66664

1 0:7621 0:6154 0:4057 0
0:2311 0:4565 0:7919 0:9355 0:3529
0:6068 0:0185 0:9218 0:9169 0:8132
0:4860 0:8214 0:7382 0:4103 0:0099
0:8913 0:4447 0:1763 0:8936 0:1389

3
77775
:

This matrix has no saddlepoint. For the combination of basic …ctitious play

I: (3.4),(3.6), d = 0; ± = 0

we …nd n = 3772 iterations with LS-estimate ½ = ¡0:497. This estimate is much lower
than the theoretical bound ± ¡ 1=(r + s ¡ 2) = ¡0:125. For the combination of really
weakened …ctitious play

II: (3.5),(3.6), d = 0:5; ± = 0:4

we need n = 2847 iterations giving LS-estimate ½ = ¡0:532. Now the theoretical bound
is ½ = +0:275, a positive value. So convergence is now not guaranteed by the theory.

Of course we should not draw general conclusions on the base of one 5£ 5 matrix.
We generated 100 game matrices of this size and calculated for all registered values the
means per combination (standard deviations were rather large). For the combination I
we …nd a mean of n = 1927 iterations and a mean of LS-estimates of ½ = ¡0:552. For
II we …nd similarly means n = 678:9 and ½ = ¡0:591. So we see that II performs much
better than I. In fact II gives the best means for n and ½ under all 100 combinations.
Surprisingly, the worst combination is (3.5),(3.7), d = 1; ± = 0:4 with a mean of
n = 9559 iterations.

We repeated the whole analysis for game matrices of di¤erent sizes. Table 3 gives
some results for the means of 100 simulated matrices for each size.

TABLE 3
size n ½

I II I II
(5,5) 1927 679 -0.552 -0.591

(5,15) 3169 1032 -0.501 -0.535
(10,10) 6017 1770 -0.527 -0.574
(5,100) 2758 956 -0.544 -0.608
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In all cases combination II is the best among the 100 combinations (although the
e¤ect of replacing (3.5) with (3.4) is small). The size of the matrices has not much
in‡uence on the order of convergence. This is quite surprising because the Shapiro-
bound depends strongly on this size.

It must be admitted the sizes in table 3 is rather small. Therefore we designed a
second experiment with matrices of moderate and large size. On the base of the outcome
of the …rst experiment we varied between (3.4) and (3.5), took (3.6) and d = 0:5 …xed
and varied ± = 0:30; 0:35; 0:40. This generates 2 £ 1£ 1 £ 3 = 6 combinations. The
result for the combinations with the minimal iteration steps is presented in table 3.

TABLE
size start ± n ½
(100,100) (3.4) 0.40 10032 -0.365
(100,500) (3.4) 0.35 12010 -0.348
(5,1000) (3.4) 0.35 6071 -0.704
(25,1000) (3.5) 0.35 5690 -0.426
(100,1000) (3.5) 0.40 13125 -0.345
(1000,1000) (3.5) 0.35 3235 -0.458

Again the in‡uence of the choice between (3.4) and (3.5) is small. For moderate
sizes not the sum r+ s but the di¤erence jr¡ sj seems to have a reducing e¤ect on the
order of convergence.

The generated matrices above are of a rather particular type. They have the property
that the optimal strategies are uniquely determined. It is not clear what the e¤ect is of
the combinations for games with not uniquely determined optimal strategies. For now
on the base of the foregoing analysis it seems save to advise for large matrices weakened
…ctitious play with (3.4) or (3.5), (3.6), d = 0:5a; ± = 0:35. Then the rate of convergence
can be expected to lay somewhere between n¡1=3 and n¡1=2 independent of the size of
the game matrix.

4 Convergence of strategies

In section 2 it has been shown that under the condition (2.14) for A the sequence
(p(n))n2N of player I is extended maxmin and (q(n))n2N of player II is extended minmax.

In general, given extended maxmin p(n) and extended minmax q(n) we have

v(A) = lim
n!1

min
q
p(n)Aq = lim

n!1
p(n)Aq(n) = lim

n!1
max
p
pAq(n):
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So, if p(n) ! p(0) then p(0) is necessarily maxmin and if q(n) ! q(0) then q(0) is
minmax.

Since ¢r is compact, the set of limit points of (p(n))n2N is not empty. It follows
that any limit point of (p(n))n2N is maxmin. So, if A is such that the set of maxmin
strategies ¢(0) contains only one point p(0), then necessarily p(n) ! p(0). However,
¢(0) can contain more than one point and then p(n) need not to converge. The same
remarks apply to q(n) 2 ¢s and the set ¢(0) of minmax strategies.

So the following question arises from section 3: under (3.3) and given ¸(1); ¹(1), can
(¸(n); ¹(n))n¸2 be de…ned in such a way that convergence of p(n) and q(n) takes place?

At …rst glance the sequences given by (3.7) seem to be a good candidate. This is
based on the following implications:

P
k2I(n)

pk(n¡ 1) > 0

I(n+ 1) = I(n)

)
)

( P
k2I(n+1)

pk(n) > 0

¸(n+ 1) = ¸(n)
(4.1)

P
k2J(n)

qk(n¡ 1) > 0

J(n+ 1) = J(n)

)
)

( P
k2J(n+1)

qk(n) > 0

¹(n+ 1) = ¹(n):
(4.2)

Clearly, since npi(n) = (n ¡ 1)pi(n ¡ 1) + ¸i(n) for all i, we see with (3.7) that for
I(n) = I(n+ 1):

X

k2I(n+1)
npk(n) =

X

k2I(n)
(n¡ 1)pk(n¡ 1) +

X

k2I(n)
¸k(n) =

= (n¡ 1)
X

k2I(n)
pk(n¡ 1) + 1 > 0

and so for i 2 I(n+ 1) = I(n) wih (3.7)

¸i(n+ 1) =
pi(n)P

k2I(n+1)
pk(n)

=
(n¡ 1)pi(n ¡ 1) + ¸i(n)
(n ¡ 1) P

k2I(n)
pk(n¡ 1) + 1 = ¸i(n):

The proof of (4.2) follows in the same way.
Now suppose that for some N ¸ 2 we have

X

k2I(N)
pk(N ¡ 1) > 0; I(n) = I(N) for n ¸ N:

Then (4.1) implies
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p(n) =
N

n
p(N ) + (1¡ N

n
)¸(N ) ! ¸(N); n ! 1:

In particular, ¸(N ) is maxmin since it is the limit of extended maxmin p(n). Similar
conclusions can be drawn for q(n) using (4.2).

So in this case convergence of p(n) and q(n) have been brought back to the question
of convergence of the corresponding sets I(n) and J(n). However, it is still an open
question whether this is true or not.

5 The main theorem

In this section we give the main theorem 5.1 on which the bounds of theorem 2.5 are
based.

We call the vector system (U(n); V (n)) of de…nition 2.1 initially balanced of

maxU(0) = minV (0) = 0: (5.1)

With any (U(n); V (n)) there corresponds an initially balanced system ( ~U (n); ~V (n))
de…ned by

~U(n) = U(n)¡maxU(0):1r; ~V (n) = V (n)¡min V (0):1s :

Since

¢~U ~V (n) = ¢UV (n)¡¢UV (0);

bounds for ¢~U ~V (n) can be transformed immediately to bounds for ¢UV (n).
In the following we only consider initially balanced systems (U(n); V (n)). Then

(2.20) reads as

¢UV (n) � aCr;s(n; ±(n)); (5.2)

where

Cr;s(n; ±) = n
r+s¡3
r+s¡2fcr+s + 2±c=(c¡ 1)g: (5.3)

We split up the proof into two parts. The …rst part is given by theorem 5.1 of this
section. Its proof is mainly game-theoretic. This main theorem only speci…es su¢cient
conditions for the function Cr;s(n; ±). The second part is the proof of theorem 2.5 and
this is purely analytical. In section 6 we show that Cr;s(n; ±) given by (5.3) satis…es the
conditions of theorem 5.1.

Theorem 5.1 Consider the vector system (U(n); V (n)) of de…nition 2.4 with ±(n) sat-
isfying (2.19) and suppose that it is initially balanced in the sense of (5.1). For given
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integers r0; s0 with 1 � r0 � r, 1 � s0 � s let Cg;h(n; ±) be de…ned for (integer) g; h
with r0 � g � r, s0 � h � s, for n 2 N and for ± > 0 such that

½
Cg;h(n; ±) is non-decreasing in ± if g + h < r + s
Cg;h(n; ±(n)) ¸ 1 if g + h > r0 + s0:

(5.4)

If for any member (Û (n); V̂ (n)) of the set of all initially balanced vector systems with
respect to all submatrices 2 Rr0£s0 of A (with the …xed a and °(n) of de…nition 2.4) we
have:

¢Û V̂ (n) � aCr0;s0(n; ±(n)); (5.5)

then (5.2) is ful…lled as well, provided that for each …xed g; h the following condition is
ful…lled: for each n > Cg;h(n; ±(n)) we can …nd an integer T with 0 < T < n such that

8
>>>>>>>><
>>>>>>>>:

if g > 1; h > 1 :
2
£
n¡1
2T

¤
maxfCg¡1;h(T; ±(n)); Cg;h¡1(T; ±(n))g+

+2T + 2±(n) � Cg;h(n; ±(n))
if g = 1; h > 1 :£

n¡1
T

¤
C1;h¡1(T; ±(n)) + T + ±(n) � C1;h(n; ±(n))

if g > 1; h = 1 :£
n¡1
T

¤
Cg¡1;1(T; ±(n)) + T + ±(n) � Cg;1(n; ±(n)):

(5.6)

Proof. The lemma 5.4 below and its remark thereafter is just the case that r0+s0 =
r + s ¡ 1. The general case follows by induction, starting with (r0; s0) going through
pairs (g; h) with r0 + s0 + 1 and so on up to the pair (r; s).

Remark 1. In (5.5) for the trivial case r0 = s0 = 1 we can take C1;1(n; ±) ´ 0. (Note
that this does not contradict (5.4)).

Remark 2. Explicit bounds can be derived as well for (r0; 1) and (1; s0) with arbitrary
r0 and s0. We omit the details. So in general this theorem can be used in several ways.

Before we can state lemma 5.4 we need two preparetory lemma’s.

Lemma 5.2 Consider the vector system (U(n); V (n)) of de…nition 2.4. Take …xed in-
tegers T; n with 0 < T < n:

a) Let r ¸ 2. Suppose strategie i of player I is not eligible in the interval [n¡ T; n],
i.e.

Ui(t¡ 1) < maxU(t¡ 1)¡ a°(t); n¡ T � t � n: (5.7)

For ¿ = 0; : : : ; T let
½
V̂ (¿ ) = V (n ¡ T + ¿ )¡minV (n¡ T ):1s
Û(¿ ) = U (i)(n¡ T + ¿ )¡maxU(n ¡ T ):1r¡1 :

(5.8)

Then (Û(¿ ) 2 Rr¡1; V̂ (¿ ) 2 Rs)0�¿�T is the start of an initially balanced vector
system with accuracy coe¢cients (°(n¡T+¿ ))

1� ¿�T with respect to A(i) 2 R(r¡1)£s.
(Here the upper index (i) means dropping the ith row of A.)
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b) Let s ¸ 2. Suppose strategy j of player II is not eligible in the interval [n¡ T; n],
i.e.

Vj(t¡ 1) > minV (t¡ 1) + a°(t); n¡ T � t � n: (5.9)

For ¿ = 0; : : : ; T . Let
½
Û(¿ ) = U (n ¡ T + ¿ )¡maxU(n¡ T ):1r
V̂ (¿ ) = V(j)(n¡ T + ¿)¡min V (n¡ T ):1s¡1 : (5.10)

Then (Û(¿ ) 2 Rr, V̂ (¿ ) 2 Rs¡1)0�¿�T is the start of an initially balanced vec-
tor system with accuracy coe¢cients (°(n ¡ T + ¿))1�¿�T with respect to A(j) 2
Rr£(s¡1). (Here the lower index (j) means dropping the jth column of A:)

Proof.

a) Since i is not eligible it follows from (5.7) that for all 0 � ¿ � T :

Ui(n¡ T + ¿ ¡ 1) < maxU(n¡ T + ¿ ¡ 1) ¡ a°(n¡ T + ¿ );
implying ¸i(n¡ T + ¿ ) = 0. De…ne °̂(¿ ) = °(n¡ T + ¿ ) and

^̧
k(¿ ) = ¸k(n¡ T + ¿); k 2 f1; : : : ; i¡ 1; i+ 1; : : : ; rg

¹̂k(¿ ) = ¹k(n¡ T + ¿ ); k 2 f1; : : : ; sg:
Then we have

V (n¡ T + ¿ ) = V (n¡ T + ¿ ¡ 1) + ¸(n¡ T + ¿ )A
= V (n¡ T + ¿ ¡ 1) + ^̧(¿)A(i)

with ^̧k(¿ ) = 0 if

Uk(n¡ T + ¿ ¡ 1) < maxU(n¡ T + ¿ ¡ 1)¡ a°(n¡ T + ¿);
and

U (n¡ T + ¿ ) = U(n¡ T + ¿ ¡ 1) +A¹(n¡ T + ¿)
= U(n¡ T + ¿ ¡ 1) +A¹̂(¿ )

with ¹̂k(¿ ) = 0 if

Vk(n¡ T + ¿ ¡ 1) > min V (n¡ T + ¿ ¡ 1) + a°(n¡ T + ¿):
With (5.8) this implies

V̂ (¿) = V̂ (¿ ¡ 1) + ^̧(¿)A(i)

with ^̧k(¿ ) = 0 if Ûk(¿ ¡ 1) < max Û(¿ ¡ 1)¡ a°̂(¿ ) and

Û (¿) = Û(¿ ¡ 1) +A(i)¹̂(¿ )

with ¹̂k(¿ ) = 0 if V̂k(¿ ¡ 1) > min V̂ (¡1) + a°̂(¿ ). Clearly, max Û(0) = 0 and
min V̂ (0) = 0 and so (Û(n); V̂ (n)) is initially balanced.
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b) Since j is not eligible it follows from (5.9) that for all 0 � ¿ � T

Vj(n¡ T + ¿ ¡ 1) > min V (n¡ T + ¿ ¡ 1) + a°(n¡ T + ¿ );

implying ¹j(n¡ T + ¿ ) = 0. De…ne °̂(¿ ) = °(n¡ T + ¿ ) and

^̧
k(¿ ) = ¸k(n¡ T + ¿) ; k 2 f1; : : : ; rg

¹̂k(¿ ) = ¹k(n¡ T + ¿ ) ; k 2 f1; : : : ; j ¡ 1; j + 1; : : : ; sg:

Then we have

U (n¡ T + ¿ ) = U(n¡ T + ¿ ¡ 1) +A¹(n¡ T + ¿)
= U(n¡ T + ¿ ¡ 1) +A(j)¹̂(¿ )

with ¹̂k(¿ ) = 0 if

Vk(n¡ T + ¿ ¡ 1) > min V (n¡ T + ¿ ¡ 1) + a°(n¡ T + ¿);

and

V (n¡ T + ¿ ) = V (n¡ T + ¿ ¡ 1) + ¸(n¡ T + ¿ )A
= V (n¡ T + ¿ ¡ 1) + ^̧(¿)A

with ^̧k(¿ ) = 0 if

Uk(n¡ T + ¿ ¡ 1) < maxUk(n ¡ T + ¿ ¡ 1)¡ a°(n¡ T + ¿):

With (5.10) this implies

U (¿) = Û(¿ ¡ 1) +A(j)¹̂(¿ )

with ¹̂k(¿ ) = 0 if V̂k(¿ ¡ 1) > min V̂ (¿ ¡ 1) + a°̂(¿) and

V̂ (¿) = V̂ (¿ ¡ 1) + ^̧(¿)A(j)

with ^̧k(¿) = 0 if V̂k(¿ ¡ 1) < max Û (¿ ¡ 1) ¡ a°̂(¿ ). Clearly, max Û(0) = 0 and
min V̂ (0) = 0:

Lemma 5.3 Consider the initially balanced vector system (U(n); V (n)) of de…nition
2.4 satisfying (2.19) and (5.1) and let r ¸ 2; s ¸ 2. Suppose for (g; h) = (r; s¡ 1) and
(r ¡ 1; s) that

Cg;h(n; ±) is non-decreasing in ± (5.11)
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and for any initially balanced vector system (Û(n); V̂ (n)) of submatrices 2 R(r¡1)£s or
Rr£(s¡1) of ¢ we have

¢Û V̂ (n) � aCg;h(n; ±(n)): (5.12)

Take integer T; n with 0 < T < n. Then, either

¢UV (n) � 2a(T + °(n)) (5.13)

or

¢UV (n)¡¢UV (n ¡ T ) � amaxfCr¡1;s(T; ±(n)); Cr;s¡1(T; ±(n))g: (5.14)

Proof. We introduce (compare the notation (2.9))
½
¢UU (n) = maxU(n)¡minU (n)
¢V V (n) = maxV (n)¡min V (n): (5.15)

It follows that

¢UV (n) + ¢V U (n) � ¢UU (n) + ¢V V (n):

From (2.8) in lemma 2.2 we get ¢V U (n) + ¢UV (0) ¸ 0. So with (5.2) we see that
¢V U(n) ¸ 0. Hence,

¢UV (n) � ¢UU(n) + ¢V V (n):

Suppose (5.13) is false. Then either ¢UU(n) > a(T + °(n)) or ¢V V (n) > a(T + °(n))
or both. Then it remains to prove that (5.14) holds.

a) Suppose ¢UU(n) > a(T + °(n)). Let i; j be such that Uj(n) = maxU (n) and
Ui(n) = minU(n). Then we get with (2.4) and (2.5) that for 0 � w � T :

Ui(n¡ w)¡ Uj(n¡ w) = Ui(n)¡ Uj(n)¡
nX

k=n¡w+1
f(A¹(k))j ¡ (A¹(k))ig

¸ maxU(n)¡minU(n)¡ wa = ¢UU (n)¡ wa
> a(T ¡ w) + a°(n) ¸ a°(n):

Hence, i not eligible on [n ¡ T; n]. De…ne the deleted system (Û (n); V̂ (n)) with
respect to A(i) as in lemma 5.2,a. Then with (5.12) we get

¢Û V̂ (T ) � Cr¡1;s(T; ±(n¡ T )) � Cr¡1;s(T; ±(n)):

Since

max Û(T ) = maxU (i)(n)¡maxU (i)(n¡ T ) = maxU(n)¡maxU(n¡ T )
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min V̂ (T ) = min V (n)¡min V (n¡ T )
this gives

¢UV (n)¡¢UV (n ¡ T ) � aCr¡1;s(T; ±(n));

proving one part of (5.14).

b) Suppose ¢V V (n) > a(T + °(n)). Let i; j be such that Vj(n) = maxV (n) and
Vi(n) = minV (n). Then we get with (2.3) and (2.6) that for 0 � w � T :

Vj(n¡ w)¡ Vi(n¡ w) = Vj(n)¡ Vi(n)¡
nX

k=n¡w+1
f(¸(k)A))j ¡ (¸(k)A))ig

¸ maxV (n)¡minV (n) ¡wa = ¢V V (n)¡ wa
> a(T ¡ w) + a°(n) ¸ a°(n):

Hence, j not eligible on [n¡ T; n]. De…ne (Û(n); V̂ (n)) with respect to A(j) as in
lemma 5.2,b. Then with (5.12) we get

¢Û V̂ (T ) � Cr¡1;s(T; ±(n¡ T )) � Cr¡1;s(T; ±(n)):

Since

max Û(T ) = maxU(n)¡maxU (n ¡ T )

min V̂ (T ) = min V(j)(n)¡minV (i)(n¡ T ) = min V (n)¡min V (n¡ T )

this gives

¢UV (n)¡¢UV (n ¡ T ) � aCr;s¡1(T; ±(n));

proving the other part of (5.14).

Remark. In the same way it follows:
for r = 1; s > 1: either

¢UV (n) � a(T + °(n))

or

¢UV (n)¡¢UV (n ¡ T ) � aCr;s¡1(T; ±(n));

for r > 1; s = 1: either

¢UV (n) � a(T + °(n))

or

¢UV (n)¡¢UV (n ¡ T ) � aCr¡1;s(T; ±(n)):
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Lemma 5.4 Let r ¸ 2; s ¸ 2. Suppose for (g; h) = (r; s¡ 1) and (r ¡ 1; s) that (5.11)
and (5.12) are ful…lled and that

Cg;h(n; ±(n)) ¸ 1: (5.16)

Then (5.2) holds under the following condition: for each n > Cr;s(n; ±(n)) we can …nd
an integer T with 0 < T < n such that

2

�
n ¡ 1
2T

¸
max fCr¡1;s(T; ±(n)); Cr;s¡1(T; ±(n))g+ 2T + 2±(n) � Cr;s(n; ±(n)):

(5.17)

Proof. If n � Cr;s(n; ±(n)) then with (2.16) and (5.1):

¢UV (n) � an � aCr;s(n; ±(n))

and this proves (5.2). So we need only consider the case that n > Cr;s(n; ±(n)).Then
from (5.16) it follows that n ¸ 2. Choose T with 0 < T < n according to (5.17).

We follow the terminology of Shapiro[1958]. In view of lemma 5.3 we call n an integer
of the …rst kind if ¢UV (n) � 2a(T +°(n)). Otherwise we call n an integer of the second
kind. Since ¢UV (n) � na we see that n is of the …rst kind for all n � 2T .

Take q =
£
n¡1
2T

¤
¸ 0. Then n ¡ 2qT � 2T , so n ¡ 2qT is of the …rst kind. Then

among n¡2qT; n¡ (2q¡ 1)T; : : : ; n¡T; n there is a largest integer n¡ ¿T of the …rst
kind. Write

¢UV (n) =
¿X

i=1

f¢UV (n ¡ (i¡ 1)T )¡¢UV (n¡ iT )g+¢UV (n¡ ¿T ):

Since n¡ iT + T > n¡ ¿T for all i = 1; : : : ; ¿ we have that n¡ iT + T is of the second
kind. Hence, since 0 � ¿ � 2q � 2[(n¡ 1)=(2T )], we get with (2.20) and lemma 5.3:

¢UV (n) � a¿ :maxfCr¡1;s(T; ±(n)); Cr;s¡1(T; ±(n))g+ 2a(T + °(n))
� 2a[(n¡ 1)=(2T )]:maxfCr¡1;s(T; ±(n)); Cr;s¡1(T; ±(n))g+ 2a(T + ±(n))
� aCr;s(n; ±(n))

and this proves (5.2).
Remark. If r = 1; s > 1 or r > 1; s = 1 then we can proceed in a similar way.
We have to modify the de…nition of integers of the …rst kind by using the inequality
¢UV (n) � a(T + °(n)). Then n¡ qT � T and so n¡ qT is of the …rst kind. This leads
to:
r = 1; s > 1 :

�
n¡ 1
T

¸
C1;s¡1(T; ±(n)) + T + ±(n) � C1;s(n; ±(n))

r > 1; s = 1 :
�
n¡ 1
T

¸
Cr¡1;1(T; ±(n)) + T + ±(n) � Cr;1(n; ±(n)):
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6 The proof of theorem 2.5

In this section we will show how theorem 2.5 follows from the main theorem 5.1. In
particular, we have to prove that Cr;s(n; ±) given by (5.3) satis…es the conditions of
theorem 5.1. We will not simply verify this by substitution but we describe the way the
expressions are derived.

We apply theorem 5.1 for r0 = s0 = 1. Then the condition (5.5) is ful…lled in a trivial
way (see the …rst remark of theorem 5.1). We restrict ourselves to look at functions Cg;h
only depending on the sum g + h. So we write

Cg;h(n; ±) = Cg+h(n; ±): (6.1)

Then (5.4) can be replaced by the slightly stronger condition
½
Ck(n; ±) is non-decreasing in ± for k < r + s
Ck(0) ¸ 1 for k > 2:

(6.2)

In view of (6.2) the condition containing (5.6) can be strengthened to:
for each n > Ck(n; 0) we can …nd an integer 0 < T < n such that for all k =

4; : : : ; r + s:
n

T
Ck¡1(T; ±(n)) + 2T + 2±(n) � Ck(n; ±(n)) (6.3)

where C2(n; ±) ´ 0.
With k ¸ 3 we try the form

Ck(n; ±) = (1 + ºk±)Ck(n) (6.4)

for suitable ºk and with

1 � Ck(1) � Ck(n): (6.5)

Clearly, (6.2) is satis…ed.
The next step in the construction is to try T such that for n > Ck(n) we have

n

T
Ck¡1(T ) � ®kCk(n) (6.6)

T � ¯kCk(n) (6.7)

for suitable ®k and ¯k.

Lemma 6.1 Under the assumptions (6.6),(6.7) the condition (6.3) is ful…lled provided
that

®k + 2¯k � 1; k ¸ 4 and ®3 = 0; ¯3 � 1 (6.8)

®kºk¡1 + 2=Ck(1) � ºk; (6.9)

where º2 = 0.
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Proof. Using (6.4) we see that (6.3) is ful…lled if

n

T
Ck¡1(T )(1 + ºk¡1±(n)) + 2T + 2±(n) � Ck(n)(1 + ºk±(n)):

With (6.6), (6.7) this is implied by

®kCk(n)(1 + ºk¡1±(n)) + 2¯kCk(n) + 2±(n) � Ck(n)(1 + ºk±(n)):

This in turn is implied by

(®k + 2¯k)Ck(n) � Ck(n)

(®kºk¡1Ck(n) + 2)±(n) � ºkCk(n)±(n):

Using (6.5) we see that (6.8) and (6.9) are even stronger.

For a moment we look only at (6.6),(6.7) for n ! 1, trying the form

Ck(n) v nÁk ; T v nÃk :

Then
n

T
Ck¡1(T ) v n

T
T Ák¡1 v nÃk(Ák¡1¡1)+1:

This leads to

Ãk(Ák¡1 ¡ 1) � Ák; Ãk � Ák

or (for Ák¡1 < 1):

1¡ Ák
1¡ Ák¡1

� Ãk � Ák:

The most balanced choice for Ãk is forcing the equalities, leading to Ãk = Ák: With the
minimal choice Á3 = 0 this leads to

Ák =
k ¡ 3
k ¡ 2 :

Therefore we continue to look for T satisfying (6.6),(6.7) by trying

Ck(n) = c
kn

k¡3
k¡2 (6.10)

with c ¸ 1 still to be determined. Note that

n > Ck(n)() n > ck(k¡2):

For k = 3 (6.6) is trivial and (6.7) leads to T � ¯3c
3: The conditions (6.8),(6.9) hold for

®3 = 0 and ¯3 � 1. So (6.3) is ful…lled for T = 1 since c ¸ 1. So the following lemma
looks for ®k; ¯k not depending on k ¸ 4:
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Lemma 6.2 (k ¸ 4). For n > Ck(n) there exists an integer T with 0 < T < n such
that

tkn
k¡3
k¡2 � T � Tkn

k¡3
k¡2 (6.11)

with

tk = c
(k¡Á) k¡3

k¡2 ; Tk = c
k¡Ã (6.12)

where

Ã > 0; 0 < Á � 4; Ã � Á+ 1; Ã � 1

2
Á+ 2; c8¡Ã ¡ c6¡ 1

2
Á ¸ 1: (6.13)

For such T the conditions (6.6) and (6.7) are satis…ed for

®k = c
Á¡1¯k; ¯k = c

¡Ã: (6.14)

Proof. With (6.10)-(6.13) we see

T � Tkn
k¡3
k¡2 = c¡kCk(n) � Ck(n) � n:

Furthermore, n > ck(k¡2) implies

(Tk ¡ tk)n
k¡3
k¡2 = (Tk ¡ tk)ck(k¡3) ¸ 1

since with (6.13) it follows for all k ¸ 4 that

(k ¡ Ã)(k ¡ 2)¡ (k ¡ Á)(k ¡ 3)
= (Á¡ Ã + 1)k + 2Ã ¡ 3Á ¸ 4(Á¡ Ã + 1) + 2Ã ¡ 3Á = Á¡ 2Ã + 4 ¸ 0:

Therefore T in (6.11) can be chosen to be an integer.
Now condition (6.7) holds since with (6.10) - (6.12) and (6.14):

T � ck¡Ãn
k¡3
k¡2 = c¡kCk(n) = ¯

kCk(n):

Finally, from (6.11)

n � t
¡k¡2
k¡3

k T
k¡2
k¡3

and so condition (6.6) is satis…ed since with (6.14) and (6.7):

n

T
Ck¡1(T ) � t

¡ k¡2
k¡3

k T¡
1

k¡3 :ck¡1T
k¡4
k¡3 = cÁ¡1T

� cÁ¡1¯kCk(n) = ®kCk(n):
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For ®k,¯k given by (6.14) we try to satisfy (6.8) for a suitable choice of c ¸ 1 and
(Á; Ã) in the range speci…ed by (6.13).

From (6.14) it follows that (6.8) is satis…ed provided that

(cÁ¡1 + 2)c¡Ã � 1

or, equivalently,

cÃ ¡ cÁ¡1 ¡ 2 ¸ 0:

A suitable choice of (Á; Ã) in the allowed range (6.13) for which c can be chosen almost
as small as possible is

Á = 3; Ã = 3: (6.15)

This has been veri…ed numerically. So for c0 we can choose the unique real root of

c30 ¡ c20 ¡ 2 = 0 (6.16)

and this is the choice (2.21). Finally, we have to verify (6.9) with Ck(1) = ck and
®k = c

Á¡1¯k = c
Á¡1¡Ã = c¡2 for a suitable choice of the ºk; k ¸ 4 and º3: This leads to

c¡2ºk¡1 + 2c
¡k � ºk; k ¸ 3:

Clearly, this is satis…ed for

ºk =

µ
2c

c¡ 1

¶
c¡k: (6.17)

So with (6.4),(6.10) and (6.17) we see that

Ck(n; ±) = n
k¡3
k¡2 (ck + 2±c=(c¡ 1)):

In view of (6.1) and (5.3) this completes the proof of theorem 2.5.

7 Approximated pay-o¤s

The de…nition of vector systems can be extended straightforward to a sequence (A(n) 2
Rr£s)n2N of pay-o¤ matrices instead of a …xed matrix A 2 Rr£s. So (2.1), (2.2) gener-
alize to

U(n) = U(n¡ 1) +A(n)¹(n) (7.1)

V (n) = V (n¡ 1) + ¸(n)A(n): (7.2)
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The de…nition of p(n); q(n) remain (2.3),(2.4). Bounds for the game value v(A) of A
can be derived for such extended systems, considering A(n) as an approximation for A.
Introduce (elementswise)

®(n) = max j
nP
k=1

fA(k)¡Agj: (7.3)

Then it is easily seen that the relations (2.10)-(2.13) can be generalized to

¡1
n

fmaxV (0) + ®(n)g � v(A)¡ 1

n
minV (n) � 1

n
f¢UV (n)¡minU (0) + ®(n)g

(7.4)

1

n
fminU(0)¡ ®(n)g � 1

n
maxU(n)¡ v(A) � 1

n
f¢UV (n) + maxV (0) + ®(n)g

(7.5)

0 � v(A)¡min p(n)A � 1

n
f¢UV (n) + ¢V U(0) + 2®(n)g (7.6)

0 � maxAq(n)¡ v(A) � 1

n
f¢UV (n) + ¢V U (0) + 2®(n)g: (7.7)

Clearly, for convergence to v(A) we need again (2.14), but now also

®(n)=n ! 0 (7.8)

i.e.Caesaro-convergence of A(n) to A:
Choose ¸(n); ¹(n) as in de…nition 2.4. Then theorem 2.5 maintains to hold provided

that we take c > c0 and that we impose some rather complicated extra order condition
(dependent on c¡c0) that the di¤erence A(n)¡A does not tend to 1 too fast. Su¢cient
for this is simply the condition

A(n) bounded in n: (7.9)

So for the special case that °(n) = 0 our conditions (7.8),(7.9) are weaker than the
condition A(n) ! A of Vrieze and Tijs [1982].

We only sketch the proof by indicating the necessary adaptions in the proofs of
sections 5,6. In lemma 5.2 we have only to replace A(i) by A(i)(n ¡ T + ¿ ) and A(j) by
A(j)(n¡ T + ¿ ): In lemma 5.3 this has the e¤ect that (5.13) should be changed to

¢UV (n) � 2a(T + °(n) + 2¯(n; n¡ T )) (7.10)

where (componentswise)

¯(n;m) =
1

a
max
m<k�n

jA(k)¡ Aj: (7.11)
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With this we should consider in part a) of the proof the case that ¢UU (n) > a(T +
°(n) + 2¯(n; n ¡ T )).

The e¤ect in lemma 5.4 is that in the left hand side of 5.16 we should add the term
4¯(n; n¡ T ) (in the remark of this lemma only 2¯(n; n¡ T )).

Now consider the …nal choice in section 6. The left hand side of (6.3) contains the
extra term 4¯(n; n¡ T ) (for k = 3 only 2¯(n; n¡ T )). So, for k ¸ 4; we have to choose
Ck simply in such a way that the di¤erence of the right hand side and the left hand side
in the original inequality (6.3) does not exceed 4¯(n; n ¡ T ). By inspecting the …nal
choice of T and Ck for general c ¸ c0 it is easily seen that under the condition (7.9)
this can be achieved for all n and k ¸ 4 by taking c su¢ciently large. (The case k = 3
should be checked separately: ¯(n; n ¡ 1) � (1¡ ¯3)c3 can certainly be satis…ed for c
su¢ciently large.)

The method above makes clear how precise bounds in the style of (2.20) should
be derived. Expressions become rather complicated and therefore we have restricted
ourselves to the convergence of the game value.

8 Conclusions and remarks

In this paper we could give thorough arguments for introducing weakened …ctitious
play. A priori bounds leading to su¢cient conditions for convergence could be derived.
A numerical analysis showed that weakening the basic form of …ctitious play can speed
up convergence. An open question is under which conditions the strategies themselves
converge. This will be a point for further research.

A related question is wether …ctitious play can be applied directly to games in ex-
tensive form as well, without a transformation to the corresponding strategic form. For
games arising in practice the extensive form is primarily given and transformation often
leads to very large game matrices.
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