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Abstract

In this paper, a simplicial algorithm is introduced to compute a coincidence of two map-

pings as stated in Ky Fan’s theorem. Fan’s theorem says: Let X be a non-empty compact

and convex set in the n-dimensional Euclidean space IRn and let φ and ψ be two upper semi-

continuous mappings from X to the collection of non-empty compact, convex subsets of

IRn. Suppose that for every x ∈ X and every d ∈ IRn satisfying d�x = max{d�y | y ∈ X},

there exist v ∈ φ(x) and w ∈ ψ(x) such that d�v ≥ d�w. Then there exists an x∗ in

X satisfying φ(x∗) ∩ ψ(x∗) �= ∅. Such a point x∗ is called a coincidence. As a result, our

algorithm leads to a constructive proof of this well-known and powerful existence theorem.

Keywords: coincidence, fixed point, zero point, simplicial algorithm, upper semi-

continuity
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1 Introduction

Brouwer’s and Kakutani’s fixed point theorems and their variants are powerful tools to

show the existence of a solution to various problems in economics, game theory and engi-

neering; see for example Debreu (1959) and Arrow and Hahn (1971). Yet, for a number

of (new) economic and game-theoretic problems these tools appeared insufficent and Ky

Fan’s coincidence theorem (1972), a more powerful theorem, has to be invoked; see for

example Ichiishi (1983), Vohra (1991), Yang (2001), and Florenzano (2003).

For many problems, one may not be contented just to know the existence of a solution,

but one would like to pinpoint where a solution is located in order to evaluate and analyse

the performance of the underlying model, or to appraise the effects of policy, or technical

parameter changes in the model. However, in reality, for many problems it is impossible

to find a closed form analytical solution. It is therefore essential to develop numerical

computational methods to approximate solutions to the underlying model. Much of the

recent literature on the computation of fixed points or economic equilibria has its root in

the pioneering work of Scarf (1967, 1973), which introduced the first algorithm to compute

a fixed point, that was guaranteed to converge. Subsequent algorithms have been developed

by Eaves (1972), Merril (1972), van der Laan and Talman (1979), and Wright (1981) among

others, which have substantially refined Scarf’s original algorithm, to accelerate its speed

and to extend its applicability. As a consequence, Brouwer’s and Kakutani’s theorems

and many of their variants can be proved in constructive ways; see e.g., Todd (1976) and

van der Laan (1981). More recently, algorithms have been proposed to compute robust or

stable fixed points, or continua of fixed points; see Herings, Talman and Yang (2001), van

der Laan, Talman and Yang (1998), and Yang (1996). Allgower and Georg (1990), Doup

(1988), Todd (1976), and Yang (1999) provide comprehensive treatments on simplicial

algorithms at various stages.

In this paper we propose a simplicial algorithm to compute a coincidence of two map-

pings as stated in Fan’s theorem (1972). Fan’s coincidence theorem gives a sufficient

condition under which two mappings φ and ψ defined on the same convex and compact

set X in IRn have a point at which the two images of this point under φ and ψ have a

non-empty intersection. The condition says that for every x in X it has to hold that for

every element d of the normal cone of X at x there exist an element v in the image φ(x) and

an element w in the image ψ(x) satisfying that d�v ≥ d�w. The problem of computing a

coincidence is considerably more delicate and difficult than, for example, the computation

of a fixed point of a mapping from X to X. First of all, many extensions of Brouwer’s the-

orem such as Kakutani’s theorem are in essence equivalent variants of Brouwer’s theorem

in the sense that they are or can be directly derived from Brouwer’s theorem, whereas for

Fan’s coincidence theorem this does not seem to be the case. In fact, the latter theorem is
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proved in a totally different way. Second, the boundary condition stated in Fan’s theorem

differs considerably from those in Brouwer’s theorem and many of its extensions. Fan’s

theorem requires a weak separation condition at each element of the normal cone at any

point of X. For different elements of the normal cone the separation condition may hold for

different elements of the images. The question is then how to deal with this complication

in an algorithm. Precisely because of this, the usual simplicial approximation and other

techniques do not apply here.

To circumvent the computational impasse, we embed the set X into an elaborately-

designed full-dimensional compact and convex set Q containing X in its interior and satis-

fying that at each point in its boundary the normal cone is just a half-line. We also extend

the mappings to Q in a proper way. Then we propose a simplicial algorithm to operate on

a cube P containing the set Q in its interior.

This paper is organized as follows. In Section 2 we present Fan’s coincidence theorem

and derive several closely related existence results. In Section 3 we propose the simplicial

algorithm which will be used to approximate a coincidence of two mappings and we prove

its convergence. In Section 4 we give a constructive proof of Fan’s theorem.

2 Fan’s Coincidence Theorem

Let Y be an arbitrary non-empty set in the n-dimensional Euclidean space IRn. For x ∈ Y,

the set

N(Y, x) = {y ∈ IRn | (x− x′)�y ≥ 0 for all x′ ∈ Y }

denotes the normal cone of Y at x. Its polar cone

T (Y, x) = {z ∈ IRn | z�y ≤ 0 for all y ∈ N(Y, x)}

denotes the tangent cone of Y at x. If Y is compact and convex, N(Y, ·) is an upper

semi-continuous, convex-valued and closed-valued mapping on Y and T (Y, ·) is a convex-

valued and closed-valued mapping on Y and, for every y ∈ Y , both N(Y, y) and T (Y, y)

are non-empty.

The notion IN denotes the set of all positive integers and Ik denotes the set of the first

k positive integers. The notions 0n, 1n and E(n) stand for the vector of zeros and ones of

dimension n and the n× n identity matrix, respectively. Given a subset D of IRn, bd(D)

and int(D) represent the sets of (relative) boundary and interior points of D, respectively,

and co(D) represents the convex hull of D.

Let X be an arbitrary non-empty set in IRn and let φ be a point-to-set mapping from X

to the collection of non-empty subsets of IRn. A point x∗ ∈ X is called a zero point of φ if
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0n ∈ φ(x∗), a fixed point of φ if x∗ ∈ φ(x∗), a coincidence of φ and some other mapping ψ

on X if φ(x∗)∩ψ(x∗) �= ∅. Well known conditions for the existence of a fixed or zero point

were given by Kakutani (1942) and for the existence of a coincidence of two mappings by

Fan (1972). The following theorem gives a sufficient condition for the existence of a zero

point and is an equivalent form of Fan’s coincidence theorem. The objective of this paper

is to give a constructive proof for this theorem.

Theorem 2.1 Let φ be an upper-semicontinuous point-to-set mapping from the non-

empty convex and compact set X in IRn to the collection of non-empty compact and convex

subsets of IRn. Suppose that for every x ∈ X and every v ∈ N(X,x), there is a y ∈ φ(x)

satisfying v�y ≤ 0. Then there exists a zero point of φ in X.

From Theorem 2.1 we immediately obtain the following results. The first one is the

coincidence existence theorem of Fan (1972) and is equivalent to it.

Theorem 2.2 Let φ and ψ be two upper semi-continuous mappings from the non-

empty convex and compact set X in IRn to the collection of non-empty compact and convex

subsets of IRn. Suppose that for every x ∈ X and every d ∈ IRn satisfying d�x = max{d�y |

y ∈ X}, there exist u ∈ φ(x) and w ∈ ψ(x) such that d�u ≥ d�w. Then there exists a

coincidence of φ and ψ in X.

Proof: Define the mapping γ on X by γ(x) = ψ(x)− φ(x) for all x ∈ X. Clearly, being

the difference of two such mappings, γ is an upper semi-continuous mapping from X to the

collection of non-empty compact and convex subsets of IRn. Since d�x = max{d�y | y ∈ X}

implies d ∈ N(X, x), γ satisfies the conditions of Theorem 2.1. Hence, there exists a zero

point of γ in X. By construction, every zero point of γ is a coincidence of the mappings φ

and ψ. �

Notice that Theorem 2.1 also immediately follows from Theorem 2.2 if we take one of

the two mappings to be the mapping that assigns the origin to every x ∈ X. The next

existence theorem can be seen as a direct generalization of Kakutani’s fixed point theorem.

Theorem 2.3 Let φ be an upper-semicontinuous point-to-set mapping from the non-

empty convex and compact set X in IRn to the collection of non-empty compact and convex

subsets of IRn. Suppose that for every x ∈ X it holds that φ(x)∩X �= ∅. Then there exists

a fixed point of φ in X.

Proof: For given x ∈ X, take some y ∈ φ(x) ∩X. Since y ∈ X we have that v�y ≤ v�x

for all v ∈ N(X, x). Hence, the mappings φ and ψ on X, where ψ is defined by ψ(x) = {x}

for all x ∈ X, satisfies the conditions of Theorem 2.2. Therefore, there exists a coincidence

of φ and ψ in X. Clearly, any coincidence of φ and ψ is a fixed point of φ in X. �
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Notice that in this theorem we only require that φ(x) ∩X �= ∅ for every x ∈ X. The

image φ(x) may contain elements outside the set X. Clearly, when φ is a fixed point

mapping in the sense that for every x ∈ X it holds that φ(x) ⊆ X, we obtain Kakutani’s

fixed point theorem.

Corollary 2.4 Let φ be an upper-semicontinuous point-to-set mapping from the non-

empty convex and compact set X in IRn to the collection of non-empty compact and convex

subsets of X. Then there exists a fixed point of φ in X.

The next result says that if for every x inX the image φ(x) has a non-empty intersection

with the tangent cone T (X, x) of X at x, a zero point of φ must exist.

Corollary 2.5 Let φ be an upper-semicontinuous point-to-set mapping from the non-

empty convex and compact set X in IRn to the collection of non-empty compact and convex

subsets of IRn. Suppose that for every x ∈ X it holds that φ(x) ∩ T (X, x) �= ∅. Then there

exists a zero point of φ in X.

Proof: For any x ∈ X it holds that T (X, x) ⊆ {y ∈ IRn | v�y ≤ 0} for every v ∈ N(X,x).

Hence, φ satisfies the conditions of Theorem 2.1. �

3 A Simplicial Algorithm

In this section we propose a simplicial algorithm which will lead to a constructive proof of

Theorem 2.1. For x ∈ IRn, let p(x) be the orthogonal projection of x on X, i.e.,

‖ x− p(x) ‖2 ≤ ‖ x− y ‖2 for all y ∈ X.

Since X is a closed and convex set, p(·) is a continuous function on IRn. The next lemma

shows that the vector x− p(x) is an element of the normal cone of X at p(x).

Lemma 3.1 For every x ∈ IRn it holds that x− p(x) ∈ N(X, p(x)).

Proof: For x ∈ X it holds that p(x) = x. Since 0n ∈ N(X, x), we immediately obtain

x− p(x) ∈ N(X,x). Suppose x /∈ X. Take any y ∈ X and λ ∈ (0, 1]. Since X is convex,

λy + (1− λ)p(x) ∈ X. By definition of p(x) it holds that

‖ x− p(x) ‖2 ≤ ‖ x− (λy + (1− λ)p(x)) ‖2 .

Hence,

0 ≤ −2λ(x− p(x))�(y − p(x)) + λ2 ‖ y − p(x) ‖2 .
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Dividing by λ yields

2(x− p(x))�(y − p(x)) ≤ λ ‖ y − p(x) ‖2 .

Taking the limit for λ going to zero, we obtain

(y − p(x))�(x− p(x)) ≤ 0.

Since y ∈ X is arbirary, this implies that x− p(x) ∈ N(X, p(x)). �

Let the set Q be defined by

Q = {q ∈ IRn | ‖ q − p(q) ‖2 ≤ 1}.

Lemma 3.2 The set Q is a full-dimensional, compact and convex subset of IRn, con-

taining X in its interior.

Proof: Clearly, Q is a full-dimensional set in IRn containing X in its interior. Since X is

compact, Q is also compact. To prove convexity of Q, take any q1, q2 ∈ Q and 0 ≤ λ ≤ 1

and let

q(λ) = λq1 + (1− λ)q2

and

p(λ) = λp(q1) + (1− λ)p(q2).

Since X is convex, we have that p(λ) ∈ X. Moreover,

‖ q(λ)− p(λ) ‖2 ≤ λ ‖ q1 − p(q1) ‖2 +(1− λ) ‖ q2 − p(q2) ‖2 ≤ 1.

Therefore, q(λ) ∈ Q, i.e., Q is a convex set. �

For q ∈ Q, let v(q) = q − p(q), and let Bn be the unit ball in IRn. By construction,

v(q) ∈ Bn for every q ∈ Q, ‖ v(q) ‖2= 1 if and only if q ∈ bd(Q), and v(q) = 0n if and

only if q ∈ X. For v ∈ IRn, define the set C(v) by C(v) = {y ∈ IRn|y = αv, α ≥ 0}. When

v �= 0n, C(v) is a half-line.

Lemma 3.3 For every q ∈ bd(Q), it holds that N(Q, q) = C(v(q)) and N(Q, q) ⊆

N(X, p(q)).
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Proof: Take any point q ∈ bd(Q). Let B(p(q)) = {x ∈ IRn | ‖ x− p(q) ‖2≤ 1}. By defini-

tion of Q, B(p(q)) ⊆ Q and q ∈ bd(B(p(q))), and therefore N(Q, q) ⊆ N(B(p(q)), q).

However, q ∈ bd(B(p(q))) implies N(B(p(q)), q) = C(q − p(q)) = C(v(q)). Hence,

N(Q, q) ⊆ C(v(q)). On the other hand, since Q is convex and q ∈ bd(Q), the nor-

mal cone N(Q, q) of Q at q contains at least one half-line, which must be then C(v(q)).

Finally, since according to Lemma 3.2 it holds that v(q) ∈ N(X, p(q)), it follows that

C(v(q)) ⊆ N(X, p(q)). �

From the lemma it follows that for every point on the boundary of Q the normal cone

of Q at that point is a half-line. Notice that since Q is full-dimensional, the normal cone

of Q at an interior point of Q is just the origin. In this way a point q ∈ Q represents a

unique point x = p(q) in X and a unique element v = q − p(q) in N(X, x). Also, every

combination of a point x in X and an element v in N(X,x) (with length at most equal to

1) is represented by a unique point q = x+v in Q. Hence, the set Q is an full-dimemsional

expansion of X with smooth boundary.

Let P = {x ∈ IRn | l ≤ x ≤ u} be an n-dimensional cube in IRn for some given vectors

l and u in IRn with ui > li, for all i ∈ In, containing Q in its interior. Let e(i), i ∈ In,

denote the ith unit vector in IRn, and let I = {−n, . . . ,−1, 1, . . . , n}. For i ∈ In, define

ai = e(i) and bi = ui, and a−i = −e(i) and b−i = −li. Then P can be reformulated as

P = {x ∈ IRn | ai�x ≤ bi for all i ∈ I}.

Clearly, P is a simple full-dimensional polytope, and none of the constraints is redundant.

Let I be the collection of non-empty subsets J of I such that |J | ≤ n and −j /∈ J whenever

j ∈ J . For each J ∈ I, define

F (J) = {x ∈ P | ai�x = bi, for all i ∈ J}.

Clearly, for every J ∈ I, the set F (J) is an (n − |J |)-dimensional face of P , where |J |

denotes the number of elements in J .

Let q0 be an arbitrary point in the interior of P . The point q0 will be the starting point

of the algorithm to be described below. Notice that we allow q0 to lie outside X or even

outside Q. For any J ∈ I, let cF (J) be the convex hull of the point q0 and F (J). Since

q0 lies in the interior of P , the dimension of cF (J), J ∈ I, is equal to n− |J |+ 1. Now we

first describe a simplicial subdivision or triangulation of the polytope P which underlies

the algorithm.

For a nonnegative integer t, a t-dimensional simplex or t-simplex, denoted by σ, on

IRn is defined by the convex hull of t + 1 affinely independent points x1, · · ·, xt+1 in IRn.

We often write σ = σ(x1, · · · , xt+1) and call x1, · · ·, xt+1 the vertices of σ. A (t − 1)-

simplex being the convex hull of t vertices of a t-simplex σ is called a facet of σ. The facet
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τ(x1, · · · , xi−1, xi+1, · · · , xt+1) is called the facet of σ(x1, · · · , xt+1) opposite to the vertex xi

of σ. For k, 0 ≤ k ≤ t, a k-simplex being the convex hull of k + 1 vertices of σ is said to

be a k-dimensional face or k-face of σ. A finite collection T of n-simplices in IRn is called

a triangulation of the set P if

(i) P is the union of all simplices in T ;

(ii) The intersection of any two simplices of T is either the empty set or a common face

of both;

The diameter of a simplex σ(x1, · · · , xn+1) is the maximum Euclidean distance between

any two points in σ and is denoted by diam(σ). The mesh size of a triangulation T is

defined as

mesh(T ) = max
σ∈T

{diam(σ)}.

We are interested in triangulations of P with arbitrary (small) mesh size such that every

subset cF (J), J ∈ I, is subdivided into t-simplices, with t = n− |J |+ 1. For example, we

may take the V -triangulation with arbitrary mesh size introduced by Doup and Talman

(1987) for triangulating a simplotope. The set P , being the Cartesian product of n intervals,

is a special case of a simplotope.

Let τ be a facet of a t-simplex σ on cF (J), where t = n− |J |+1, J ∈ I. Then either τ

lies on the boundary of cF (J) and is only a facet of σ or τ does not lie on the boundary of

cF (J) and is a facet of exactly one other t-simplex on cF (J). If τ lies on the boundary of

cF (J), then either τ lies on the face F (J) of P or τ is equal to the 0-dimensional simplex

{q0} or τ is a (t − 1)-dimensional simplex on cF (J ′) for some unique J ′ ∈ I satisfying

J ⊂ J ′ and |J ′| = |J |+ 1.

Let φ be a mapping on X satisfying the conditions of Theorem 2.1, let Q and P be as

constructed above, and let T be a simplicial subdivision of the set P with arbitrary mesh

size as described above. For v ∈ Bn, let π(v) be defined by π(v) = IRn if v = 0n and

π(v) = {y ∈ IRn | y�v ≤ 0} otherwise. Notice that π is an upper semi-continuous mapping

from Bn to the collection of nonempty closed and convex subsets of IRn. Now we consider

the point-to-set mapping φ̄ from P to IRn defined by

φ̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

{p(x)− x}, if x ∈ P \Q,

co({p(x)− x} ∪ [φ(p(x)) ∩ π(x− p(x))]), if x ∈ bd(Q),

φ(p(x)) ∩ π(x− p(x)), if x ∈ int(Q).

One can easily verify that sinceX and φ satisfy the conditions of Theorem 2.1, the mapping

φ̄ is an upper semi-continuous mapping on P with non-empty convex and compact images

in IRn. To any vertex x of a simplex σ of T we assign the vector label f(x), where f(x) is
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an arbitrarily chosen element in φ̄(x). Now we extend f piecewise linearly on each simplex

of T , i.e., if x =
∑n+1

i=1 λix
i in some simplex σ(x1, . . . , xn+1) of T for some λi ≥ 0, i ∈ In+1,

with
∑n+1

i=1 λi = 1, then f(x) =
∑n+1

i=1 λif(x
i). Clearly, f(·) is affine on each simplex of T

and is a continuous function from P to IRn. We call f the piecewise linear approximation

of φ̄ with respect to T .

A row vector is said to be lexicopositive if it is a non-zero vector and its first non-zero

entry is positive. A matrix is said to be lexicopositive if all its rows are lexicopositive.

Definition 3.4 Let τ (x1, · · · , xt) be a facet of a t-simplex on cF (J), where J ∈ I with

J = {jt+1, · · · , jn+1}, t = n− |J |+ 1. The (n + 1)× (n + 1) matrix

Aτ,J =

⎡
⎣ 1 · · · 1 0 · · · 0

−f(x1) · · · −f(xt) ajt+1 · · · ajn+1

⎤
⎦

is the label matrix of τ with respect to J. The simplex τ is J-complete if A−1
τ,J exists and is

lexicopositive.

Definition 3.5 Let σ(x1, · · · , xn+1) be an n-simplex on P . The (n+1)× (n+1) matrix

Aσ =

⎡
⎣ 1 1 · · · 1

−f(x1) −f(x2) · · · −f(xn+1)

⎤
⎦

is the label matrix of σ. The simplex σ is complete if A−1
σ exists and is lexicopositive.

Notice that if for a J-complete simplex τ we change the ordering of the columns of the

matrix Aτ,J , the inverse of the resulting matrix still exists and is lexicopositive. Clearly,

if, for some J ∈ I, a (t − 1)-simplex τ(x1, . . . , xt) is a J-complete facet of a simplex

σ(x1, . . . , xt+1) on cF (J), then the system of n+ 1 linear equations with n + 2 variables

t+1∑
i=1

λi

⎛
⎝ 1

−f(xi)

⎞
⎠+

∑
j∈J

µj

⎛
⎝ 0

aj

⎞
⎠ =

⎛
⎝ 1

0n

⎞
⎠ (∗)

has a solution (λ, µ) = (λ1, . . . , λt+1, (µj)j∈J) satisfying λi ≥ 0 for all i ∈ It+1,
∑t+1

i=1 λi = 1,

and µj ≥ 0 for all j ∈ J . Let x be defined by x =
∑t+1

i=1 λix
i at a nonnegative solution (λ, µ)

of (∗). Then x lies in σ and f(x) =
∑

j∈J µja
j. Similarly, if a simplex σ(x1, . . . , xn+1) is a

complete n-simplex on P , then the system of n+ 1 linear equations with n + 1 variables

n+1∑
i=1

λi

⎛
⎝ 1

−f(xi)

⎞
⎠ =

⎛
⎝ 1

0n

⎞
⎠ (∗∗)

has a unique solution λ∗ = (λ∗1, . . . , λ
∗
n+1) satisfying λ

∗
i ≥ 0 for all i ∈ In+1 and

∑n+1
i=1 λ∗i = 1.

Let x∗ be defined by x∗ =
∑n+1

i=1 λ∗ix
i. Then x∗ lies in σ and f(x∗) = 0n, i.e., x∗ is a zero

point of f in P .

We now show that {q0} is a J-complete 0-simplex for a unique index set J ∈ I con-

taining n indices.
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Lemma 3.6 There exists a unique element J0 of I with |J0| = n such that {q0} is a

J0-complete 0-simplex.

Proof: Let c = −f(q0), τ 0 = {q0} and

J0 = {i | ci ≤ 0} ∪ {−i | ci > 0}.

Let si = 1 if ci ≤ 0 and si = −1 if ci > 0. Then we have

Aτ0,J0 =

⎡
⎣ 1 0 0 · · · 0

c s1e(1) s2e(2) · · · sne(n)

⎤
⎦ .

Its inverse can be explicitly given as below.

A−1
τ0,J0

=

⎡
⎣ 1 0 0 · · · 0

c̄ s1e(1) s2e(2) · · · sne(n)

⎤
⎦ ,

where c̄ = (c̄1, · · · , c̄n)
� with c̄i = −sici for every i ∈ In. Clearly, the matrix A−1

τ0,J0
is

lexicopositive, since −sici ≥ 0 for every i ∈ In and si = 1 if sici = 0. Hence, τ 0 is J0-

complete. By definition, τ 0 is a 0-dimensional simplex and lies on cF (J0). Moreover, there

does not exist any other J ∈ I with |J | = n such that the inverse of Aτ0,J exists and is

lexicopositive. �

The following lemma is well-known in linear programming theory and can easily be

proved. Let R be a matrix. We denote its ith row by Ri. and its jth column by R.j.

Lemma 3.7 Let R = (R.1, · · · , R.n+1) be any non-singular (n+1)× (n+1) matrix and

let x be any vector in IRn+1. Let k ∈ In+1 and R̄ = (R.1, · · · , R.k−1, x, R.k+1, · · · , R.n+1).

Then either (R−1x)k = 0 and R̄ is singular, or (R−1x)k �= 0, R̄ is non-singular and R̄−1 is

given by

R̄−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(R−1)1. −
(R−1x)1
(R−1x)k

(R−1)k.
...

(R−1)k−1. −
(R−1x)k−1
(R−1x)k

(R−1)k.
1

(R−1x)k
(R−1)k.

(R−1)k+1. −
(R−1x)k+1
(R−1x)k

(R−1)k.
...

(R−1)n+1. −
(R−1x)n+1
(R−1x)k

(R−1)k.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using this lemma, the following lemmas can be proved.

Lemma 3.8 Let σ be a t-simplex on cF (J) for some J ∈ I, where t = n− |J |+ 1. If

σ has a J-complete facet τ , then exactly one of the following three cases occurs:
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(1) The simplex σ is a complete n-simplex on P ;

(2) There exists a unique J̄ ∈ I so that σ is a J̄-complete simplex on cF (J̄), where

J̄ = J \ {j} for some j ∈ J ;

(3) The simplex σ has exactly one other J-complete facet τ̄ .

Proof: Without loss of generality, let xt+1 be the vertex of σ opposite to τ , let J =

{jt+1, · · · , jn+1}, and let y = A−1
τ,J(1,−f(xt+1)�)�. Notice that y �= 0n+1. Let K = {i ∈

In+1 | yi > 0}. We first prove |K| > 0. Since Aτ,Jy = (1,−f(xt+1)�)�, we have
∑t

i=1 yi = 1.

This implies that there exists at least one index i ∈ It such that yi > 0. Hence K is non-

empty.

Consider the ratio vectors (1/yj)(A
−1
τ,J)j. for all j ∈ K. Choose k ∈ K such that the kth

ratio vector is the minimum in the lexicographic order over all such ratio vectors. Since

A−1
τ,J is regular, k is uniquely determined. Now we consider the following two cases (i) and

(ii).

(i) If k ∈ In+1 \ It, then let l = jk and J̄ = J \ {l}. If J̄ = ∅, then σ is a complete

n-simplex on P . Otherwise, J̄ ∈ I and σ is on cF (J̄). Let R be the matrix obtained from

Aτ,J by replacing its kth column by (1,−f(xt+1)�)�. It follows from Lemma 3.7 that R−1

exists and is lexicopositive. By reordering the columns of R we get Aσ,J̄ whose inverse

exists and is lexicopositive. So, σ is J̄ -complete.

(ii) If k ∈ It, then let τ̄ be the facet of σ opposite to the vertex xk. Using Lemma 3.7, it

follows from the choice of k that A−1
τ̄ ,J exists and is lexicopositive. Hence τ̄ is a J-complete

(t− 1)-simplex on cF (J).

It follows immediately from Lemma 3.7 that if any column other than the kth column

is replaced, then the inverse of the resulting matrix is not lexicopositive. �

Lemma 3.9 Let τ be a J-complete (t − 1)-simplex on cF (J̄) for some J ∈ I, where

t = n− |J |+ 1, and J̄ = J ∪ {l} ∈ I for some l ∈ I \ J, then exactly one of the following

two cases occurs:

(1) There exists a unique set J ′ ∈ I with J ′ �= J so that τ is a J ′-complete (t−1)-simplex

on cF (J ′), where |J ′| = |J | and J ′ ⊂ J̄.

(2) The simplex τ has exactly one J̄-complete facet τ ′.

Proof: Let J = {jt+1, · · · , jn}, x = (0, al�)� and y = A−1
τ,Jx. Note that y �= 0n+1. Let

K = {i ∈ In+1 | yi > 0}. Note that Aτ,Jy = (0, al�)�. We first show that K is non-empty.

Suppose that yi = 0 for all i ∈ It. Then there must exist some parameters yi for i = t+ 1,

t + 2, · · ·, n + 1, such that al =
∑n+1

i=t+1 yia
ji−t, and yi must be non-zero for some i. This
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implies that the vectors al, aj for all j ∈ J are linearly dependent. This contradicts that

J ∪ {l} ∈ I. Hence there exists at least one index i ∈ It such that yi �= 0. If there exists

an index j ∈ It such that yj < 0, then there must exist an index i ∈ It such that yi > 0

since
∑t

k=1 yi = 0. Hence K is non-empty.

Consider the ratio vectors (1/yj)(A
−1
τ,J)j. for all j ∈ K. Choose k ∈ K such that the kth

ratio vector is the minimum in the lexicographic order over all such ratio vectors. Since

A−1
τ,J is regular, k is uniquely determined. Now we consider the following two cases (i) and

(ii).

(i) If k ∈ In+1 \ It, then let p = jk and J ′ = J ∪ {l} \ {p}. Clearly, J ′ ∈ I, J ′ �= J ,

|J ′| = |J |, J ′ ⊂ J̄ , and τ lies on cF (J ′). LetR be the matrix obtained fromAτ,J by replacing

its kth column by x. It follows from Lemma 3.7 that R−1 exists and is lexicopositive.

Clearly, Aτ,J ′ = R. So, τ is a J ′-complete (t− 1)-simplex on cF (J ′).

(ii) If k ∈ It, then let τ ′ be the facet of σ opposite to the vertex xk. Clearly, τ ′ is

a (t − 2)-simplex on cF (J̄). Let R be the matrix obtained from Aτ,J by replacing its

kth column by x. It follows from Lemma 3.7 that R−1 exists and is lexicopositive. By

reordering the columns of R we get Aτ ′,J̄ , whose inverse also exists and is lexicopositive.

So, τ ′ is J̄-complete.

Again it follows from Lemma 3.7 that if any other column is replaced, then the new

matrix is no longer lexicopositive. �

The next lemma says that any complete simplex on P lies on cF ({h}) for some unique

h ∈ I and also has a {h}-complete facet.

Lemma 3.10 Let σ(x1, · · · , xn+1) be a complete n-simplex on P . Then there exists a

unique h ∈ I such that σ lies on cF ({h}). Furthermore, σ has precisely one facet τ which

is {h}-complete.

Proof: Since the union of the sets cF ({j}), j ∈ I, is P and the intersection of their interiors

is empty, there exists a unique h ∈ I such that σ lies on cF ({h}). Let x = (0, ah�)� and

y = A−1
σ x. Let K = {i ∈ In+1 | yi > 0}. We will show that K is non-empty. Note

that y �= 0n+1 since x �= 0n and Aσ is non-singular. Hence, there exists at least one index

i ∈ In+1 such that yi �= 0. If there exists an index j ∈ In+1 such that yj < 0, then there

must exist an index i ∈ In+1 such that yi > 0 since
∑n

i=1 yi = 0. Hence K is non-empty.

Consider the ratio vectors (1/yj)(A
−1
σ )j. for all j ∈ K. Choose k ∈ K such that the kth

ratio vector is the minimum in the lexicographic order over all such ratio vectors. Since

A−1
σ is regular, k is uniquely determined. Now let τ be the facet of σ opposite to the

vertex xk. Let R be the matrix obtained from Aσ by replacing its kth column by x. It

follows from Lemma 3.7 that R−1 exists and is lexicopositive. By reordering the columns
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of R we get Aτ,{h} whose inverse also exists and is lexicopositive. So, τ is an {h}-complete

(n− 1)-simplex on cF ({h}).

Again it follows from Lemma 3.7 that if any other column is replaced, then the new

matrix is no longer lexicopositive. �

In the following we will show that starting at q0 there exists a finite sequence of adjacent

J-complete simplices on cF (J) for varying J , J ∈ I, which leads to a complete n-simplex

σ on P . First we show that a J-complete simplex on cF (J) can not lie on the boundary

of P .

Lemma 3.11 If τ(x1, · · · , xt) is a J-complete (t−1)-simplex on cF (J) for some J ∈ I

where t = n− |J |+ 1, then τ does not lie on the boundary of P .

Proof: Suppose to the contrary that τ is a J-complete simplex on the boundary of P .

Since τ is on cF (J), τ must be a subset of F (J). Hence, all vertices of τ are outside Q.

So, f(xi) = p(xi) − xi for all i = 1, · · ·, t, and aj�xi = bj for all j ∈ J and i = 1, · · ·, t.

Since aj�p(xi) < bj we obtain that aj�f(xi) < 0 for all j ∈ J and all i = 1, · · ·, t. Because

τ is J-complete, according to (∗) we have

t∑
i=1

λif(x
i) =

∑
j∈J

µja
j (3.1)

for some λi ≥ 0, i = 1, · · ·, t, µj ≥ 0 for all j ∈ J , with
∑t

i=1 λi = 1. By premultiplying

equation (3.1) with any vector ai, i ∈ J , we obtain

0 >
∑t

h=1 λha
i�f(xh)

=
∑

j∈J µja
i�aj

= µi

≥ 0,

yielding a contradiction. The properties of the vectors ai, i ∈ J , imply the above equalities.

�

We construct now a graph G = (N,E) where N denotes a set of nodes and E denotes

a set of edges. A simplex σ is called a node if it is either a J-complete (n−|J |)-simplex on

cF (J) for some J ∈ I or a complete n-simplex. Two nodes are said to be adjacent if both

are J-complete facets of the same (n−|J |+1)-simplex on cF (J), or if one is a J-complete

facet of the other and the other is a J ′-complete (n−|J |+1)-simplex on cF (J), or if one is

a {j}-complete facet of the other and the other is a complete n-simplex on cF ({j}). The

notion e = {σ1, σ2} is called an edge if the two nodes σ1 and σ2 are adjacent. The degree

of a node σ in G is defined to be the number of nodes being adjacent to σ, denoted by
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deg(σ). A finite sequence of adjacent simplices in G from σ0 to σl is defined as the typle

(σ0, σ1, · · · , σl), where σ0, σ1, · · ·, σl are nodes in G and ei = {σi−1, σi} are edges in G for

all i ∈ Il.

Theorem 3.12 Let T be a triangulation of P . Then there exists a finite sequence of

adjacent simplices in G from {q0} to a complete n-simplex.

Proof: From Lemma 3.6 it follows that {q0} is a J0-complete 0-simplex for some unique

set J0 ∈ I with |J0| = n. Since {q0} lies on the boundary of cF (J0), there exists a unique

1-simplex σ on cF (J0) having {q0} as its facet. By Lemma 3.8, either σ is a complete

1-simplex or σ is a J0 \ {j}-complete 1-simplex for some unique j ∈ J0, or σ has exactly

one other J0-complete facet τ . Hence, there exists a unique node being adjacent to {q0}.

That is, deg({q0}) = 1.

Let σ be a complete n-simplex on P . According to Lemma 3.10 σ lies in cF ({k}) for

some unique k ∈ I and has a unique {k}-complete facet. That is, deg(σ) = 1.

In all other cases, we will show that deg(τ) = 2 if τ is a node. Let τ be a J-complete

(n−|J |)-simplex on cF (J) for some J ∈ I. Then, either τ does not lie on the boundary of

cF (J) or τ lies on the boundary of cF (J). If τ does not lie on the boundary of cF (J), then

τ is a facet of precisely two (n − |J | + 1)-simplices on cF (J). It follows from Lemma 3.8

that τ is adjacent to exactly two nodes. If τ lies on the boundary of cF (J), there exists

exactly one (n − |J | + 1)-simplex σ on cF (J) having τ as its facet. By Lemma 3.8 either

σ is a complete n-simplex or a J̄-complete (n − |J̄ |)-simplex on F (J̄) for some unique

J̄ ∈ I with |J̄ | = |J | − 1 and has no other J-complete facets, or σ has exactly one other

J-complete facet. This yields one adjacent node to τ . On the other hand, since τ lies on

the boundary of cF (J), it follows from Lemma 3.11 that τ does not lie on the boundary of

P . Hence, since τ �= {q0}, τ lies on cF (J̃) for some unique set J̃ ∈ I with |J̃ | = |J |+1. By

Lemma 3.9 either τ is J ′-complete for some unique set J ′ ∈ I with |J ′| = |J | and J ′ �= J ,

or τ has exactly one J̃-complete facet. It follows again that in both these cases there exists

exactly one node adjacent to τ . This concludes that τ has exactly two adjacent nodes.

That is, we have deg(τ) = 2.

As shown above, the degree of each node in the graph G = (N,E) is at most two.

Since the number of simplices on P is finite, the number of nodes in G is finite. Since

deg({q0}) = 1, there exists a finite sequence of adjacent nodes starting from {q0}. The

end node of this sequence must be a node of degree 1 and different from {q0}. The only

possibility is that this node is a complete n-simplex. �

The algorithm is such that it generates the sequence of adjacent simplices described

in the theorem. From the theorem it follows that starting at the point q0, the algorithm

generates a finite sequence of adjacent J-complete (n−|J |)-simplices on cF (J) for varying
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J ∈ I, leading to a complete n-simplex σ∗ on P . In the next section we show that when

the mesh size of the triangulation of P goes to zero the sequence of complete simplices

generated by the algorithm contains a convergent subsequence of points in P , of which the

projections on the set X converge to a zero point of the mapping φ.

4 A Constructive Existence Proof

By making use of the results obtained in Section 3 we will give a constructive proof for

Theorem 2.1. To achieve this, a sequence of triangulations T r, r ∈ IN, with mesh size

converging to zero is taken. Applying the algorithm described in the previous section, for

every r ∈ IN, a complete n-simplex σ∗r on P is obtained. According to (∗∗), σ∗r contains

a zero point qr of the piecewise linear approximation f r of φ̄ with respect to T r. In the

next theorem we show that the sequence (p(qr))r∈IN has a subsequence converging to a zero

point of φ. Recall that p(·) is the orthogonal projection on X and is a continuous function.

Theorem 4.1 Let φ : X �→ IRn be a point-to-set mapping satisfying the conditions

in Theorem 2.1. For r ∈ IN, let T r be a triangulation of P with mesh size smaller than
1
r
and let qr be the zero point in P of f r found by the algorithm. Then there exists a

convergent subsequence of (qr)r∈IN and any convergent subsequence converges to a point

whose projection on X is a zero point of φ in X.

Proof: Since P is a compact set and (qr)r∈IN is a sequence in P , this sequence has a

convergent subsequence converging to some q∗ in P . We will show that p(q∗) is a zero

point of φ. Without loss of generality we assume that (qr)r∈IN converges to q∗ ∈ P . Since

p(·) is a continuous function, the sequence (p(qr))r∈IN converges to p(q∗). Since the mesh

size of the sequence of triangulations (T r)r∈IN of P converges to zero when r goes to infinity

and since φ̄ is upper semi-continuous, compact-valued and convex-valued, the system of

equations (∗∗) at qr will reduce in the limit for r going to infinity, after taking subsequences

if necessary, to f∗ = 0n with f ∗ ∈ φ̄(q∗). Hence, q∗ is a zero point of φ̄. Let v∗ = q∗−p(q∗).

From Lemma 3.3 it follows that v∗ ∈ N(X, p(q∗)). We consider the following cases.

1) In case q∗ ∈ P \Q, f ∗ = 0n implies p(q∗) = q∗. Since p(q∗) is in X and q∗ is not in

X, we obtain a contradiction.

2) In case q∗ ∈ bd(Q), we have f ∗ = µ∗(p(q∗) − q∗) + (1 − µ∗)f = 0n for some µ∗,

0 ≤ µ∗ ≤ 1, and some f ∈ φ(p(q∗)) ∩ π(v∗). For µ∗ = 1 this case reduces to case 1). For

0 ≤ µ∗ < 1, we obtain f = λ∗v∗ with λ∗ = µ∗/(1 − µ∗) ≥ 0. Hence, f ∈ π(v∗) ∩ C(v∗).

The latter intersection is equal to {0n} and therefore f = 0n. Consequently, x∗ = p(q∗) is

a zero point of φ.

3) In case q∗ ∈ int(Q) \ X, we have 0n = f ∗ ∈ φ(p(q∗)). Hence, x∗ = p(q∗) is a zero

point of φ.
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4) In case q∗ ∈ X, we have q∗ = p(q∗). This implies that 0n = f ∗ ∈ φ(q∗). Hence,

x∗ = q∗ is a zero point of φ. �

This result shows that any convergent subsequence of points generated by the algorithm

for a sequence of triangulations of P with mesh size going to zero, converges to a point

whose projection on X is a zero point of φ. When for a given mesh size the accuracy of

approximation is not satisfactory the algorithm can be restarted for a triangulation of P

with a smaller mesh size with new starting point for example equal to the previously found

approximation. In this way any priori given level of accuracy can be reached within a finite

number of restarts.

In case a coincidence of two mappings φ and ψ on X is being computed, a vertex x

of a simplex of the underlying triangulation T of P is assigned the vector label w − u for

some w ∈ ψ(p(x)) and u ∈ φ(p(x)) satisfying v(q)�u ≥ v(q)�w if q ∈ Q, and the vector

label p(x)− x if x is not in Q. Since x− p(x) is an element of N(X, p(x)) such a u and w

always exist when x lies in Q. Notice that if X is lower-dimensional, typically no vertex

of any simplex in T lies in X.
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