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Regression models and experimental designs:
a tutorial for simulation analysts

Jack P.C. Kleijnen

Tilburg University, Faculty of Economics and Business Administration,Tilburg,
the Netherlands

Abstract

This tutorial explains the basics of linear regression models� especially low-order
polynomials� and the corresponding statistical designs� namely, designs of reso-
lution III, IV, V, and Central Composite Designs (CCDs). This tutorial assumes
�white noise�, which means that the residuals of the �tted linear regression model are
normally, independently, and identically distributed with zero mean. The tutorial
gathers statistical results that are scattered throughout the literature on mathe-
matical statistics, and presents these results in a form that is understandable to
simulation analysts.

Key words: metamodels, fractional factorial designs, Plackett-Burman designs,
factor interactions, validation, cross-validation

JEL codes: C0, C1, C9, C15�C44

1 Introduction

This tutorial is an introduction to the Design and Analysis of Simulation Ex-
periments (DASE).The goals of DASE are veri�cation and validation (V & V)
of the simulation model, its sensitivity (or what-if) analysis, optimization, and
risk (or robustness) analysis. These goals require that the simulation analysts
pay attention to the design of their experiments; for example, if the exper-
imenters keep an input of the simulation model constant, then they cannot
estimate the e¤ect of that input on the output. In practice, however, most ana-
lysts keep many inputs constant, and experiment with a few factors only. This
tutorial shows that there are better ways to run simulation experiments with
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many factors. Another example of poor practice is changing only one input
at a time (while keeping all other inputs �xed at their so-called base values).
This article proves that such an approach does not enable the estimation of
interactions among inputs.

The design of the experiment is intimately related to its analysis; indeed, it
is a chicken-and-egg problem. Consider the following example. Suppose the
analysts assume that the input has a �linear�e¤ect on the output; i.e., they
assume a �rst-order polynomial approximation (which is justi�ed by the Taylor
series argument in mathematics) or main e¤ects only (which is the statistical
terminology). Then it su¢ ces to experiment with only two values per factor.
Moreover, the analysts may assume that there are (say) k > 1 factors and that
these factors have main e¤ects only. Then a good design requires a relatively
small experiment (of order k). For example, changing only one factor at a
time does give unbiased estimators of the main e¤ects. This tutorial, however,
shows that to minimize the variances of these estimators, a di¤erent design is
needed� with approximately the same number of simulation runs as required
by the one-factor-at-a-time design.

A �rst-order polynomial approximation may be called a metamodel (see [19]),
because it is an approximation of the Input/Output (I/O) behavior of the
underlying simulation model. Metamodels are also called response surfaces,
emulators, auxiliary models, repromodels, etc. There are di¤erent types of
metamodels, but polynomials of �rst or second order (degree) have established
a track record in both random and deterministic simulations. In determinis-
tic simulation, another metamodel type is popular, namely Kriging models.
Less popular are non-linear regression models, Classi�cation and Regression
Trees (CART), Multivariate Adaptive Regression Splines (MARS), (arti�cial)
neural networks, radial functions, rational functions, splines, support vector
regression, wavelets, and other types; see [7], [16], [23], and [44].

The term �response surface�is used for local metamodels in Response Surface
Methodology (RSM) and for global metamodels in deterministic simulation.
RSM was introduced in 1951 by Box and Wilson (see [6]) as an iterative
heuristic for optimizing real (physical) systems; a recent textbook is [34]. This
tutorial includes RSM designs for the optimization of simulated systems. The
oldest references to the term �response surface� in deterministic simulation
seem a 1985 American article ([10]) and a 1984 European monograph ([37]).

DASE has strategic and tactical aspects. Traditionally, researchers in Discrete
Event Dynamic Simulation (DEDS) have focused on tactical issues, such as
the runlength of a steady-state simulation, the number of runs of a terminat-
ing simulation, and Variance Reduction Techniques; see the classic 1963 article
by Conway [9] and the 2004 review article [35]. In deterministic simulation�
where these tactical issues vanish� statisticians have been attracted to strate-
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gic issues, namely which scenarios to simulate and how to analyze the resulting
data; see the classic 1996 publication by Koehler and Owen [31] and the 2003
textbook by Santner, Williams, and Notz [42]. Few statisticians have stud-
ied random simulation. And only some simulation analysts have focused on
strategic issues. This tutorial focuses on strategic issues; it discusses only those
tactical issues that are closely related to strategic issues.

The statistical theory called Design Of Experiments (DOE) was developed
for real, non-simulated experiments in agriculture in the 1920s ([7] references
a 1926 publication by Fisher), and in engineering, psychology, etc. since the
1950s. In real experiments it is impractical to investigate many factors; ten
factors seems a maximum. Moreover, in real-life experiments it is hard to
experiment with factors that have more than a few values; �ve values per
factor seems the limit. In simulated experiments, however, these restrictions do
not apply. So a change of mindset of the simulation experimenter is necessary.
A more detailed discussion of simulation versus real experiments is presented
in the 2005 survey article [27].

In summary, DASE is needed to improve the e¢ ciency and e¤ectiveness of
simulation; i.e., DASE is crucial in the overall process of simulation (also see
[32]).

Before proceeding, it is necessary to de�ne some symbols and terms because
DASE is a combination of mathematical statistics and linear algebra that
is applied to experiments with deterministic and random simulation models;
these models are applied in many scienti�c �elds� ranging from sociology to
astronomy. An excellent survey of this spectrum of applications is Karplus�s
classic 1983 paper [17].

This article uses Greek letters to denote parameters, which are model quan-
tities that have values that cannot be directly observed in the real world so
these values must be inferred from other real data; see [51]. For example, the
service rate � in a single-server queueing simulation is estimated from the
(say) c observations on the service time s (a classic estimate is b� = 1=s with
s =

Pc
i=1 si=c). Note that an estimator (for example, the sample average) is a

random variable, which has a speci�c value� once it has been computed; this
value is called an estimate.

Unlike a parameter, a variable can be directly observed in the real world. For
example, the input variable service time s can be measured in a straightforward
way. A variable may be either an input or an output of a model. For example,
besides the input s, the queueing simulation may have the output w, waiting
time.

Both parameters and input variables may be changed in a simulation experi-
ment; i.e., they have at least two values or levels in the experiment. Parameters
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and input variables together are called factors, in DOE. For example, a simple
design in DOE is a 2k factorial experiment; i.e., there are k factors, each with
two levels; all their combinations are simulated. These combinations are often
called scenarios in simulation and modeling. Scenarios are usually called de-
sign points or runs by statisticians. This article reserves the term �run�for a
simulation run, which starts the simulation program in the initial conditions
(for example, the empty state in a queueing simulation) and stops the simula-
tion program once a speci�c state has been reached (for example, c customers
have been simulated).

Factors (inputs) and responses (outputs) may be either qualitative or quantita-
tive. In the queueing example, quantitative factors are the arrival and service
rates; a qualitative factor may be the priority rule� which may have (say)
three levels, namely First-In-First-Out (FIFO, Last-In-First-Out (LIFO), or
Shortest-Processingtime-First (SPT).

This tutorial is based on Chapters 1 and 2 of a forthcoming book; see [23].
The book adds many more mathematical and statistical details, examples, and
exercises to this article.

The remainder of this article is organized as follows. Section 2 discusses black
box versus white box approaches in DASE. Section 3 covers the basics of lin-
ear regression analysis. Section 4 focuses on �rst-order polynomial regression.
Section 4 presents designs for such �rst-order polynomials, namely so-called
resolution-III designs. Section 6 augments the �rst-order polynomial regres-
sion model with interactions among the factors. Section 7 discusses designs
that give unbiased estimators of the main e¤ects� even if there are two-factor
interactions: resolution-IV designs. Section 8 presents designs that also es-
timate the individual two-factor interactions: resolution-V designs. Section 9
extends the regression model to second-order polynomials. Section 10 presents
designs for these second-degree polynomials, focussing on Central Composite
Designs (CCDs). Section 11 discusses validation of the assumed regression
model, including the coe¢ cient of determination R2 and the adjusted coef-
�cient R2adjusted, Pearson�s and Spearman�s correlation coe¢ cients, and cross-
validation. Section 12 gives conclusions and topics for further research. The
tutorial ends with 51 references enabling the readers to further explore topics
that are relevant to their particular applications; some older references are
included to provide a historical perspective.

2 White box versus black box approaches

This tutorial treats the simulation model as a black box� not as a white box.
To explain the di¤erence, consider the following queueing model. A white box
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representation of this model is presented in the next equations. A popular
performance measure (response variable, output) of any queueing simulation
is

w =

Pc
i=1wi
n

(1)

where w denotes the average waiting time, wi the waiting time of customer i,
and c the number of customers that stops the simulation run. An alternative
output may be the estimated 90% quantile, w(d:90n+0:5e) where w(i) denotes
the order statistics and d:90n+ 0:5e means that 0:90n is rounded to the next
integer. The dynamics of any single server queueing simulation with First-In-
First-Out (FIFO) queueing discipline is speci�ed by

wi = max(0; wi�1 + si�1 � ai) (2)

where ai denotes the inter-arrival time between customers i and i�1, and si�1
denotes the service time of customer i � 1. Suppose, the simulation starts in
the empty state, so w1 = 0. An M/M/1 simulation model samples the random
input variables s and a such that these variables have a service rate � and
an arrival rate �, using a single stream of Pseudo-Random Numbers (PRNs)
r with seed (initial PRN) r0, and exponential (Markovian, symbol M) service
and interarrival times:

si =
� ln r2i�1

�
and ai+1 =

� ln r2i
�

: (3)

Such a white-box representation is used by Perturbation Analysis (PA) and
Score Function (SF) analysis (to estimate the gradient for local sensitivity
analysis and optimization). PA and SF are discussed in (for example) Spall�s
recent textbook [45]; also see Rubinstein and Shapiro�s classic SF book, [40],
and Ho and Cao�s classic PA book, [14]. (The estimation of the gradient will
be further discussed in Section 4.)

DASE, however, does not follow a white-box approach; instead it uses a black-
box approach, which is also used by DOE for real-world experiments (see, for
example, [34]) and by Design and Analysis of Computer Experiments (DACE)
for deterministic simulation experiments (see, for example, [42]). A black box
representation of any single server simulation model with arrival and service
rates � and �� and a �xed queueing discipline (for example, FIFO), a �xed
waiting room capacity, etc.� is

w = w(�; �) (4)

where w(:) denotes the mathematical function implicitly de�ned by the com-
puter simulation program that implements the equations (1) through (3). The
dependence of w on the seed r0 might have been explicitly shown, resulting
in w = w(�; �; r0). The representation in (4), however, is better because the
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metamodel�s goal is to predict and explain a characteristic of the distribution
of the output (such as the mean or the 90% quantile), which is not random.

One possible metamodel of the black box model in (4) is a �rst-order polyno-
mial in the two input variables � and �:

y = �0 + �1�+ �2�+ e (5)

where y is the metamodel predictor of the simulation output w in (4); �0,
�1;and �2 are the parameters of this metamodel� which may be collected in
the vector � = (�0; �1; �2)

0; and e is the residual or noise� which includes both
lack of �t of the metamodel (this metamodel is a Taylor series approximation
cut o¤ after the �rst-order e¤ects) and intrinsic noise (caused by the PRNs).

Besides 5), there are many alternative metamodels. For example, a simpler
metamodel is

y = �0 + �1x+ e (6)

where x is the tra¢ c rate� in queueing theory usually denoted by � (statisti-
cians often use this symbol to denote a correlation coe¢ cient; in this tutorial,
the context should clarify what this symbol means):

x = � =
�

�
: (7)

This combination of the two original factors � and � into a single factor �
(inspired by queueing theory) illustrates the use of transformations. Another
useful transformation may be a logarithmic one: replacing y, �, and � by
log(y), log(�), and log(�) in (5) makes the �rst-order polynomial approximate
relative changes; i.e., the regression parameters � become elasticity coe¢ cients
(by de�nition, the elasticity coe¢ cient of y with respect to x is (@y=y)=(@x=x)).
These transformations illustrate that simulation analysts should be guided by
knowledge of the real system and corresponding analytical models.

3 Linear regression analysis: basics

It is convenient to use matrix representation for a linear regression model with
multiple inputs and a single output. (Assuming a single output obviates the
need for multivariate regression, which is beyond the scope of this tutorial; the
univariate regression model of this tutorial may be applied to each individual
output of a given simulation model.) The matrix notation of the general linear
regression model is

y = X� + e (8)
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where y = (y1; : : : ; yn)0 denotes the n-dimensional vector with the regression
predictor (or dependent variable) y with n the number of simulation runs (or
observations);X = (xij) denotes the n�q matrix of explanatory (independent)
regression variables with xij the value of explanatory variable j in run i (i =
1; : : : ; n; j = 1; : : : ; q); � = (�1; : : : ; �q)

0 denotes the q regression parameters�
including the e¤ect of a possible dummy variable (if there is such a dummy
variable, then �1 is the intercept in the regression model); and e = (e1; : : : ; en)

0

denotes the residuals in the n runs.

To select speci�c values (say) b� = (b�1; : : : ; b�q)0 for the regression parameters,
the Least Squares (LS)� also called the Ordinary LS� criterion is often used;
i.e., b� is selected such that it minimizes the Sum of Squared Residuals, SSR:

minb� SSR =
nX
i=1

(bei)2 = nX
i=1

(byi � wi)2 = (by �w)0(by �w) (9)

where bei = byi � wi is the estimated residual for input combination i,
byi = qX

j=1

xij b�j = x0i b�; (10)

and wi denotes the simulation output of run i (for example, the average waiting
time of that run; see (4)).

The solution of (9) gives the LS estimate b� of the regression parameter vector
� in the regression model (8). This solution can be derived to be

�̂ = (X0X)�1X0w: (11)

Obviously, this LS estimate exists only if X is not collinear, so the inverse
(X0X)�1 does exist. The selection of a �good�X in (8)� and hence in (11)� is
discussed in the next sections.

The LS criterion, which is used in (9), is a mathematical (not a statistical)
criterion. This criterion is also known as the L2 norm (other popular math-
ematical criteria are the L1 and the L1 norms). However, adding statistical
assumptions about the simulation I/O data implies that the LS estimator has
interesting statistical properties. Therefore this tutorial assumes white noise;
i.e., the noise is Normally, Independently, and Identically Distributed (NIID)
with zero mean. This de�nition deserves some comments:

� The simulation output w is indeed normally (or Gaussian) distributed if this
output is an average; for example, (1) de�nes the simulation output as the
average of c individual waiting times. These individual times are (positively)
autocorrelated, so the classic Central Limit Theorem (CLT) does not apply.
Yet it can be proven that for large c (i.e., a long simulation run) this average
tends to be normally distributed.
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� The simulation outputs wi and wi0 with i 6= i0 are indeed independent if
they use non-overlapping PRN streams. So the use of Common Random
Numbers (CRNs) violates this assumption.

� �Identically distributed�implies a constant variance. In practice, however,
the simulation outputs do not have the same variance; in other words, the
variances are heterogeneous or heteroscedastic instead of homogeneous. For
example, for the M/M/1 it is well-known that the variances increase as the
tra¢ c rate increases (actually, the variances increase much more than the
means). This practical problem is further discussed in [23].

This tutorial assumes that the simulation outputs w are indeed normally and
independently distributed with the same variance (say) �2w. Obviously, the
simulation outputs may have di¤erent means. Furthermore, the linear regres-
sion model may be a valid metamodel for the variation in these means; i.e.,
the regression residuals may have zero means: E(e) = 0. By de�nition, a
metamodel has perfect �t if and only if all its estimated residuals are zero:
8i : bei = 0 (i = 1; : : : n). This also deserves some comments:
� The metamodel is biased if E(e) 6= 0. If E(e) > 0, then it overestimates the
expected simulation output; if E(e) < 0, then it underestimates.

� A perfectly �tting metamodel indicates that n (number of simulation runs)
is too small. (Also see the discussion of the special case R2 = 1 in Section
11.1).

If the residuals are white noise, then LS gives the Best Linear Unbiased Es-
timator (BLUE). The LS estimator is indeed a linear transformation of the
random simulation response w:

�̂ = Lw (12)

where L is not random since L = (X0X)�1X0 in (11 ). The linear estimator
(12) has the following two properties:

E(�̂) = L[E(w)] (13)

and
cov(�̂) = L[cov(w)]L0: (14)

It is easy to prove that (13) implies that the LS estimator �̂ is unbiased. And

the property in (14) implies that� in case of white noise� �̂ has the following
covariance matrix:

cov(�̂) = (X0X)�1�2w: (15)

Furthermore, it can be proven that among all linear unbiased estimators, �̂ is
best ; i.e., �̂ has the minimum variance. Obviously, the variances of the individ-
ual regression estimators b�j are given by the main diagonal elements of (15);
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their covariances are given by the o¤-diagonal elements of this (symmetric)
matrix.

The linear estimator �̂ has another interesting property if the simulation
outputs w are normally distributed: �̂ is then also normally distributed:

b� � N [�; (X0X)�1�2w]: (16)

Consequently, the individual estimated regression parameters b�j may be tested
through the following Student t statistic:

tn�q =
b�j � �j
s(b�j) with j = 1; : : : ; q (17)

where s(c�j) is the square root of the jth element on the main diagonal of
(14)where �2w is estimated through the Mean Squared Residuals (MSR):

MSR =
SSR

n� q =
(by �w)0(by �w)

n� q (18)

where SSR was given in (9). TheMSR in (18) assumes that degrees of freedom
are left over after �tting the regression (meta)model: n > q. (An alternative
estimator of the simulation output�s variance uses replications; see (23)).The
t statistic in (17) may be used to test whether a speci�c regression parameter
is zero:

H0 : �j = 0. (19)

Besides testing a single parameter, the analysts may hypothesize that several
parameters have speci�c values; for example, the e¤ects of both the arrival
rate and the service rate may be hypothesized to be zero: �1 = 0 and �2 = 0
in (5). More generally,

H0 : �j0 = : : : = �q = 0 (20)

where the q parameters are arranged such that the last q � j0 + 1 parameters
are hypothesized to be zero. To test this composite hypothesis, the following
F -statistic can be used (see, for example, Searle�s general regression textbook
[43]):

(1) Compute the SSR without the null-hypothesis; this is called the SSR of
the full regression model: SSRfull.

(2) Compute the SSR under the null-hypothesis, called the SSR of the re-
duced regression model: SSRreduced.

(3) Compute

Fq�j0+1;n�q =
SSRreduced � SSRfull

SSRfull
: (21)
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The composite null-hypothesis is rejected if this statistic exceeds Fq�j0+1;n�q;1��,
which denotes the 1� � quantile of the Fq�j0+1;n�q distribution.

The preceding linear regression formulas apply to I/O data obtained through

(1) passive observation of a real system
(2) active experimentation with either a real system or a simulation model

of a real system.

The following formulas, however, apply only if the data are obtained through
controlled experimentation; i.e., at least one combination of the explanatory
variables xi = (xi1; : : : ; xiq)0 in (8) is observed more than once. A replicate (or
replication) means that a given combination of the explanatory variables xi is
observed (say)mi > 1 times. The classic assumption is that these replicates are
IID. This assumption is satis�ed in DEDS simulation if the replicates use non-
overlapping PRN streams. If the output is the response of a non-terminating
simulation, then IID implies that the subrun outputs have negligible autocor-
relation. If the subruns are actually renewal cycles, then the IID assumption
is satis�ed by de�nition. Details on this IID property can be found in any
textbook on DEDS simulation; fore example, [32].

Replication implies that at least one input combination xi is repeated in the
matrix of explanatory variables, X. Hence, the number of rows of X increases
from n to (say)

N =
nX
i=1

mi: (22)

It is possible to keep the number of rows limited to the n di¤erent combi-
nations. The output of the ithcombination then becomes the output averaged
over the mi replicates (also see (24)). If the number of replicates is a constant
(mi = m), then the LS estimate may be computed from these averages. Oth-
erwise, these averages should be weighted by the number of replicates; see (26)
and also [21], p. 195.

If input combination xi is replicated mi > 1 times, then the classic unbiased
variance estimator is

dvar(wi) = b�2(wi) = s2i (w) =
Pmi
r=1(wir � wi)2
mi � 1

(i = 1; : : : n) (23)

with

wi =

Pmi
r=1wir
mi

: (24)

Because of the common variance assumption implied by the white noise as-
sumption, the n variance estimators in (23) may be pooled using their degrees
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of freedom as weights:

dvar(w) = b�2w = s2(w) =
Pn
i=1(mi � 1)s2iPn
i=1(mi � 1)

: (25)

If and only if the regression model is valid, there are now the following two
variance estimators:

� The MSR (which was de�ned in (18) for non-replicated combinations),
which is now de�ned in (26) for the current situation with replicated com-
binations. MSR uses the �tted regression model. If the regression model is
not valid, then obviously MSR overestimates the true variance.

� The pooled variance estimator in (25), which uses replicates. This estimator
does not use the �tted regression model; it is unbiased assuming the simu-
lation outputs for a replicated combination are IID (not necessarily NIID;
however, the F statistic does assume normality).

These two estimators can be compared through the following so-called lack-
of-�t F-statistic (see. for example, [34], p. 52):

Fn�q;N�n =

Pn
i=1mi(wi � byi)2=(n� q)Pn

i=1

Pmi
r=1(wir � wi)2=(N � n)

: (26)

The numerator uses the MSR computed from the average simulation output
per combination; at least one combination is replicated (the center of the
simulation area is often replicated, when applying classic DOE to simulation).
Obviously, the regression model is rejected if this statistic is signi�cantly high.
(An alternative validation test will be presented in Section 11.2).

4 Linear regression analysis: �rst-order polynomials

To estimate the parameters of whatever black-box metamodel (for example,
� in the linear regression model (8)), the analysts must experiment with the
simulation model; i.e., they must change the inputs of the simulation program,
run the program, and analyze the resulting I/O data. This section assumes
that a �rst-order polynomial is a valid metamodel.

The simplest metamodel is a �rst-order polynomial with a single factor ; see
(6). To �t such a straight line, it obviously su¢ ces to have only two I/O
observations. It is easy to prove that the white noise assumption implies that
selecting those two values as far apart as possible gives the �best�estimator of
the parameters in (6). The validity of the �tted polynomial, however, becomes
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questionable as the experimental area gets bigger. (Zeigler et al. [51] call this
area the experimental frame; it might also be called the domain of admissible
scenarios� given the goals of the simulation study (various goals are discussed
in [28] and [32].)

A �rst-order polynomial with multiple factors (namely, k > 1) may be rep-
resented as follows (denoting the dummy factor by x0 = 1 and its e¤ect by
�0):

E(y) = �0 + �1x1 + : : :+ �kxk: (27)

So the general linear regression model (8) now has q (number of regression
parameters) equal to k + 1. An example is the �rst-order polynomial for the
two factors � and � in (5).

In practice, such a �rst-order polynomial may be very useful when trying to
estimate the optimal values for the inputs of a simulation model. For example,
the analysts may wish to �nd the input values that maximize the pro�t of
the simulated company. There are many methods for estimating the optimal
input combination. Some of these methods use the gradient, which is the vector
with the �rst-order derivatives:r(w) = (@w=x1; : : : ; @w=@xk). To estimate the
gradient, many mathematical publications change one factor at a time� using
two or three values per factor (see [45]). From the statistical theory on DOE,
however, it follows that it is more e¢ cient to estimate the gradient through
a (full or fractional) factorial design and to �t a �rst-order polynomial to the
resulting I/O data; also see [2].

More general (not only in optimization), the LS estimation of the k+ 1 para-
meters � in (27) often uses either one-factor-at-a-time designs or full factorial
designs. In practice, analysts often change each factor one at a time. DOE,
however, may use a 2k design where each of the k factors has two levels (val-
ues). Obviously, two values su¢ ce for the �rst-order polynomial metamodel
(27). Also see below (Section 5).

It is convenient and traditional in DOE to use coded� also called standard-
ized or scaled� factor values. If each factor has only two levels in the whole
experiment, then these levels may be denoted by -1 and +1. This implies the
following linear transformation with zj denoting the quantitative factor j mea-
sured on the original scale, lj its lower value in the experiment, uj its upper
value, j = 1; : : : ; k; and i = 1; : : : n:

xij = aj + bjzij with aj =
lj + uj
lj � uj

and bj =
2

uj � lj
. (28)

This transformation implies

xij =
zij � �zj
(uj � lj)=2

(29)
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where �zj denotes the average value of factor j in a balanced experiment, which
means that each factor has the lower value in half of the n runs; the denomi-
nator (uj � lj) is known as the range of factor j.

If the original variable z has either a nominal or an ordinal scale and it has
only two levels, then the coding remains simple: arbitrarily associate one level
with �1 and the other level with +1. For example, one level means that
some patients have preemptive priority (say, emergency patients in a hospital
simulation), whereas the other level means that this priority does not apply
(so all patients are served FIFO); therefore -1 may mean that a rule does not
apply or is switched o¤ .

In practice, simulation analysts also consider inputs with nominal scales with
more than two levels. For example, [22] presents a simulation study on the use
of sonar to search for mines at the bottom of the sea. This bottom consists of
clay, sand, or rocks� which a¤ects the sonar�s output. The simulation analysts
erroneously coded these three bottom types as �1, 0, and +1. The correct
coding of a nominal scale with two or more levels may be done throughmultiple
binary variables� each coded as 0 and +1� instead of a single variable that
is coded as �1 and +1; see [23].

Standardization such that each factor (either quantitative or qualitative) varies
between �1 and +1 is useful when comparing the e¤ects of multiple factors.
For example, two quantitative factors may have di¤erent ranges (assuming
the same scale) and the marginal e¤ect of factor 2 may be higher than the
marginal e¤ect of factor 1; nevertheless, if the range of factor 1 is much bigger,
then �the�e¤ect of this factor is larger. To rank the factor e¤ects, the absolute
values of the standardized e¤ects �j should be sorted; also see [23].

Note that a factor may be signi�cant when tested through the t statistic
de�ned in (17), but may be unimportant� especially when compared with
other factors in the experiment.

A 2kdesign results in an orthogonal matrix of explanatory variables for the
�rst-order polynomial (27); that is,

X0X = nI: (30)

This property follows directly from the way a 2kdesign is constructed. This
property simpli�es the LS estimator: substituting (30) into (11) gives

�̂ = (b�j) = (nI)�1X0w = X0w=n = (xjw=n) =

 Pn
i=1 xijwi
n

!
(j = 1; : : : q):

(31)
In this equation, half of the xij is �1 and the other half is +1, so b�j is simply
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the di¤erence between two averages that vary with j:

b�j=
Pn
i=1 xijwi=(n=2)

2
=
w1j � w2j

2
(32)

where w1j is the average output when factor j is +1; and w2j is the average
output when factor j is �1.

Furthermore, (30) simpli�es the covariance matrix (15) to

cov(�̂) = (nI)�1�2w = I
�2w
n
: (33)

So all estimators have the same variance �2w=n, and they are independent. In
1952, Box ([3]) proved that the variances of b�j are minimal if X is orthogonal.

Altogether, 2k designs have many attractive properties. Unfortunately, the
number of combinations (n = 2k) grows exponentially with the number of
factors (k). At the same time, the number of e¤ects is only q = k+1, so these
designs become ine¢ cient for high values of k. The solution is designs that
require only a fraction of these 2k combinations.

5 Designs for �rst-order polynomials: Resolution-III

A resolution-III design gives unbiased estimators of the parameters of a �rst-
order polynomial, assuming that a �rst-order polynomial is indeed a valid
metamodel of the underlying (simulation) experiment; see [4]. These designs
are also known as Plackett-Burman designs, published back in 1946; see [?].
Plackett-Burman designs have as a subclass fractional factorial two-level or
2k�p designs. Obviously, the latter subclass has its number of combinations
equal to a power of two; Plackett-Burman designs have their number of com-
binations equal to a multiple of four (for example, n = 12, which is not a
power of two).

The simplest example of a 2k�p design assumes k = 3. A 23 design would
require n = 8 combinations. The number of parameters is only q = k+1 = 4.
A 23�1 design requires only n = 4 combinations. Because this design has
resolution-III, it is denoted as a 23�1III design. The three columns denoted by 1,
2, and 3 = 1:2 in Table 1 together give one of the two possible 23�1 designs;
the heading "Combi." stands for �Factor combination�; the heading �3 = 1:2�
is a shorthand notation for xi3 = xi1xi2 with i = 1; : : : n. Hence, the �rst
element (i = 1) in the column 3 = 1:2 is x13 = x11x12 = (�1)(�1) = +1 so
the entry is a plus (+). It is easy to verify that Table 1 gives an orthogonal
X. The design is also balanced. The DOE literature calls �3 = 1:2�a design
generator (also see the next section).
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Combi. 1 2 3 = 1:2 3 = �1:2

1 � � + �

2 + � � +

3 � + � +

4 + + + �
Table 1
Two fractional-factorial two-level designs for three factors

An alternative 23�1 design is formed by the three columns denoted by 1, 2,
and 3 = �1:2 in Table 1; obviously, �3 = �1:2�stands for xi3 = �xi1xi2. This
design belongs to the same family as the design with generator 3 = 1:2. The
choice between these two designs is arbitrary (random).

The next simplest example of a 2k�p design is a design with n = 23 = 8
combinations. The number of factors follows from 2k�p = 8 or k � p = 3 with
positive integers k and p, and 2k�p > k: The solution is k = 7 and p = 4.
This gives the analogue of Table 1, now with the generators 4 = 1:2, 5 = 1:3,
6 = 2:3, and 7 = 1:2:3. This design belongs to a family formed by substituting
a minus sign for the (implicit) plus sign in one or more generators; for example,
substituting 4 =� 1:2 for 4 = 1:2 gives one other member of the family. All
the 128 family members together form the unique full-factorial two-level 27

design.

Table 1 gives two saturated designs for three factors; i.e., the number of com-
binations equals the number of parameters to be estimated: n = q in (8).
Hence, no degrees of freedom are left in the MSR in (18), so the lack-of-�t
F -test in (26) cannot be applied. This problem can be solved easily: select one
or more combinations from another member of the family, and also simulate
this combination; the easiest selection is random.

Intermediate k values such as 4 � k � 6 can be handled easily: for k = 4
delete three columns (for example, the last three columns) of the 27�4 design;
for k = 5 delete two columns; for k = 6 delete one column. Obviously, the
resulting designs are not saturated anymore. (Of course, the analysts may also
add one or more extra factors to their original list with 4 � k � 6 factors;
these extra factors do not require a bigger experiment: n remains eight.)

The next example has n = 2k�p = 16. So a saturated design for a �rst-order
polynomial implies k = 15. Hence k � p = 4 implies p = 15 � 4 = 11. The
construction of this 215�11 design remains quite simple:

(1) Construct the (full factorial two-level) 24 design; i.e., write down the 16�4
design matrix.

(2) Add all (that is, 4� (4�1)=2 = 6) pairwise generators: 5 = 1:2, 6 = 1:3,
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7 = 1:4, ..., 10 = 3:4.
(3) Add the following four triplet generators: 11 = 1:2:3, 12 = 1:2:4, 13 =

1:3:4, 14 = 2:3:4.
(4) Add the following quadruple generator: 15 = 1:2:3:4.

A last example has n = 32. So a saturated design implies k = 31. Hence
k�p = 5 (so 25 = 32) implies p = 31�5 = 26. The construction of this 231�26
design remains quite simple� but tedious. A computer procedure is therefore
helpful. It is simple to write such a procedure. Also see [41], p. 366 for a
di¤erent procedure (based on so-called Walsh functions).

As mentioned above, Plackett-Burman designs have 2k�p designs as a subclass.
Plackett-Burman designs in the narrow sense have their number of combina-
tions equal to a multiple of four, but not a power of two. Actually those two
authors published such designs for 12 � n � 96; also see ([18], pp. 332-333)
and [34], p. 170. Plackett-Burman designs are again balanced and orthogonal.

6 Regression analysis: factor interactions

Interaction means that the e¤ect of one factor depends on the levels of one or
more other factors; i.e., E (wjxj = �1)�E (wjxj = +1) = f(xj0) with j 6= j0
(j; j0 = 1; : : : ; k). If the I/O function is continuous, then @E(w)=@dxj = f(xj0)
with j 6= j0. Interaction implies that the response curves with E (wjxj; xj0 = c)
versus xj are not parallel for di¤erent c values. If the interaction between two
factors is positive, the factors are called complementary; if this interaction
is negative, the factors are substitutes for each other. Augmenting the �rst-
order polynomial in (27) with two-factor (also called two-way or pairwise)
interactions yields

E(y) = �0 +
kX
j=1

�jxj +
k�1X
j=1

kX
j0=j+1

�j;j0xjxj0 : (34)

The total number of interactions is k(k�1)=2, so the total number of parame-
ters is q = 1+k+k(k�1)2 = 1+k(k+1)=2. The formulation of X (matrix of
explanatory variables) for the metamodel (34) follows straightforwardly from
D (design matrix):

X = (xij) = (1; di1; : : : ; dik; di1di2; : : : ; di;k�1dik) (i = 1; : : : ; n) : (35)

A �rst-order polynomial may not give a valid metamodel, whereas augmenting
this polynomial with two-factor interactions may give an adequate approxi-
mation. An example is the Flexible Manufacturing System (FMS) case study
in [29].
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The ANOVA (ANalysis Of VArinance) literature uses higher-order interac-
tions, for example, three-factor interactions:

E(y) = �0+
kX
j=1

�jxj+
k�1X
j=1

kX
j0=j+1

�j;j0xj+
k�2X
j=1

k�1X
j0=j+1

kX
j00=j0+1

�j;j0j00xjxj0xj00 : (36)

However, high-order interactions are hard to interpret, and are often unim-
portant in practice. This tutorial therefore assumes that interactions among
three or more factors are unimportant. Of course, this assumption should be
checked; see the �lack of �t�and �validation�discussed in this article.

7 Designs allowing two-factor interactions: Resolution-IV

A resolution-IV design gives unbiased estimators of the parameters of a �rst-
order polynomial, even if two-factor interactions are non-zero. Back in 1951,
Box and Wilson [6] proved the foldover theorem, which may be reformulated
as follows (the full theorem is quoted in [18], p. 343): If a resolution-III design
(say) DIII is augmented with its �mirror�design �DIII , then the resulting
design is a resolution-IV design. So the price for proceeding from a resolution-
III to a resolution-IV design is that n (number of combinations simulated)
doubles. The foldover gives unbiased estimators of the �rst-order (or main)
e¤ects, but does not always enable unbiased estimation of the individual two-
factor interactions.

Consider the following example with k = 7 factors. Combining a 27�4III design
with its mirrored design gives a design with n = 16 combinations, namely, a
27�3IV design. So X corresponding with the regression model (34) has n = 16
rows and q = 1+7(7+1)=2 = 29 columns, so this X is collinear (since n < q).
Hence, LS estimation of the 29 individual regression parameters is impossible.
It is possible, however, to compute the LS estimator of the intercept and the
seven �rst-order e¤ects. For example, it is easy to verify that the column for
the interaction between the factors 6 and 7 is orthogonal to the columns for
the �rst-order e¤ects of the factors 6 and 7; also see (40). Obviously, the 27�3IV

design remains balanced.

Useful manipulations with the generators (such as 3 = 1:2 in the 23�1III design
of Table 1) are explained in [18] and [23].These manipulations show how esti-
mated e¤ects are confounded or aliased ; for example, it is easy to prove that
the generator 3 = 1:2 implies E(b�1) = �1 + �2;3, E(b�2) = �2 + �1;3, and (of
course) E(b�3) = �3 + �1;2; in other words, only if �2;3 = 0, the estimator b�1
is unbiased, etc. But resolution-III designs indeed assume that all interactions
are zero!
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It can be shown that adding the mirror design to a resolution-III design for
k factors gives a resolution-IV design for k + 1 factors (with nIV = 2nIII and
nIII a multiple of four, possibly a power of two). For example, k = 11 requires
a Plackett-Burman (resolution-III) design with nIII = 12 combinations, so a
resolution-IV design with nIV = 24 combinations enables the estimation of
k = 12 main e¤ects unbiased by two-factor interactions.

So, the construction of resolution-IV designs is easy, once a resolution-III de-
sign is available. A DIII design (a Plackett-Burman design) is simply aug-
mented with its mirror design, �DIII . For the Plackett-Burman subclass of
2
(k�1)�p
III designs, the 2k�pIV designs may be constructed by �rst de�ning the
full-factorial design in k � p factors, and then aliasing the remaining p fac-
tors with high-order interactions among these �rst k� p factors. For example,
k = 8 and n = 16 = 24 leads to a 28�4 design, so �rst a 24 design in (say) the
�rst four factors is written down; next, the following main generators may be
used: 5 = 1:2:3, 6 = 1:2:4, 7 = 2:3:4, and 8 = 1:2:3:4. (It is easy to prove
that the main e¤ect estimators are unbiased, and the 8(8 � 1)=2 = 28 two-
factor interactions are confounded in seven groups with three interactions per
group� assuming that all high-order interactions are zero.)

The resolution-IV designs discussed so far imply that the number of combi-
nations increases with jumps of eight (nIV = 8,16,24,32,40, ...), because the
underlying resolution-III designs have a number of combinations that jump
with four (nIII = 4, 8, 12, 16, 20, ....). Webb [50] derived resolution-IV de-
signs with number of combinations that increase in smaller jumps: nIV = 2k
where k does not need to be a multiple of four. He also used the foldover
theorem. Also see [18], pp.344-348

This section on resolution-IV designs is concluded with a general discussion
of confounding. Suppose that a valid linear regression metamodel is

E(w) = E(y) = X1�1 +X2�2: (37)

An example is an X1 corresponding with the intercept and the main e¤ects
collected in �1, and an X2 corresponding with the two-factor interactions �2.
Suppose that the analysts use the simple metamodel without these interac-
tions. Then they estimate the �rst-order polynomial coe¢ cients through

b�1 = (X0
1X1)

�1X0
1w: (38)

So (38) gives
E(b�1) = (X0

1X1)
�1X0

1E(w): (39)

Substitution of (37) into (39) gives

E(b�1)=(X0
1X1)

�1X0
1(X1�1 +X2�2) = �1 + (X

0
1X1)

�1X0
1X2�2: (40)
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k n generators

5 25�1V = 16 5 = 1:2:3:4

6 26�1V I = 32 6 = 1:2:3:4:5

7 27�1V II = 64 7 = 1:2:3:4:5:6

8 28�2V = 64 7 = 1:2:3:4; 8 = 1:2:5:6

9 29�2V I = 128 9 = 1:4:5:7:8; 10 = 2:4:6:7:8

10 210�3V = 128 8 = 1:2:3:7; 9 = 2:3:4:5; 10 = 1:3:4:6

11 211�4V = 128 8 = 1:2:3:7; 9 = 2:3:4:5; 10 = 1:3:4:6; 11 = 1:2:3:4:5:6:7
Table 2
Generators for fractional-factorial two-level designs of resolutionV and higher (VI,
VII)

This gives an unbiased estimator of �1 if either �2 = 0 or X
0
1X2 = 0. Indeed,

resolution-III designs assume that �1 = 0 where �2 consists of the two-factor
interactions; resolution-IV designs ensure that X0

1X2 = 0 (the two-factor in-
teraction columns are orthogonal to the main e¤ects and intercept columns).

8 Designs for two-factor interactions: Resolution-V

A resolution-V design enables LS estimation of the parameters of a �rst-order
polynomial plus its two-factor interactions. For example, a 28�2V design (so
n = 64) enables LS estimation of the q = 37 regression parameters. Such a de-
sign has two generators. To avoid aliasing among the relevant e¤ects (namely,
the two-factors interactions, the main e¤ects, and the intercept), these gener-
ators should multiply more than two factors; for example, it is easy to derive
that a good choice is 7 = 1:2:3:4 and 8 = 1:2:5:6 (these generators imply
confounding of two-factor interactions with interactions among three or more
factors� the latter high-order interactions are assumed to be zero).

In general, the �rst-order polynomial augmented with all the two-factor inter-
actions implies that q (number of regression parameters) becomes 1+k+k(k�
1)=2 = 1 + (k2 + k)=2, so the number of parameters becomes order k2 and
many more combinations need to be simulated compared with a �rst-order
polynomial. In 1961, Box and Hunter [5] published a table with generators for
2k�p designs of resolution V and higher; their table is reproduced in [18], p.
349, and in Table 2.

Recently Sanchez and Sanchez [41] published a computer procedure for con-
structing resolution-V designs for k � 120; for example, a 2120�105V design.
Unfortunately, 2k�p designs� except for the 25�1V design in Table 2� require
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E¤ect type Generator

Intercept (�1; : : : ;�1) for all k factors

Main e¤ect (�1;+1; : : : ;+1) for all k factors

Two-factor Interaction (1; 1;�1; : : : ;�1) for k > 3 factors
Table 3
Generators for Rechtscha¤ner�s resolution-V designs

Combi. Generator 1 2 3 4

1 (�1; : : : ;�1) �1 �1 �1 �1

2 (�1;+1; : : : ;+1) �1 +1 +1 +1

3 +1 �1 +1 +1

4 +1 +1 �1 +1

5 +1 +1 +1 �1

6 (+1;+1;�1; : : : ;�1) +1 +1 �1 �1

7 +1 �1 +1 �1

8 +1 �1 �1 +1

9 �1 +1 +1 �1

10 �1 +1 �1 +1

11 �1 �1 +1 +1

Table 4
Rechtscha¤ner�s design for four factors

relatively many combinations to estimate the regression parameters. For ex-
ample, the 29�2V I design in Table 2 requires 128 combinations, to estimate
q = 1 + 9(9 + 1)=2 = 46 parameters, so its �e¢ ciency�is only 46=128 = 0:36;
and the 2120�105V design requires n = 32; 768 whereas q = 7; 261 so its e¢ ciency
is only 7261=32768 = 0:22. There are resolution-V designs that require fewer
runs; see [41], pp. 372-373.

Actually, if a simulation run takes much computer time, then saturated designs
are attractive. In 1967, Rechtscha¤ner [39] published simple saturated non-
orthogonal fractions of two-level (and three-level) designs; see Table 3 (and
also [18], p. 352). Their construction is simple: the generators are permuted
in the di¤erent factor combinations; see the design for k = 4 factors in Table
4 and for k = 5 factors in [18], p. 352. An application of these designs is
presented in [26], involving k = 6 factors and using Rechtscha¤ner�s design,
which implies only n = q = 1 + 6 + 6(6� 1)=2 = 22 combinations.
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9 Regression analysis: second-order polynomials

The classic mathematical Taylor series argument implies that� as the experi-
mental area gets bigger or the I/O function gets more complicated� a better
metamodel may be a second-order polynomial. An example is the M/M/1 sim-
ulation: a valid metamodel for the I/O behavior in an area with relatively high
tra¢ c rate x may be

E(y) = �0 + �1x+ �2x
2: (41)

Obviously, estimation of the three parameters in (41) requires at least the
simulation of three input values. Indeed, practitioners often use a one-factor-at-
a-time design with three values per factor (they even do so, when �tting a �rst-
order polynomial). DOE also provides designs with three values per factor;
for example, 3k designs. However, more popular in simulation are Central
Composite Designs (CCDs), which have �ve values per factor (see Section 10
below).

Note: The second-order polynomial in (41) is nonlinear in x (explanatory
regression variables), but linear in � (regression parameters). Consequently,
such a metamodel remains a linear regression model, which was speci�ed in
(8).

The formula for the general second-order polynomial in k factors is

E(y) = �0 +
kX
j=1

�jxj +
kX
j=1

kX
j0�j

�j;j0xjxj0 : (42)

So this metamodel adds k purely quadratic e¤ects �j;j to (34). In practice,
second-order polynomials are applied either locally or globally. Local �tting
may be used when searching for the optimum input combination; see [2].
Global �tting (for 0 < x < 1 in the queueing simulation) using second-order
polynomials has been applied, but Kriging provides better metamodels; see
[47].

10 Designs for second-degree polynomials: Central composite de-
signs

A CCD augments a resolution-V design such that the purely quadratic e¤ects
can also be estimated. More speci�cally, a CCD adds the central point and 2k
axial points that form a star design, where� in the coded factors� the central
point is (0; : : : 0)0, and the �positive�axial point for factor j (with j = 1; : : : ; k)
is the point with xj = +c and all other k � 1 factors �xed at the center (so
xj0 = 0 with j0 = 1; : : : ; k and j0 6= j) and the �negative�axial point for factor
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j is the point with xj = �c and xj0 = 0 (so the axial points are a one-at-a-time
design).

Selecting c = k1=2 results in a rotatable design; that is, this design gives a
constant variance for the predicted output at a �xed distance from the origin
(so the contour functions are circles).

A CCD does not give an orthogonal X; hence, the estimated parameters of
the second-degree polynomial are correlated.

Furthermore, nCCD = nV + 1 + 2k where nCCD denotes the total number of
combinations in a CCD; for example, k = 2 implies nCCD = 22 + 1 + 2 � 2
= 9. For k = 120, [41] implies nCCD = 32; 768 + 1 + 2� 120 = 33; 009. Often
only the central point is replicated, to estimate the common variance and to
compute the lack-of-�t F -statistic de�ned in (26). CCDs are further discussed
in [34] and [36].

Obviously, CCDs are rather ine¢ cient. Therefore, [?] simulated only half
of the star design. Classic resolution-V designs are very ine¢ cient, whereas
Rechtscha¤ner�s designs are saturated. Finally, [21], pp. 314-316 discusses
three other types of saturated designs for second-order polynomials (due to
Koshall, Sche¤é, and Notz respectively), but there seem to be no simulation
applications of these designs.

11 Validation

Section 3 included the lack-of-�t F -test, which assumes white noise. This
section drops this assumption, and presents the following statistics: R2 and
R2adjusted, Pearson�s and Spearman�s correlation coe¢ cients, and cross-validation.
These statistics may be computed for both deterministic and random simu-
lation, and for other metamodels than linear regression models; for example,
Kriging and neural networks.

11.1 Coe¢ cients of determination and correlation coe¢ cients

R2 is a very popular statistic in the analysis of passively observed real systems;
in active experimentation including replication, the lack-of-�t F -statistic is
more popular. Whether or not replications are available, R2 may be de�ned
as follows (also see, for example, [11], p. 33):
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R2 =

Pn
i=1(byi � w)2Pn
i=1(wi � w)2

= 1�
Pn
i=1(byi � wi)2Pn
i=1(wi � w)2

(43)

where byi denotes the metamodel predictor de�ned in (10), wi denotes the sim-
ulation response of combination i averaged over its mi � 1 replicates de�ned
in (24), and w =

Pn
i=1wi=n denotes the overall average simulation response.

The right-most equality in (43) shows that R2 = 1 if byi = wi for all i-values. R2
measures how much of the variation in the simulation response is explained by
the regression model; see the denominator in (43), which is the numerator of
the classic variance estimator computed over the n combinations� analogous
to (23).

Note: R2 is not de�ned as a function of wir (individual outputs per combi-
nation), because the metamodel is valid if it adequately predicts the expected
output of the simulation model. De�ning R2 as a function of the individual
outputs would decrease the value of R2 because of the large variability of the
simulation output per combination.

R2 may also be used in deterministic simulation. In such a type of simulation,
the analysts do not obtain any replicates so in (43) wi becomes wi and w
becomes w.

If n = q (no degrees of freedom left; saturated design), then R2 = 1. This
high value is misleading. Therefore R2adjusted for the number of explanatory
variables is de�ned as follows:

R2adjusted = 1�
n� 1
n� q (1�R

2): (44)

Hence, if q = 1, then R2adjusted = R
2.

Lower critical values for either R2 or R2adjusted are unknown, because these
statistics do not have well known distributions. Analysts therefore use sub-
jective lower thresholds. Recently, [24] demonstrated how the distributions of
these two statistics can be obtained through bootstrapping (bootstrapping was
invented by [12]; the classic textbook on bootstrapping is [13].)

R2 is also called the multiple correlation coe¢ cient. However, R2 should be
distinguished from Pearson�s correlation coe¢ cient� usually denoted by �. As
any statistics textbook explains, this � measures the strength of the linear re-
lationship between two random variables (say) x and w (in the classic designs
presented in the preceding sections, x is deterministic; however, Latin Hyper-
cube Sampling or LHS indeed samples x; see [1] [7], [15], [42]). Like R2, the
statistic � ranges between �1 and +1. A value of +1 implies that the two vari-
ables are related perfectly by an increasing (positive slope) linear relationship.
A value of �1 implies a perfect, decreasing linear relationship� as is explained
next.
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Assume that the (vector) random variable (x;w) is Bivariate Normally Inde-
pendently Distributed with parameters E(x) = �x, E(w) = �w, var(x) = �

2
x,

var(w) = �2w, and cor(x;w) = �(x;w) = � (so cov(x;w) = ��x�w):

(x;w) v NID2(�;�) with � = (�x; �w)
0, � =

264 �2x ��x�w

��x�w �2w

375
where the subscript 2 in NID2 means that it concerns a two-dimensional
vector variable. It can be derived that

E (wjx) = �0 + �1x with �0 = �w � �1�x and �1 = �
�w
�x
: (45)

The parameters �x, �w, �
2
x, and �

2
w can be estimated in the classic way, anal-

ogous to (24) and (23) respectively. The covariance is then estimated through

dcov(x;w) =
Xn

i=1
(xi � x)(wi � w)
n� 1 ; (46)

so the correlation is estimated through

b�(x;w) = b� =
Xn

i=1
(xi � x)(wi � w)qXn

i=1
(xi � x)2

qXn

i=1
(wi � w)2

: (47)

If � = 0, then x and w are independent (zero correlation does not imply
independence for non-normally distributed variables!). To test H0 : � = 0, the
classic Student t distribution can be used:

tn�2 =
b�q
1� b�2

p
n� 2: (48)

Note that when the simulation�s input x and output w are uncorrelated, then
x may be called an unimportant factor in this simulation experiment: �1 = 0
if � = 0, because �1 = ��w=�x; see (45)). If the input x is not sampled, but
�xed through one of the classic designs presented in the preceding sections,
then the t statistic de�ned in (17) can be applied; also see the null-hypothesis
in (19).

It may happen that the two variables x and w are related, but not through
the linear relationship E (wjx) = �0+�1x in (45). An alternative relationship
may be (say) E (wjx) = �0x

�1. Such an increasing monotonic relationship
may be quanti�ed through Spearman�s rank correlation coe¢ cient (say) �.
This coe¢ cient is Pearson�s coe¢ cient computed� not from the original pairs
(xi; wi)� but from the ranked pairs (r(xi); r(wi)), as follows:
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(1) The smallest value of xi is assigned a rank of 1, . . . , the largest value gets
rank n.

(2) If a tie occurs, then the average rank is assigned to the members of that
tie.

(3) The ranks for wi are computed in the same manner as for xi.

To test the null-hypothesis H0 : � = 0, Table A10 in Conover�s excellent
textbook [8] can be used. If n � 30, then this hypothesis may also be tested
through z = b�pn� 1 with z v N(0; 1); again see [8], p. 456. More details
on the use of � and � for identifying important factors in simulation (not for
quantifying the adequacy of a metamodel) are given in [25].�

11.2 Cross-validation

Cross-validation is applied not only in linear regression analysis, but also in
non-linear regression, Kriging, neural networks, etc. The basic idea of cross-
validation is quite old; see [46]. This tutorial focuses on so-called leave-one-
out cross-validation. Assume that Xi has only n rows (not N =

Pn
i=1mi

rows); i.e., assume that the number of replicates is constant, possibly one:
mi = m � 1. If the number of replicates is indeed a constant (m > 1), then
the LS estimate may replace wir (individual simulation output for combination
i) by wi (average simulation output for combination i). However, if mi > 1
and mi 6= m (di¤erent replication numbers), then the white noise assumption
implies var(wi) = �2w=mi; in other words, the variance of wi is not constant.
In case of such variance heterogeneity, the LS formulas need correction; see
[30], p. 157. The procedure runs as follows.

(1) Delete I/O combination i from the complete set of n combinations, to ob-
tain the remaining I/O data set (X�i;w�i). Assume that this step results
in a non-collinear matrix X�i (i = 1; : : : ; n); see (49) below. To satisfy
this assumption, the original matrix X must satisfy the condition n > q.
Counter-examples are saturated designs; a simple solution is to simulate
one more combination, for example, the center point if the original design
is not a CCD.

(2) Recompute the LS estimator of the regression parameters from the re-
maining I/O data:

�̂�i = (X
0
�iX�i)

�1X0
�iw�i: (49)

(3) Use this recomputed estimator �̂�i to compute the regression prediction
for the combination deleted in step 1:

by�i = x0i�̂�i: (50)
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(4) Repeat the preceding three steps, until all n combinations have been
processed. This results in n predictions by�i (i = 1; : : : ; n).

(5) Use a scatter plot with the n pairs (wi; by�i) to judge whether the meta-
model is valid.

Case studies using this cross-validation procedure are presented in [48] and
[49].

The following alternative for the subjective judgment in step 5 is proposed in
[20]: Compute

t
(i)
m�1 =

wi � by�iqdvar(wi) + dvar(by�i) (i = 1; : : : ; n) (51)

where dvar(wi) = dvar(wi)=m (and dvar(wi) was given in (23)) and dvar(byi)
follows from (50) and the analogue of (14):

dvar(by�i) = x0idcov(b��i)xi (52)

where dcov(b��i) = dvar(wi)(X0
�iX�i)

�1: (53)

Note that wi and by�i are independent because by�i does not use wi. Since (51)
gives n values (because i = 1; : : : ; n), the regression metamodel is rejected if

max
i
t
(i)
m�1 > tm�1;1�[�=(2n)] (54)

where the right-hand side follows from Bonferroni�s inequality, which implies
that the classic type-I error rate (in this case �=2) is replaced by the same
value divided by the number of tests (in this case n).

There is a shortcut for the n computations in the cross-validation procedure
given above; modern software applies this shortcut. The technique uses the
so-called hat matrix H (see, for example, [33], pp. 201-202, and also [30], pp.
156-157):

H = (hii0) = X(X
0X)�1X0 with i; i0 = 1; : : : : ; n: (55)

It can be proven that the numerator of (51) can be written as

wi � by�i = wi � byi
1� hii

and (51) itself can be written as

tmi�1 =
wi � byiqdvar(wi)p1� hii (i = 1; : : : ; n) (56)
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so the cross-validation computations can be based solely on the original I/O
data, (X;w), which give byi and hii.
In deterministic simulation, the statistic de�ned in (54) should not be applied,
for the following reason. Obviously, the term dvar(wi) in (51) may be set to
zero. The term dvar(by�i) may be computed from (52) where (53) uses the fac-
tor dvar(wi), which may now be computed from the MSR in (18). But the
worse the metamodel �ts, the bigger this MSR gets� so the smaller the test
statistic in (51) becomes, so the smaller the probability of rejecting this false
metamodel becomes! Therefore the analysts may compute the relative pre-
diction errors by�i=wi, and decide whether they �nd these errors acceptable�
practically speaking. An alternative remains the scatter plot described in Step
5 of the cross-validation procedure above.

Cross-validation not only a¤ects the regression predictions (by�i), but also the
estimated regression parameters (�̂�i); see (49). So the analysts may be in-
terested not only in the predictive performance of the metamodel, but also in
its explanatory performance; see the FMS case study in [29].

The regression literature proposes several so-called diagnostic statistics that
are related to (56); for example, PRESS, DEFITS, DFBETAS, and Cook�s D;
see [30], p. 157.

12 Conclusions and further research

This tutorial explained the basics of linear regression models� especially low-
order polynomials� and the corresponding statistical designs� namely, de-
signs of resolution III, IV, V, and CCDs. The tutorial assumed white noise,
meaning that the residuals of the �tted linear regression models are normally,
independently, and identically distributed (NIID) with zero mean. The white
noise assumption is dropped in Chapter 3 of [29], explaining the consequences.
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