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Abstract

This paper introduces a new class of transferable-utility games, called multi-issue
allocation games. These games arise from various allocation situations and are based
on the concepts underlying the bankruptcy model, as introduced by O'Neill (1982).
In this model, a perfectly divisible good (estate) has to be divided amongst a given
set of agents, each of whom has some claim on the estate. Contrary to the standard
bankruptcy model, the current model deals with situations in which the agents' claims
are multi-dimensional, where the dimensions correspond to various issues.

It is shown that the class of multi-issue allocation games coincides with the class
of (nonnegative) exact games. The run-to-the-bank rule is introduced as a solution for
multi-issue allocation situations and turns out to be Shapley value of the corresponding
game. Finally, this run-to-the-bank rule is characterised by means of a consistency
property.
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1 Introduction

Bankruptcy problems were ¯rst introduced by O'Neill (1982) and have been subsequently

analysed in a variety of contexts. In a bankruptcy situation, one has to divide a given amount

of money (estate) amongst a set of agents, each of whom has a claim on the estate. The total

amount claimed typically exceeds the estate available, so not all the claims of the agents can

be fully satis¯ed.

The example originally given by O'Neill (and which is inspired by some passages in the

Talmud) is that of a bequest: a man dies, leaving behind an estate which is not su±ciently

large to satisfy all promises made to his heirs in his will. Another example is that of a ¯rm

going bankrupt, whose assets are insu±cient to satisfy all creditors' outstanding claims.

O'Neill proposes a particular solution to this problem, which he calls the method of

recursive completion. This solution turns out to be the Shapley value of a corresponding

bankruptcy game, which is a transferable-utility game where the value of each coalition is

the amount of money that is left of the estate after all the claims of the agents outside

that coalition are satis¯ed. Aumann and Maschler (1985) and Curiel et al. (1987) proposed

and characterised two further solutions that coincide with the nucleolus and ¿ -value of the

corresponding bankruptcy game, respectively.

O'Neill's bankruptcy model has been applied to a wide array of economic problems, e.g.,

taxation problems (Young (1988)), surplus-sharing problems (Moulin (1987)), cost-sharing

problems (Moulin (1988)), apportionment of indivisible good(s) problems (Young (1994))

and priority problems (Moulin (2000) and Young (1994)).

The bankruptcy model relates to a particular kind of allocation problem. An allocation

problem arises whenever a bundle of goods (resources, rights, costs, burdens) is held in

common by a group of individuals and must be allotted to them individually. An allocation

situation has two ingredients: the goods to be distributed and the claimants amongst whom

they are to be allotted. Young (1994) introduced a general framework with the central

concept of a \type" of a claimant: \The type of a claimant is a complete description of the

claimant for purposes of the allocation, and determines the extent of a claimant's entitlement

to the good". A type of a claimant therefore involves a complete description of the claimant

in several dimensions or attributes. These attributes are accepted as the benchmark against

which allocations are to be judged and can take on many forms, depending on the particular

allocation situation at hand. E.g., the allocation of public housing typically depends on

such attributes as ¯nancial need, family size and time spent on a waiting list. Looking from

this general point of view, one can say that the bankruptcy model deals with all allocation
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problems in which there is one perfectly divisible good (money) to be allocated and the type

of each agent can be characterised by a single (monetary) claim on that good.

In a general rationing framework, Kaminski (2000) also considers bankruptcy situations

in which the type of each claimant is not one-dimensional, as is the case in O'Neill, but multi-

dimensional. In the environment he presents, a type is a vector of claims, the components

of which have di®erent legal statuses. As a result, di®erent priorities are assigned to the

various components of an agent's claim vector.

The model we present in this paper also characterises the types of the claimants in a

multi-dimensional way by means of a vector of claims. Contrary to Kaminski however, the

multidimensionality of claims is not the necessary consequence of some exogenously given

priorities. In our model, we regard each claim component as originating from a particular

issue. An issue, which in the terminology used above takes on the role of attribute, consti-

tutes a reason on the basis of which the estate is to be divided. Crucially, such a reason

should be well founded and be accepted as such by all parties involved. A particular way

one can interpret an issue is in terms of a will. In fact, O'Neill (1982) hints at this point of

view in the bequest example, where the deceased leaves behind not just a single will, but a

number of (contradictory) wills, each of which contains promises to one or more of his heirs.

To illustrate the terminology of our new model, consider the following example. The

central government has to decide how to allocate the taxpayers' money to various public

services. The system of government is such that it doesn't allocate this money directly to

these services, but indirectly through various government departments. Each department

(agent/player) has a number of claims on the amount of money available (estate), arising

from those public services (issues) for which it has responsibility. Some of these services are

provided by just a single department (e.g., tax collection viz. the Department of Finance),

while more departments may be responsible for other services (e.g., foreign trade viz. the

Departments of Economic A®airs, Foreign A®airs and Defence).

Another multi-dimensional extension of the bankruptcy model is provided by Lerner

(1998). In that paper, a pie is allocated amongst groups, not necessarily disjoint, rather

than users.

The outline of this paper is as follows. In Section 2, we introduce multi-issue allocation

situations and de¯ne two corresponding cooperative games. These games are constructed

from a pessimistic point of view, as are standard bankruptcy games. In order to determine

the value of a particular coalition, we let the players outside that coalition decide in which

order the issues are to be addressed. One important assumption in our framework is that

once we start paying out money according to one particular issue, this issue must ¯rst be
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fully dealt with before we move on to the next. As illustrated by our public service example,

handing out the estate takes place primarily on the basis of issues, whereas the individual

claims of the players are of secondary concern. Because of the importance of issues, it seems

natural to assume that they are dealt with consecutively. But that still leaves some freedom

within each issue: in our ¯rst game (called Proportional game), we distribute the money

within each issue proportional to the claims in that issue, while in the second game (called

Queue game), we take an even more pessimistic view by allowing the players outside the

coalition to choose also the order in which the claims within each issue are satis¯ed.

The computation of the second of our multi-issue allocation games turns out to be a

less than straightforward combinatorial optimisation problem. In the Appendix, we provide

algorithms to determine the worth of coalitions in both approaches.

Properties of multi-issue allocation games are presented in Section 3. The main result is

that the class of multi-issue allocation games coincides with the class of non-negative exact

games.

In Section 4, we analyse run-to-the-bank rules as solutions for multi-issue allocation situa-

tions. These rules are based on the interpretation behind the method of recursive completion

for bankruptcy situations (cf. O'Neill (1982)). As the name suggests, the players hold a race

to the person or institution administering the estate. Upon arrival, each player can choose

an order on the issues that is most favourable to him. By averaging over all possible orders

of arrival, we obtain a run-to-the-bank rule. One new aspect of this kind of rule, which is

not present in the method of recursive completion, is that new players arriving do not only

take into account their own payo®s, but also have to make some compensation payments.

The two run-to-the-bank rules we introduce in this fashion di®er in the way they treat

claims within each issue. The ¯rst one (the P-rule) divides the money assigned to a particular

issue proportionally, while the second one (the Q-rule) chooses an \optimistic" order on the

players. The two run-to-the-bank rules turn out to be the Shapley value of the corresponding

P-game and Q-game, respectively.

Finally, in Section 5, we characterise both run-to-the-bank rules by means of (P- and

Q-)consistency. In the context of bankruptcy games, the term consistency has been used

for a number of di®erent properties. Our de¯nition of consistency is similar to the one used

by O'Neill (1982). It is based on the idea that applying a solution concept to a particular

problem and applying the same solution concept to some speci¯c subproblems and aggregat-

ing the solutions of these subproblems should yield the same outcome. In order to properly

de¯ne such a consistency property, we extend the domain of a solution concept to a wider

class of problems, i.e., the class of multi-issue allocation situations with awards.
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2 The Model

A cooperative game with transferable utility, or TU-game, is described by a pair (N; v), where

N = f1; : : : ; ng denotes the set of players and v : 2N ! R is the characteristic function,

assigning to every coalition S ½ N of players a value v(S), representing the total monetary

payo® the members of this group can obtain when they cooperate. By convention, v(;) = 0.
A bankruptcy situation (cf. O'Neill (1982)) is a triple (N;E; c), where N = f1; : : : ; ng is

the set of players, E > 0 is the estate to be divided and c 2 RN
++ is the vector of claims

such that
P
i2N ci > E. Every bankruptcy situation (N;E; c) gives rise to a bankruptcy game

(N; v), where the value of a coalition S ½ N is given by

v(S) = maxfE ¡
X

i2NnS
ci; 0g:

So v(S) is that part of the estate that is left for the players in S after the claims of all other

players have been satis¯ed.

A multi-issue allocation situation is a triple (N;E;C), where N = f1; : : : ; ng is the set
of players, E > 0 is the estate under contest and C 2 Rr£n

+ is the matrix of claims. Every

row in C represents an issue and the set of issues is denoted by R = f1; : : : ; rg. An element
cki > 0 represents the amount that player i 2 N claims according to issue k 2 R. If a player
is not involved in a particular issue, his claim corresponding to that issue equals zero.

Every bankruptcy situation (N;E; c) gives rise to a multi-issue allocation situation with

C 2 Rn£n the diagonal matrix with the claims ci on the diagonal. 1

With respect to the matrix of claims C, we assume the following:

² Every issue gives rise to a claim: P
i2N cki > 0 for all k 2 R.

² Every player is involved in at least one issue: P
k2R cki > 0 for all i 2 N .

² The allocation problem is nontrivial:
P
k2R

P
i2N cki > E.

For ease of notation, we de¯ne ck =
P
i2N cki to be the total of claims according to issue

k 2 R. Similarly, we de¯ne ckS =
P
i2S cki for all coalitions S ½ N and cKi =

P
k2K cki for

all sets of issues K ½ R. An ordering of the players in N is a bijection ¾ : f1; : : : ; ng ! N ,

where ¾(i) denotes which player in N is at position i. The set of all n! permutations of N

is denoted by ¦(N). Similarly, the set of permutations of the set of issues R is denoted by

¦(R).

1In fact, one can generalise a bankruptcy situation in more than one way. The method described here is
one that results in the same game for both approaches we follow in this paper.
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As stated in the introduction, we make the basic assumption that once we are paying out

money according to one particular issue, this issue must ¯rst be fully dealt with before we

move on to the next. In addition, we consider two approaches on how to handle the claims

within each issue. As a result, we de¯ne two multi-issue allocation games, a proportional

game vP based on Assumption 2.1 and a queue game vQ based on Assumption 2.2.

Assumption 2.1 If some money is allocated to the players on the basis of a particular

issue, the amount of money each of the players gets is proportional to his claim according

to that issue.

In order to de¯ne the proportional game vP , we ¯rst compute the maximum amount the

players in a coalition S ½ N can get when the issues are dealt with according to Assump-

tion 2.1. We do this by considering all orders on the issues, so let ¿ 2 ¦(R). Now the players
in S ¯rst address the ¯rst t issues completely, where t = maxft0 j Pt0

s=1 c¿(s) 6 Eg. The part
of the estate that is left, E0 = E¡Pt

s=1 c¿(s), is divided proportional to the claims according

to issue ¿ (t+ 1). So in total, the players in S receive

fPS (¿ ) =
tX

s=1

c¿(s);S +
c¿(t+1);S
c¿(t+1)

E0: (2.1)

The value of coalition S ½ N is the amount of money they get when the players in NnS
choose that order on the issues that gives them the highest payo®:

vP (S) = E ¡ max
¿2¦(R)

fPNnS(¿ ): (2.2)

Using the identity fPS (¿) + f
P
NnS(¿) = E, (2.2) can be rewritten as

vP (S) = min
¿2¦(R)

fPS (¿ ):

The queue game vQ is based on Assumption 2.2.

Assumption 2.2 If a particular coalition allocates some money to the players on the basis

of a particular issue, this coalition can also decide in which order the claims corresponding

to that issue are satis¯ed.

To de¯ne the queue game, we ¯rst de¯ne an auxiliary function g(S; k; ¾;E 0), which describes

how much money the players in S ½ N get according to issue k 2 R if the order on the

players is ¾ 2 ¦(N) and the estate is E0 with E0 < ck. The ¯rst q players get their entire
claim, where q = maxfq0 j Pq0

p=1 ck¾(p) 6 E0g. The function g is then de¯ned by
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g(S; k; ¾;E0) =

8
>>>>>>>>><
>>>>>>>>>:

E0 ¡
qX

p = 1
¾(p) 2 NnS

ck¾(p) if ¾(q + 1) 2 S

qX

p = 1
¾(p) 2 S

ck¾(p) if ¾(q + 1) =2 S
(2.3)

The computation of g(S; k; ¾; E0) is illustrated in the following example with ¯ve players.

0 E0 ck

issue kck¾(1) ck¾(2) ck¾(3) ck¾(4) ck¾(5)¡¡
¡
¡¡
¡
¡¡
¡¡

¡¡
¡
¡¡
¡
¡¡
¡
¡¡
¡
¡¡
¡
¡¡
¡
¡¡
¡¡

Coalition S consists of players ¾(1), ¾(3) and ¾(4) and corresponds to the shaded area. The

estate E0 is such that only the claims of ¯rst three players can be fully satis¯ed (q = 3).

Furthermore, ¾(q + 1) 2 S, so (2.3) yields g(S; k; ¾; E0) = E0 ¡ ck¾(2), the area to the left of
E0 that is not claimed by NnS.
Next, we compute the maximum amount the players in a coalition S ½ N can get if the

order on the issues is ¿ 2 ¦(R) . As in the proportional case, the ¯rst t issues are fully dealt
with and the remainder E0 is distributed according to some order ¾ 2 ¦(N) on the players,
using Assumption 2.2.

fQS (¾; ¿ ) =
tX

s=1

c¿(s);S + g(S; ¿(t+ 1); ¾;E
0):

The value of coalition S is then given by

vQ(S) = E ¡ max
¿2¦(R)

max
¾2¦(N)

fQNnS(¾; ¿): (2.4)

Again, using the identity fQS (¾; ¿ ) + f
Q
NnS(¾; ¿ ) = E, (2.4) can be restated in terms of a

minimum:

vQ(S) = min
¿2¦(R)

min
¾2¦(N)

fQS (¾; ¿):

It is immediately clear that the optimal order on the players that coalition NnS will choose
puts the players of NnS in front. So, (2.4) reduces to

vQ(S) = E ¡ max
¿2¦(R)

fQNnS(¿ );

where

fQNnS(¿ ) = f
Q
NnS(¾̂; ¿) =

tX

s=1

c¿(s);NnS +minfc¿(t+1);NnS; E0g (2.5)
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with ¾̂ 2 ¦(N) such that ¾̂¡1(NnS) = f1; : : : ; jNnSjg.
In the appendix, we present two algorithms to compute vP and vQ given any multi-issue

allocation situation (N;E;C).

3 Properties of Multi-issue Allocation Games

In this section we look at some of the properties that multi-issue allocation games of both

types possess. First, we prove that the worth of a coalition in the queue game is smaller

than the worth of that coalition in the corresponding proportional game. This means that

the queue approach is more pessimistic than the proportional approach.

Proposition 3.1 Let (N;E;C) be a multi-issue allocation situation with corresponding

games (N; vP ) and (N; vQ). Then vQ(S) 6 vP (S) for all S ½ N .

Proof: Let S ½ N and let ¿± 2 ¦(R) be the order on the issues where the maximum in

(2.2) is obtained. For any order ¿ 2 ¦(R), minfc¿(t+1);NnS; E0g in (2.5) exceeds c¿(t+1);NnSc¿(t+1)
E0

in (2.1). So, in particular, this is the case for ¿ ±. But then certainly, max¿2¦(R) f
Q
NnS(¿) >

fPNnS(¿
±) and hence, vQ(S) 6 vP (S). ¤

The core of a TU-game (N; v) is de¯ned as

C(v) = fx 2 RN j
X

i2N
xi = v(N); 8S½N :

X

i2S
xi > v(S)g

and (N; v) is called exact (cf. Driessen and Tijs (1985)) if for all S ½ N there exists an

x 2 C(v) such that P
i2S xi = v(S).

Theorem 3.2 Let (N;E;C) be a multi-issue allocation situation. Then both corresponding

games (N; vP ) and (N; vQ) are exact.

Proof: Let S ½ N and let ¿ ± 2 ¦(R) be such that fPS (¿
±) is minimal. De¯ne x =

(fPi (¿
±))i2N . Then

P
i2N xi = E = v

P (N) and
P
i2T xi = f

P
T (¿

±) > min¿2¦(R) fPT (¿) = v
P (T )

for all coalitions T ½ N . So, x 2 C(vP ). Furthermore, P
i2S xi = f

P
S (¿

±) = vP (S). Hence,

(N; vP ) is exact. The proof for (N; vQ) is similar. ¤

In the proof of Theorem 3.2 we showed that (fPi (¿
±))i2N is a core element of the proportional

game vP for certain ¿± 2 ¦(R). This property can be extended to all orders on the issues,
so for all ¿ 2 ¦(R) we have
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(fPi (¿ ))i2N 2 C(vP )

and similarly for the queue game, for all ¿ 2 ¦(R) and ¾ 2 ¦(N),

(fQi (¾; ¿ ))i2N 2 C(vQ):

Theorem 3.3 Let (N; v) be a nonnegative exact game. Then there exists a multi-issue

allocation situation (N;E;C) such that both corresponding games vP and vQ equal v.

Proof: If jN j = 1, the result is obvious. Otherwise, de¯ne E = v(N) and take for all

S $ N;S 6= ; an xS 2 C(v) such that P
i2S = v(S). Interpret these core elements as issues

and gather them (as rows) in the (2n¡ 2)£n claim matrix C. Because P
i2N cki = E for all

k 2 R, no issue is addressed partially and vP and vQ coincide.
Now, let S ½ N . By construction, there is a row k0 2 R such that ck0S = v(S) and because
all issues are core elements of v, ckS > v(S) for all k 2 R. Hence, vP (S) = min¿2¦(R) fPS (¿) =
mink2R ckS = v(S). Therefore, v, vP and vQ coincide. ¤

From Theorems 3.2 and 3.3 we conclude that the class of multi-issue allocation games coin-

cides with the class of nonnegative exact games.

A TU-game (N; v) is called balanced if it has a nonempty core and totally balanced if

the core of every subgame is nonempty, where the subgame corresponding to some coalition

T ½ N;T 6= ; is the game (T; V T ) with V T (S) = V (S) for all S ½ T .

Proposition 3.4 Let (N; v) be an exact TU-game. Then (N; v) is totally balanced.

Proof: Let T ½ N; T 6= ;. By exactness, there exists an x 2 C(v) such thatP
i2T xi = v(T ).

But then xT 2 RT is an e±cient allocation of vT (T ) such that xS > vT (S) for all S ½ T .

Hence, xT 2 C(vT ) and (N; v) is totally balanced. ¤

As a corollary, both multi-issue allocation games are totally balanced.

A TU-game (N; v) is called superadditive if for all coalitions S; T ½ N we have

v(S) + v(T ) 6 v(S [ T )

and convex if for all coalitions U ½ N and all S ½ T ½ NnU we have

v(S [ U)¡ v(S) 6 v(T [ U)¡ v(T ):

For a TU-game (N; v), the utopia vector M(v) is de¯ned by
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Mi(v) = v(N)¡ v(Nnfig)

for all i 2 N , and the minimal right vector m(v) by

mi(v) = max
S:i2S

2
4v(S)¡

X

j2S;j 6=i
Mj(v)

3
5

for all i 2 N . (N; v) is called quasi-balanced if m(v) 6 M(v) and
P
i2N mi(v) 6 v(N) 6

P
i2NMi(v). The following proposition comes from Driessen and Tijs (1985).

Proposition 3.5 Let (N; v) be a TU-game with x 2 C(v). Then (N; v) is quasi-balanced
and m(v) 6 x 6 M(v).

For an arbitrary game (N; v), we de¯ne the core cover by

CC(v) = fx 2 RN j
X

i2N
xi = v(N);m(v) 6 x 6 M(v)g:

It follows from Proposition 3.5 that CC(v) ¾ C(v). A TU-game (N; v) is called semi-convex

if it is superadditive and

mi(v) = v(fig)

for all i 2 N .
For every order ¾ 2 ¦(N), we de¯ne the marginal vector m¾(v) recursively by

m¾
¾(k)(v) = v(f¾(1); : : : ; ¾(k)g)¡ v(f¾(1); : : : ; ¾(k ¡ 1)g)

for all k = 1; : : : ; n. The Shapley value of (N; v) is de¯ned as (cf. Shapley (1953))

©(v) =
1

jN j!
X

¾2¦N
m¾(v):

The following results come from Driessen and Tijs (1985).

Proposition 3.6 Let (N; v) be a TU-game. Then:

² If (N; v) is convex, then it is exact.

² If (N; v) is exact, then it is semi-convex.

² If (N; v) is semi-convex and jN j 6 3, then it is convex.
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As a corollary, both multi-issue allocation games vP and vQ are semi-convex (and hence, su-

peradditive) and multi-issue allocation games with 3 players or less are convex. Example 3.7

shows that 4-player multi-issue allocation games need not be convex.

Example 3.7 Consider the multi-issue allocation situation with player set N = f1; : : : 4g,
estate E = 12 and claim matrix

C =

"
4 0 0 4
4 4 4 4

#
:

The corresponding proportional and queue games are as follows:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
vP (S) 3 1 1 3 6 6 6 2 6 6 7 9 9 7 12
vQ(S) 0 0 0 0 4 4 4 0 4 4 4 8 8 4 12

Now take U = f3g, S = f1g and T = f1; 2g. Then

vP (S [ U)¡ vP (S) = 6¡ 3 = 3 > 1 = 7¡ 6 = vP (T [ U)¡ vP (T )

and

vQ(S [ U)¡ vQ(S) = 4¡ 0 = 4 > 0 = 4¡ 4 = vQ(T [ U)¡ vQ(T ):

Hence, both vP and vQ do not satisfy convexity. /

A well known property of a convex game is that its Shapley value belongs to the core. Rabie

(1981) shows that this does not hold in general for exact games. However, Theorem 3.8

shows that the Shapley value of a nonnegative exact game belongs to the core cover.

Theorem 3.8 Let (N; v) be a nonnegative exact game. Then ©(v) 2 CC(v).

Proof: First, use Theorem 3.3 to construct a multi-issue allocation situation (N;E;C)

such that vP = v. Next, let i 2 N . Then supperadditivity implies vP (S) ¡ vP (Snfig) >
vP (fig) = mi(v

P ) for all S ½ N such that i 2 S. Furthermore,

vP (S)¡ vP (Snfig) =

"
E ¡ max

¿2¦(R)
fPNnS(¿ )

#
¡

"
E ¡ max

¿2¦(R)
fPNnS[fig(¿ )

#

= max
¿2¦(R)

fPNnS[fig(¿)¡ max
¿2¦(R)

fPNnS(¿ )

6 max
¿2¦(R)

fPNnS(¿ ) + max
¿2¦(R)

fPfig(¿ )¡ max
¿2¦(R)

fPNnS(¿)
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= E ¡
"
E ¡ max

¿2¦(R)
fPfig(¿)

#

= vP (N)¡ vP (Nnfig)
= Mi(v

P ):

Hence, the marginal contribution of i to every coalition S : i 2 S is bounded by mi(v
P )

and Mi(v
P ). Because the Shapley value is the average of these marginal contributions,

©(vP ) 2 CC(vP ) and hence, ©(v) 2 CC(v). ¤

A population monotonic allocation scheme (cf. Sprumont (1990)), or pmas, is a set of vectors

xS 2 RS for all S ½ N;S 6= ; such that
X

i2S
xSi = v(S) for all S ½ N;S 6= ; (3.1)

and

xSi 6 xTi for all S ½ T ½ N; i 2 S: (3.2)

Sprumont shows that every convex game has a pmas. This does not hold for exact games,

as is shown by the following example.

Example 3.9 Consider the multi-issue allocation situation with player set N = f1; : : : ; 4g,
estate E = 22 and claim matrix

C =

"
6 6 5 3
12 0 2 6

#
:

The corresponding queue game is as follows:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
vQ(S) 6 0 2 3 12 11 9 2 6 8 14 15 16 8 22

To show that vQ has no pmas, suppose (xSi )i2S;S½N;S 6=; satis¯es (3.1) and (3.2). Then we

subsequently have:

² vQ(f1; 3g) = 11 and vQ(f1; 3; 4g) imply xf1;3;4g4 6 16¡ 11 = 5.

² xf1;3;4g4 6 5 implies x
f3;4g
4 6 5.

² xf3;4g4 6 5 and vQ(f3; 4g) = 8 imply xf3;4g3 > 3.

² xf3;4g3 > 3 and vQ(f2; 4g) = 6 imply P
i2f2;3;4g x

f2;3;4g
i > 9.

The last statement contradicts (3.1) and hence, the exact game vQ possesses no pmas. /
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4 The Run-to-the-Bank Rule

A multi-issue allocation solution ª is a function assigning to every multi-issue allocation

situation (N;E;C) a vector ª(N;E;C) 2 RN such that
P
i2N ªi(N;E;C) = E (e±ciency)

and 0 6 ªi(N;E;C) 6 cRi for all i 2 N (reasonability). We de¯ne two solutions, called

run-to-the-bank rules, based on Assumption 2.1 and 2.2. The proportional run-to-the bank

rule is de¯ned as

½P =
1

jN j!
X

¾2¦(N)
½P (¾);

where for all ¾ 2 ¦(N), ½P (¾) 2 RN is de¯ned recursively by

½P¾(p)(¾) = max
¿2¦(R)

2
4fP¾(p)(¿ )¡

p¡1X

q=1

³
½P¾(q)(¾)¡ fP¾(q)(¿)

´
3
5 (4.1)

for all p 2 f1; : : : ; ng. The vector ½P (¾) is interpreted as follows. To divide the estate, a
\race" is held between the players and they arrive at the person or institution administering

the estate in the order given by ¾. The ¯rst player that arrives, ¾(1), can choose the order in

which the issues are dealt with and receives his payo® accordingly. Of course, he will choose

that order ¿ 2 ¦(R) for which his payo® fP¾(1)(¿ ) is maximal. Next, player ¾(2) arrives

and he is asked to do the same. However, if he chooses an order di®erent from the ¯rst

one, he has to compensate player ¾(1) for the di®erence between his settled payo® ½P¾(1)(¾)

and his payo® according to the new order. Taking this into account, the second player will

pick that order that maximises his own payo® minus corresponding compensation payments.

The same procedure is applied to each subsequent player, each having to compensate all his

predecessors.

The queue run-to-the-bank rule is de¯ned as

½Q =
1

jN j!
X

¾2¦(N)
½Q(¾);

where for all ¾ 2 ¦(N), ½Q(¾) 2 RN is de¯ned recursively by

½Q¾(p)(¾) = max
¿2¦(R)

max
°2¦(N)

2
4fQ¾(p)(°; ¿)¡

p¡1X

q=1

³
½Q¾(q)(¾)¡ fQ¾(q)(°; ¿)

´
3
5 (4.2)

for all p 2 f1; : : : ; ng. The interpretation is similar to the proportional case. The only
di®erence is that the queue payo® function fQ is used rather than the proportional function

fP and that in accordance with Assumption 2.2, players also have to specify an order ° on

the players. It is immediately clear that it is optimal for player ¾(p), who arrives at the

13



administrator at position p, to choose ° in such a way that he himself and all preceding

players, ¾(1); : : : ; ¾(p¡ 1), whom he has to compensate, are in front of the queue. This can

be done by setting ° = ¾.

Proposition 4.1 The optimal ° in (4.2) equals ¾.

As a result of Proposition 4.1, (4.2) can be rewritten as

½Q¾(p)(¾) = max
¿2¦(R)

2
4fQ¾(p)(¾; ¿ )¡

p¡1X

q=1

³
½Q¾(q)(¾)¡ fQ¾(q)(¾; ¿ )

´
3
5 (4.3)

In order to prove that both run-to-the-bank rules equal the Shapley values of their respective

corresponding games, we ¯rst relate them to the marginal vectors. For this, we de¯ne for any

order ¾ 2 ¦(N) the reverse order ¾¤ 2 ¦(N) by ¾¤(p) = ¾(n¡ p+1) for all p 2 f1; : : : ; ng.

Lemma 4.2 Let (N;E;C) be a multi-issue allocation situation with corresponding games

(N; vP ) and (N; vQ). Then ½P (¾) = m¾¤(vP ) and ½Q(¾) = m¾¤(vQ) for all ¾ 2 ¦(N).

Proof: We only prove the statement for the proportional game; the proof for the queue

game is similar. Let ¾ 2 ¦(N). Then for all p 2 f1; : : : ng we have

½P¾(p)(¾) = max
¿2¦(R)

2
4fP¾(p)(¿)¡

p¡1X

q=1

³
½P¾(q)(¾)¡ fP¾(q)(¿ )

´
3
5

= max
¿2¦(R)

fPf¾(1);:::;¾(p)g(¿)¡
p¡1X

q=1

½P¾(q)(¾)

= max
¿2¦(R)

fPf¾(1);:::;¾(p)g(¿)¡ max
¿2¦(R)

fPf¾(1);:::;¾(p¡1)g(¿ )

= E ¡ min
¿2¦(R)

fPf¾(p+1);:::;¾(n)g(¿ )¡ E + min
¿2¦(R)

fPf¾(p);:::;¾(n)g(¿ )

= ¡ min
¿2¦(R)

fPf¾¤(1);:::;¾¤(n¡p)g(¿) + min
¿2¦(R)

fPf¾¤(1);:::;¾¤(n¡p+1)g(¿)

= ¡vP (f¾¤(1); : : : ; ¾¤(n¡ p)g) + vP (f¾¤(1); : : : ; ¾¤(n¡ p+ 1)g)
= m¾¤

¾¤(n¡p+1)(v
P )

= m¾¤
¾(p)(v

P );

where the third equality follows from recursively substituting the formulas for ½P¾(q)(¾). ¤

Theorem 4.3 Let (N;E;C) be a multi-issue allocation situation with corresponding games

(N; vP ) and (N; vQ). Then ½P = ©(vP ) and ½Q = ©(vQ).
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Proof: This result follows immediately from Lemma 4.2 and from the observation that

f¾¤ j¾ 2 ¦(N)g = ¦(N). ¤

5 Consistency

In this section we characterise the run-to-the-bank rules by means of consistency. For this,

we broaden the domain of these rules to a larger class of situations, namely multi-issue

allocation situations with awards. We should stress, that although this new class has a nice

interpretation in itself, it is not directly intended as an extension of multi-issue allocation

situations, but as a (technical) framework in which consistency arises as a natural property.

A multi-issue allocation situation with awards is a 4-tuple (N;E;C; ¹), where ¹ 2 RF

represents some award vector to a coalition F ½ N , which has already been agreed upon. The

sum of these awards cannot exceed the estate, so
P
i2F ¹i 6 E. Furthermore,

P
i2F ¹i = E

if F = N . Note that a multi-issue allocation situation without awards is a special case with

F = ;.
A solution ª is a function assigning to every multi-issue allocation situation with

awards (N;E;C; ¹) a vector ª(N;E;C; ¹) 2 RN such that
P
i2N ªi(N;E;C; ¹) = E and

ªF (N;E;C; ¹) = ¹. That is, for a solution in this environment it should hold that every

player in F gets exactly his award. Note that contrary to the situation without awards,

we do not impose reasonability 2 on ª. On this new class of situations we also de¯ne two

run-to-the-bank rules. For this, we ¯rst ¯x an order on the players in F , so let ° 2 ¦(F ).
The proportional run-to-the-bank rule with awards is de¯ned as:

½P (¹) =
1

jNnF j!
X

¾2¦°(N)
½P (¾; ¹);

where

¦°(N) =
n
¾ 2 ¦(N) j 8q2f1;:::;jF jg : ¾(q) = °(q)

o

and for all ¾ 2 ¦°(N), ½P (¾; ¹) 2 RN is de¯ned recursively by

½P¾(p)(¾; ¹) = ¹¾(p)

for all p 2 f1; : : : ; ng such that ¾(p) 2 F and
2To guarantee reasonability of the run-to-the-bank rules with awards as de¯ned below, we would have

to make some unnecessary diverting assumptions. We just note that for the speci¯c multi-issue allocation
situations with awards that are derived from a standard multi-issue allocation situation using either run-to-
the-bank rule, reasonability is satis¯ed.
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½P¾(p)(¾; ¹) = max
¿2¦(R)

8
<
:f

P
¾(p)(¿)¡

p¡1X

q=1

h
½P¾(q)(¾; ¹)¡ fP¾(q)(¿)

i
9
=
;

for all p 2 f1; : : : ; ng such that ¾(p) =2 F .
Note that the run-to-the-bank rule does not depend on the actual choice of °. This

de¯nition di®ers from the run-to-the-bank rule without awards (4.1) in two respects: every

player i 2 F gets ¹i rather than the maximum expression in (4.1) and the players in F have
to be compensated (which is accomplished in an order ¾ 2 ¦°(N) by putting them at the

front). Note that for F = ;, the two de¯nitions coincide.
In a similar fashion, we de¯ne the queue run-to-the-bank rule with awards:

½Q(¹) =
1

jNnF j!
X

¾2¦°(N)
½Q(¾; ¹);

where for all ¾ 2 ¦°(N), ½Q(¾; ¹) 2 RN is de¯ned recursively by

½Q¾(p)(¾; ¹) = ¹¾(p)

for all p 2 f1; : : : ; ng such that ¾(p) 2 F and

½Q¾(p)(¾; ¹) = max
¿2¦(R)

8
<
:f

Q
¾(p)(¾; ¿)¡

p¡1X

q=1

h
½Q¾(q)(¾; ¹)¡ fQ¾(q)(¾; ¿ )

i
9
=
;

for all p 2 f1; : : : ; ng such that ¾(p) =2 F . Note that this de¯nition generalises (4.3) rather
than (4.2). Proposition 4.1 can easily be extended to the situation with awards, so letting

each player choose an order on the players would result in an equivalent de¯nition.

For all i 2 NnF and ¿ 2 ¦(R) we de¯ne the remainder functions

rPi (¿ ) = f
P
F[fig(¿ )¡

X

j2F
¹j (= fPi (¿ ) +

X

j2F
[fPj (¿)¡ ¹j])

and

rQi (¿ ) = f
Q
F[fig(¾; ¿ )¡

X

j2F
¹j;

where ¾ 2 ¦°(N) is such that ¾(jF j + 1) = i. These remainder functions represent the

amount of money player i gets according to order ¿ , when he has to ensure that every player

j 2 F gets ¹j. A rule ª is called P-consistent if for all multi-issue allocation situations with
awards (N;E;C; ¹) and all i 2 NnF we have

ªi(N;E;C; ¹) =
1

jNnF j

0
BBBB@
max
¿2¦(R)

rPi (¿ ) +
X

j 2 NnF
j 6= i

ªi(N;E;C; ¹
j)

1
CCCCA
; (5.1)
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where ¹j 2 RF[fjg is such that ¹jF = ¹ and ¹
j
j = max¿2¦(R) r

P
j (¿). ª is Q-consistent if for

all (N;E;C; ¹) and all i 2 NnF

ªi(N;E;C; ¹) =
1

jNnF j

0
BBBB@
max
¿2¦(R)

rQi (¿ ) +
X

j 2 NnF
j 6= i

ªi(N;E;C; ¹
j)

1
CCCCA

with ¹jj = max¿2¦(R) r
Q
j (¿ ). The idea behind consistency is as follows (cf. O'Neill (1982)).

Let i be a player in NnF . Then the ¯rst term between parentheses is the amount of money

player i gets when he maximises his own payo® by choosing an order on the issues, keeping in

mind the players in F have to receive their awards. Next, let j 2 NnF; j 6= i. Now suppose
that player j receives his maximal remainder. Then a new situation arises where player j

has been awarded some ¯xed amount. The amount of money player i receives in this new

situation is given by applying rule ª on the old ¹ extended with the ¯xed award to player j.

A rule is called consistent if applying it directly yields the same outcome as averaging over

all jNnF j situations where one of the non-¯xed player get their maximum.

Theorem 5.1 The proportional run-to-the-bank rule ½P is the unique P-consistent rule and

the queue run-to-the-bank rule ½Q is the unique Q-consistent rule.

Proof: We only give the proof for ½P . The proof for ½Q goes along similar lines. First, we
prove that ½P satis¯es P-consistency. Let i 2 NnF . Then

½P
i (¹) =

=
1

jNnF j!
X

¾2¦°(N)

½P
i (¾; ¹)

=
1

jNnF j!
X

j2NnF

X

¾ 2 ¦°(N)
¾(jF j+ 1) = j

½P
i (¾; ¹)

=
1

jNnF j!
X

¾ 2 ¦°(N)
¾(jF j+ 1) = i

max
¿2¦(R)

8
<
:fP

i (¿) ¡
¾¡1(i)¡1X

q=1

h
½P

¾(q)(¾; ¹) ¡ fP
¾(q)(¿)

i
9
=
; +

1

jNnF j!
X

j 2 NnF
j 6= i

X

¾ 2 ¦°(N)
¾(jF j+ 1) = j

max
¿2¦(R)

8
<
:fP

i (¿) ¡
¾¡1(i)¡1X

q=1

h
½P

¾(q)(¾; ¹) ¡ fP
¾(q)(¿)

i
9
=
;

=
1

jNnF j!
X

¾2¦°;i(N)

max
¿2¦(R)

8
<
:fP

F[fig(¿) ¡
X

j2F

¹j

9
=
; +
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1

jNnF j!
X

j 2 NnF
j 6= i

X

¾2¦°;j(N)

max
¿2¦(R)

8
<
:fP

i (¿) ¡
¾¡1(i)¡1X

q=1

h
½P

¾(q)(¾; ¹) ¡ fP
¾(q)(¿)

i
9
=
;

=
1

jNnF j! (jNnF j ¡ 1)! max
¿2¦(R)

rP
i (¿) +

1

jNnF j
X

j 2 NnF
j 6= i

1

(jNnF j ¡ 1)!

X

¾2¦°;j(N)

max
¿2¦(R)

8
<
:fP

i (¿) ¡
¾¡1(i)¡1X

q=1

h
½P

¾(q)(¾; ¹j) ¡ fP
¾(q)(¿)

i
9
=
;

=
1

jNnF j max
¿2¦(R)

rP
i (¿) +

1

jNnF j
X

j 2 NnF
j 6= i

½P
i (¹j)

=
1

jNnF j

0
BBBB@

max
¿2¦(R)

rP
i (¿) +

X

j 2 NnF
j 6= i

½P
i (¹j)

1
CCCCA

;

where ¦°;i(N) = f¾ 2 ¦°(N) j¾(jF j+ 1) = ig.
Uniqueness of the P-consistent rule is proved by induction on the size of F . Assume that

rule ª is P-consistent. For F = N , ª(N;E;C; ¹) = ¹ by de¯nition. Next, let F ½ N;F 6= ;
and assume that ª(N;E;C; ¹) is uniquely determined. Let i 2 F . Then P-consistency (5.1)
implies that ª(N;E;C; ¹¡i) must be uniquely determined as well, where ¹¡i 2 RFnfig is

such that ¹¡ij = ¹j for all j 2 Fnfig. Repeating this procedure until F = ;, we conclude
that there is a unique P-consistent rule, which is the proportional run-to-the-bank rule. ¤
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A Algorithms

In this appendix we present two algorithms to compute the proportional game vP and queue

game vQ that correspond to any multi-issue allocation situation (N;E;C).

A.1 Proportional Game

Let (N;E;C) be a multi-issue allocation situation and let S ½ N be a coalition of players.

The value of S, vP (S), is computed in a number of steps:

1. Compute for every issue k 2 R the proportion of the total of claims corresponding to
issue k that is claimed by coalition S:

pk =
ckS
ck
.

2. Take ¿ 2 ¦(R) such that ¿¡1(k) 6 ¿¡1(`) whenever pk 6 p`.

3. vP (S) = fPS (¿), where f
P
S (¿) is de¯ned in (2.1).

A.2 Queue Game

Let (N;E;C) be a multi-issue allocation situation and let S ½ N be a coalition of players.

The value of S, vQ(S), is computed in a number of steps:

1. For all I ½ R calculate

xI =
X

k2I
ckS;

yI =
X

k2I
ck;NnS + max

k2RnI
ck;NnS:

2. If y; > E then vQ(S) = 0, otherwise proceed.

3. Find I ½ R such that

(a) xI + yI > E,

(b) xI > xI for all I ½ R such that xI + yI > E.

Next, ¯nd I ½ R such that

(a) xI + yI 6 E,
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(b) yI > yI for all I ½ R such that xI + yI 6 E.

4. Compute

vQ(S) = minfxI ; E ¡ yIg:

Proof: First of all, note that it follows from the de¯nition of fQ that vQ(S) depends only

on the aggregate claim of coalition S within each issue and not on the distribution of claims

between the members of S.

The idea behind the proof is to represent all possible payo® pro¯les (x; y) for all possible

estates by paths in the payo® space (R2
+), where x (on the horizontal axis) is the payo® to

S and y (on the vertical axis) the payo® to NnS. The aim is to ¯nd the minimum possible

payo® to S given the fact that the estate equals E. The estate E is represented by the line

x+ y = E.

Coalition NnS has the freedom to choose an order on the issues. Now, forget the actual

amount of the estate for a moment and suppose that NnS choose to address issues I ½ R

fully and one other issue in R ½ I that gives NnS their maximal payo® (without paying
the claim of S according to that last issue). This action leads to a payo® pro¯le of (xI ; yI).

If the estate were to equal xI + yI , the point (xI ; yI) would represent a payo® pro¯le that

according to Assumption 2.2 would be feasible for NnS to reach.
With each order on I we associate a path connecting (xI; yI) to the origin. Starting with an

estate of 0 (and hence, a (0; 0) payo®), we are going to increase the estate to xI+yI , plotting

the payo® pro¯les associated with all intermediate estates (determined by the order on I)

in the picture. From the origin, we start paying out money to NnS according to the ¯rst
issue in I, represented by a vertical line segment. When the estate reaches the total claim

of NnS corresponding to the ¯rst issue, we start paying out to coalition S, represented by a
horizontal line segment. After the total claim associated with the ¯rst issue has been paid

out, we continue with the second issue in the order, and so on. When all issues I have been

addressed, we end with a vertical line segment representing the claim of NnS according the
last issue. Typically, such a path looks as depicted in Figure 1. Note that some horizontal

or vertical line segments may be absent because of zero claims. We draw such a path for

every order on I. These paths represent all possible payo® pro¯les that coalition NnS can
reach for estates smaller than xI + yI if they choose to address the issues in I ¯rst and put

themselves in front within each issue.

Doing this for all I ½ R yields all feasible payo® pro¯les (provided NnS acts optimally within
each issue) for any order on the issues for all estates smaller than the total of all claims.
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Note that every path associated with some set I $ R of issues is part of a path connecting

(xR; yR) to the origin.

The value of coalition S is the x-coordinate of the leftmost intersection between some path

and the line x+ y = E. It is immediately clear that vQ(S) = 0 if y; > E. Otherwise, take I

and I as stated (which is always possible because of R and ;, resp.).
Typically, I and I are situated as depicted in Figure 2. By construction, there is no I ½ R

giving rise to a payo® pro¯le (xI ; yI) in either shaded are. Note also that whereas I and I

need not be uniquely determined, xI and yI are.
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Figure 3 Figure 4

Now consider the paths associated with I. We claim that there can be no path with a kink

in the shaded area. Suppose that such a path exists, as indicated in Figure 3, with a kink at

A. Consider all issues I¤ that are fully dealt with up to point B. 3 Then by construction,

3In fact, we need the last point below A where all issues up to that point have been fully addressed. If
A is preceded by an issue in which S has a zero claim, this point may be between A and B.
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(xI¤; yI¤) lies at or above point A. This contradicts the fact that there is no I ½ R giving

rise to a payo® pro¯le in the shaded area.

As a consequence, every path connecting (xI ; yI) to the origin must cross the line x+ y = E

to the right of (E ¡ yI ; yI) if xI + yI > E (the case depicted in Figure 3). The same

holds for every path connecting any point above the line x + y = E to the origin. Hence,

vQ(S) > E ¡ yI . Furthermore, there is a path going through (E ¡ yI ; yI), because NnS
can guarantee themselves yI by addressing issues I ¯rst. Therefore, v

Q(S) = E ¡ yI if

xI + yI > E.

Similarly, if xI + yI < E, as depicted in Figure 4, every path intersecting the line x+ y = E

must do so to the right of (xI ; E ¡ xI) and there is a path going through this point. Hence,
in this case vQ(S) = xI .

If xI + yI = E, both sets of arguments can be used. One should also note that all these

arguments still hold in case (xI ; yI) or (xI ; yI) lie on the line x + y = E rather than below

or above.

Summarising these cases, we obtain

vQ(S) = minfxI ; E ¡ yIg;

as stated in the algorithm. ¤
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