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based on individual actions only. Our approach is grounded in three simple and real-
istic principles: (1) Link formation should be a binary process of consent. (2) Link
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general as possible.
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1 Modeling consent in link formation

Networks impact the way we behave, the information we receive, the communities we are

part of, and the opportunities that we pursue. They affect the machinations of corporations,

the benevolence of non-profit organizations, and the workings of the state. Two recent

overviews of the literature on statistical properties of large scale networks, Watts (2003)

and Newman (2003), discuss the relevance of networks for fields as diverse as physics,

social psychology, sociology, and biology. There has been a similar resurgence of interest

in economics to understand the phenomenon of network formation. A number of recent

contributions to the literature have recognized that networks play an important role in the

generation of economic gains for groups of decision makers. Different network structures

usually lead to different levels of generated gains, and network relationships between indi-

viduals have been interpreted in different ways. Among others, for example, such relation-

ships could represent communication possibilities (Bala and Goyal 2000), trade relations

(Kranton and Minehart 2001), or authority relationships between superiors and subordi-

nates (van den Brink and Gilles 2003, Slikker, Gilles, Norde, and Tijs 2004).

In this paper we study two game-theoretic models of social network formation based

on individual actions only. Players in our framework are represented by nodes and their

social ties with others by links between these nodes. Nodes and links form together a

representation of a social network. Our theory of social network formation is based onthree

simple and realistic principlesthat govern most real-world networks: (1) Link formation

should be based on a binary process of consent. (2) Link formation should in principle be

costly. (3) The payoff structure of network formation should be as general as possible.

We develop our approach from the hypothesis that creation of social ties requires some

prior interaction and, therefore, the process of link formation under mutual consent prin-

cipally occurs between social acquaintances. In the sociology literature it has been es-

tablished that social networks are indeed primarily formed between acquaintances. This

literature is founded on Granovetter (1973) and confirmed empirically by Friedkin (1980),

Wellman, Carrington, and Hall (1988), and Tyler, Wilkinson, and Huberman (2003).1

Here we follow this line of reasoning and differentiate between familiarity among in-

dividuals, who can at best only be acquaintances, and the possibility of explicitly creating

a mutually beneficial but costly relationship between the same individuals. This is in line

with Brueckner (2003), who categorically distinguishes the set of acquaintances a player

has, from the friendship links she establishes between them. This also places our approach

1More recently new methodologies have been developed to detect community structures in social net-
works for testing such hypotheses. We refer to Newman and Girvan (2004) and Newman (2004) for the
details of this methodology.
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within the context of Granovetter’s notion of strong social ties.

In our theory, the creation of a social tie or “link” requires the consent of both players

involved; the link between playersi and j is only established when playerj is willing to

accept the link initiated by playeri or vice versa. As suggested by our second principle, we

emphasize that link formation is costly. Costs depend on the strategies chosen by the player

in the link formation process and are incurred independent of the outcome, i.e, even if a link

is not established the initiating player still has to pay for the act of trying to form that link.

We consider both two-sided and one-sided costs of link formation. In the first model both

players bear an individually determined cost of link formation, while in the latter model we

distinguish between an “initiator” and a “respondent” in the link formation process with

only the initiator incurring the link formation cost. To meet our third requirement, we

consider a very general payoff structure that has two components — an arbitrary benefit

function corrected for additive link formation costs.2 We emphasize that benefits depend

on the resulting network, and the costs on the link formation strategies chosen by the actors.

The process of network formation studied here is a generalization of the simple network

formation model developed by Myerson (1991, page 448). Following Myerson, we model

the link formation process as a normal form non-cooperative game. This model incorpo-

rates the fundamental idea that networks are the result of costly, consensual link formation

between pairs of players. We enhance this model by taking into account the three require-

ments discussed above. Since this model is rather well known in the literature, we call this

generalization of Myerson’s model thestandard model of network formation.3

In the literature, the standard model often features in discussions on social network

formation but has been portrayed as being problematic since it is believed to have “too

many” Nash equilibria. (Jackson 2003, for example) However, until now there has been

made no attempt to provide a complete characterization of the set of these Nash equilibria

and our paper aims to fill this void in the literature. Our characterization reveals that the

resulting networks have some appealing properties. Also, to abandon a realistic and elegant

model because it is not discerning enough in terms of its permissible equilibria seems

hardly justifiable.

In order to understand the importance of the ability to break (or deny) links in the process

of network formation we introduce a stability concept calledlink deletion proofness: a

2An arbitrary cost structure would require costs to be dependent on the outcome. The payoff specification
then would become game dependent forcing us to give up generality in the results. We believe that the
chosen payoff structure based on arbitrary benefits andadditivelink formation costs has the added advantage
of capturing what genuinely occurs in a realistic process of link formation.

3For other sources on the standard model we refer to Belleflamme and Bloch (2004), Bloch and Jackson
(2004), Calv́o-Armengol and Ilkiliç (2004), and Gilles, Chakrabarti, Sarangi, and Badasyan (2004).
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network is link deletion proof when players get a lower payoff by deletingexactly oneof

their established links. A variation calledstrong link deletion proofnessallows players to

consider the simultaneous deletion ofmultiple links.

Subsequently we examine the relationship between the classes of networks satisfying

these stability concepts, and the set of networks resulting from the Nash equilibria of the

network formation game. The latter class is denoted as the set ofindividually stable net-

works. In general we find that link deletion proofness and strong link deletion proofness are

equivalent if and only if network payoffs satisfy a convexity property. Thisnetwork con-

vexitycondition is weaker than theα-convexity condition introduced by Calvó-Armengol

and Ilkiliç (2004).

Next we turn to the characterization of individually stable networks. For the case with

two-sided link formation costs we find that a network is individually stable if and only if

it is strong link deletion proof. This result confirms the well-accepted conjecture that there

are a multitude of Nash equilibria in network formation models under consent.

Finally, we study the one-sided cost model where only the link initiating player incurs a

cost. We find that if a network is individually stable under two-sided link formation costs,

then it is also individually stable under one-sided link formation costs. The reverse does not

hold. Moreover, we find that all strong link deletion proof networks are individually stable

while the converse does not hold. On the other hand, we provide a (partial) characterization

that shows that individually stable networks can be captured in a very large class of partially

stable networks. Again these insights confirm the well-accepted conjecture that the class

of individually stable networks is extremely large and non-discerning.

We conclude our investigations with the analysis of a simple payoff specification based

on link-based network benefits. This setting is used to investigate the relationship between

potential maximizers and Nash equilibria. We find that the potential maximizer concept

is an useful refinement of Nash equilibrium for the model with one-sided link formation

costs, contrary to the case of two-sided link formation costs.

Since the standard model of network formation is sufficiently general it can incorporate

a number of existing network models. We first point to the existence of individually stable

networks. Under two-sided link formation costs, it is possible to find parallels in the liter-

ature on pairwise stability. This implies that the existence of individually stable networks

for the two-sided cost model is guaranteed for a large class of specifications. (Jackson and

Watts 2002) For the case of one-sided link formation costs, similar parallels can be drawn

with the Nash network formulation developed by Bala and Goyal (2000). In our frame-

work the flow of benefits is two-way, while only the initiating player incurs the cost of the

link in the one-sided case. Since giving consent to link formation under one-sided costs
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is costless, and under the Bala-Goyal type of specification always yields positive benefits,

the responding player would immediately consent to the link. Hence, existence of individ-

ually stable networks under one-sided link formation costs is guaranteed for a large class

of specifications.

The remainder of this paper is organized as follows. Section 2 of the paper provides nota-

tion and the model setup. Section 3 introduces the standard model of link formation under

consent and two-sided link formation costs. Section 4 discusses the case of one-sided link

formation costs. Section 5 elaborates on the interesting case of link-based network payoffs.

The proofs of the main results are relegated to Section 6.

2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-cooperative

games and networks.

2.1 Non-cooperative games

A non-cooperative gameon the fixed, finite player setN = {1, . . . ,n} is given by a list

(Ai , πi)i∈N where for every playeri ∈ N, Ai denotes an action set andπi : A → R denotes

player i’s payoff function, whereA = A1 × · · · × An is the set ofaction tuples. An in-

dividual action of playeri ∈ N is denoted byai ∈ Ai and an action tuple is written as

a = (a1, . . . ,an) ∈ A. For every action tuplea ∈ A and playeri ∈ N, we denote by

a−i = (a1, . . . ,ai−1,ai+1, . . . ,an) ∈ A−i =
∏

j,i Aj the actions selected by the players other

thani. In the rest of the paper we also denote a non-cooperative game onN for short by the

pair (A, π), whereπ = (π1, . . . , πn) : A→ RN is the composite payoff function. In this paper

we only discussfinite non-cooperative games in the sense that for everyi ∈ N the action

setAi is finite.

An actionai ∈ Ai for player i ∈ N is called abest responseto a−i ∈ A−i if for every

actionbi ∈ Ai we have thatπi(ai ,a−i) > πi(bi ,a−i). A best responseai to a−i is strict if

for everybi , ai we have thatπi(ai ,a−i) > πi(bi ,a−i). An action tuple ˆa ∈ A is a Nash

equilibriumof the game (A, π) if for every playeri ∈ N

πi(â) > πi(bi , â−i) for every actionbi ∈ Ai .

Hence, a Nash equilibrium ˆa ∈ A satisfies the property that for every playeri ∈ N the action

âi is a best response to ˆa−i. A Nash equilibrium ˆa ∈ A is calledstrict if for every player

i ∈ N the action ˆai is a strict best response to ˆa−i.
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A function Q: A→ R is apotentialof the non-cooperative game (A, π) on the player setN

if for every playeri ∈ N, action tuplea ∈ A and actionbi ∈ Ai:

πi(a) − πi(bi ,a−i) = Q(a) − Q(bi ,a−i).

The notion of a potential game was introduced by Monderer and Shapley (1996) based on

the seminal work of Hart and Mas-Colell (1989). Monderer and Shapley (1996) proposed

the notion of apotential maximizerbeing an action tuplea ∈ A such thatQ(a) > Q(b) for

everyb ∈ A. The set of potential maximizers is denoted by PM(A, π) ⊂ A. It is obvious

that each potential maximizer is a Nash equilibrium and, hence, this notion is a refinement

of the Nash equilibrium concept. Monderer and Shapley (1996) show thatPM(A, π) , ∅

for every finite potential game (A, π) on N.

An alternative description of a potential game has been introduced by Ui (2000) as

follows. A coalition is any subset of playersS ⊂ N and for a coalitionS we denote by

AS =
∏

i∈S Ai its restricted action tuple set. A set of functions{ΦS : AS → R | S ⊂ N} is an

interaction potentialof the game (A, π) if for every i ∈ N and everya ∈ A it holds that

πi(a) =
∑

S⊂N : i∈S

ΦS(aS).

Ui showed that potentials and interaction potentials are essentially the same:

Lemma 2.1 (Ui 2000, Theorem 3)The game(A, π) has a potential Q: A→ R if and only

if (A, π) possesses an interaction potential{ΦS | S ⊂ N}. Furthermore, for the latter case

a potential Q of the game(A, π) is given by Q(a) =
∑

S⊂NΦS(aS).

We will use these insights to analyze properties of certain specifications of network payoffs

in Section 5.

2.2 Networks

In our discussion of the foundations of the theory of networks we use established notation

from Jackson and Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2003). The

reader may refer to these sources for a more elaborated discussion.

We limit our discussion tonon-directed networkson the player setN. In these networks

the two players making up a single link are essentially equal. Formally, if two players

i, j ∈ N with i , j are related we say that there exists alink between playersi and j. We

use the notationij to describe the binary link{i, j}.4 We definegN = {ij | i, j ∈ N, i , j} as

the set of all potential links.

4We reiterate that network relationships are non-directed, i.e., in this contextij = ji . However, for the
costs of establishing a link one may distinguish between the costs related toij and the costs related toji , i.e.,
possibly it holds thatcij , c ji .
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Any set of linksg ⊂ gN now defines anetworkon N. We apply the convention that

g = gN is called thecomplete networkand thatg = g0 = ∅ is indicated as theempty

network. We denote byGN = {g | g ⊂ gN} the class of all networks onN.

The set of (direct)neighborsof a playeri ∈ N in the networkg is given by

Ni(g) = { j ∈ N | ij ∈ g}.

Similarly we introduce

Li(g) = {ij ∈ gN | j ∈ Ni(g)}

as thelink set of player i in the networkg. These are exactly the links withi’s direct

neighbors ing. We apply the convention that for every playeri ∈ N we denote byLi =

Li(gN) = {ij | i , j} the set of all potential links involving playeri.

For every pair of playersi, j ∈ N with i , j we denote byg+ ij = g∪ {ij } the network

that results from adding the linkij to the networkg. Similarly, g− ij = g \ {ij } denotes the

network resulting from removing the linkij from networkg. More generally for anyh ⊂ g

we letg− h = g \ h and for anyh ⊂ gN with h∩ g = ∅ we letg+ h = g∪ h.

Within a network, payoffs for the players are generated depending on how they are con-

nected to each other. This is represented by a “network payoff function” for every player.

For playeri ∈ N the functionϕi : GN → R denotes hernetwork payoff functionwhich

assigns to every networkg ⊂ gN a valueϕi(g) that is obtained by playeri when she

participates in networkg. The composite network payoff function is now given byϕ =

(ϕ1, . . . , ϕn) : GN → RN. We emphasize that these payoffs can be zero, positive, or negative

and that the empty networkg0 = ∅ generates (reservation) valuesϕ(g0) ∈ RN that might be

non-zero as well.

Several examples of standard network payoff functions for both noncooperative and

cooperative games are reviewed in Jackson (2003).5

2.3 Link-based stability concepts

We conclude the preliminaries on network theory with the definition and discussion of

several stability conditions. Note that the stability notions introduced below are based on

the properties of the network itself rather than strategic considerations of the players. This

latter viewpoint originates from Jackson and Wolinsky (1996).

5 We mention a specific class of network payoff functions, which is investigated in van den Nouweland
(1993), Dutta, van den Nouweland, and Tijs (1998), Slikker (2000), Slikker and van den Nouweland (2000),
and Garratt and Qin (2003). There these network payoff functions are defined as allocation rules based on
underlying cooperative games. These papers extend the seminal contribution Myerson (1977) that set this
game-theoretic literature on network formation into motion.
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First we consider some auxiliary notation: Letϕ : GN → RN be some network payoff

function. For a given networkg ∈ GN we now define the following concepts:

(a) For everyij ∈ G themarginal benefit ofthe link ij in g is given by

D(g, ij ) = ϕ(g) − ϕ(g− ij ) ∈ RN (1)

and for every playeri ∈ N the marginal benefit ofij ∈ Li(g) is thus given by

Di(g, ij ) = ϕi(g) − ϕi(g− ij ) ∈ R.

(b) For every playeri ∈ N and link seth ⊂ Li(g) themarginal benefitto playeri of link

seth in g is given by

Di(g,h) = ϕi(g) − ϕi(g− h) ∈ R (2)

Using these additional tools we can give a precise description of the various link-based

stability concepts.

Definition 2.2 Letϕ be a network payoff function on the player set N.

(a) A network g⊂ gN is link deletion proofif for every player i∈ N and every j∈ Ni(g)

it holds that Di(g, ij ) > 0.

(b) A network g⊂ gN is strong link deletion proofif for every player i∈ N and every

h ⊂ Li(g) it holds that Di(g,h) > 0.

(c) A network g⊂ gN is link addition proof if for all players i, j ∈ N: ϕi(g+ ij ) > ϕi(g)

impliesϕ j(g+ ij ) < ϕ j(g).

The two link deletion proofness notions are based on the severance of links in a network

by individual players. In particular, the notion of link deletion proofness considers the

stability of a network with regard to the deletion of asinglelink. Strong deletion proofness

considers the possibility that a player deletes any subset of her existing links. Clearly,

strong link deletion proofness implies link deletion proofness.

Similarly, link addition proofness considers the addition of a single link by two con-

senting players to an existing network. A network is link addition proof if for every pair of

non-linked players at least one of these two players has negative benefits from the addition

of a link between them. Hence, there are no incentives to add any additional links to the

existing network.6

6Closely related to these basic stability concepts is the notion ofpairwise stabilityseminally introduced
by Jackson and Wolinsky (1996). Formally, a network is pairwise stable if it is link deletion proof as well as
link addition proof.
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We denote byL(ϕ) ⊂ GN the family of link deletion proof networks forϕ. Similarly,

we letLs(ϕ) ⊂ GN be the family of strong link deletion proof networks forϕ.

Next we state the precise conditions under which link deletion proofness and strong

link deletion proofness are equivalent.

Definition 2.3 For a player i ∈ N the network payoff functionϕi : GN → R is network

convexon the network g∈ GN if for every link set h⊂ Li(g) we have that∑
ij∈h

Di(g, ij ) > 0 implies Di(g,h) > 0.

The following result justifies the introduction of this network convexity property. It corrects

the assertion that the equivalence of strong pairwise stability and pairwise stability holds if

and only ifπ satisfiesα-convexity. (Calv́o-Armengol and Ilkiliç 2004, Theorem 1)

Proposition 2.4 Letϕ be some network payoff structure onGN. ThenLs(ϕ) = L(ϕ) if and

only if for every player i∈ N the network payoff functionϕi is network convex on every link

deletion proof network g∈ L(ϕ).

For a proof of this assertion we refer to Section 6.

Example 2.5 We conclude our discussion with an example which delineates the different

link-wise stability concepts and shows a situation in which link deletion proofness and

strong link deletion proofness lead to different results.

Consider the network payoffs given in the following table:

Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 0 0 0 Ls

g1 = {12} −1 −1 −1
g2 = {13} −1 −1 −1
g3 = {23} 5 3 3 Ls

g4 = {12,13} 1 1 1 Ls

g5 = {12,23} 0 4 0
g6 = {13,23} 0 0 4
g7 = gN 1 5 5 L

In the tableL stands for link deletion proofness andLs for strong link deletion proofness.

The main feature here is that networkg7 is link deletion proof, but not strong link deletion

proof. To make the differences between the various possibilities more clear we provide an

overview of the marginal benefits:

8



Network D(g,12) D(g,13) D(g,23)
g0 = ∅ — — —
g1 = {12} −1,−1,−1 — —
g2 = {13} — −1,−1,−1 —
g3 = {23} — — 5,3,3
g4 = {12,13} 2,2,2 2,2,2 —
g5 = {12,23} −5,1,−3 — 0,4,0
g6 = {13,23} — −5,−3,1 0,0,4
g7 = gN 1,5,1 1,1,5 0,3,3

Note thatD(g7,12)+ D(g7,13) = (2,6,6) and thatD(g7, {12,13}) = (−4,2,2). Hence, the

case of the removal of the links 12 and 13 from networkg7 shows thatϕ is not network

convex.

In g7 player 1 is stuck with bad company if she could delete only a single link at the time;

she would like to break links withboth players 2 and 3 and improve her payoff from 1

unit to 5 units. However, deleting either of these two links separately would make her only

worse off. In this regard network convexity requires that no player is in such a bad company

situation. �

3 Two-sided link formation costs

In this section we present the first of two game-theoretic models of costly network forma-

tion. LetN = {1, . . . ,n} be a given set of players andϕ : GN → RN be a fixed, but arbitrary

network payoff function representing the gross benefits that accrue to the players in a net-

work. For every playeri ∈ N we introduce individualized link formation costs represented

by ci = (cij ) j,i ∈ R
N\{i}
+ . (Recall that for some linksij ∈ gN it might hold thatcij , cji .) Thus,

the pair〈ϕ, c〉 represents the basic payoffs and costs of network formation to the individuals

in N.

A simple, fundamental model of network formation has been introduced by Myerson

(1991, page 448) and is based on the idea that pairs of players approach each other on equal

footing and both have to consent to form a link. Myerson (1991) based the benefits from

network formation on an underlying cooperative game.7 Here we extend this framework

further to incorporate costs of link formation for arbitrary network payoff functions. We

model link formation costs in two ways: Costs can betwo-sided, i.e., both players incur

costs while approaching each other to form a link, or costs can beone-sided. In the latter

case costs are only incurred by the initiating player, not the responding player.

7This cooperative benefits model has been extended by Slikker and van den Nouweland (2000) and Gar-
ratt and Qin (2003) to incorporate link formation costs. Their formulation only allowed them to develop a
complete and exhaustive description of the resulting networks for situations with up to four individuals.
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We first address the formalization of the standard model with two-sided link formation

costs. For every playeri ∈ N we introduce an action set

Aa
i = {(`ij ) j,i | `ij ∈ {0,1} } (3)

Playeri seeks contact with playerj if `ij = 1. A link is formed if both players seek contact,

i.e.,`ij = ` ji = 1.

Let Aa =
∏

i∈N Aa
i where` ∈ Aa. Then the resulting network is given by

ga(`) = {ij ∈ gN | `ij = ` ji = 1}. (4)

Link formation is costly. Approaching playerj to form a link costs playeri an amount

cij > 0. This results in the following net payoff function for playeri:

πa
i (`) = ϕi(g

a(`)) −
∑
j,i

`ij · cij (5)

wherec is the link formation cost introduced at the beginning of this section.

The pair〈ϕ, c〉 thus generates the non-cooperative game (Aa, πa) as described above. We

call this non-cooperative game thestandard model of network formation with two-sided link

formation costs.

Now a networkg ∈ GN is called individually stable under two-sided link formation

costsif there exists a Nash equilibrium action tupleˆ̀ ∈ Aa in the standard model with two-

sided link formation costs (Aa, πa) such thatga
(
ˆ̀
)
= g. Hence, individually stable networks

are those networks supported through Nash equilibrium strategies.

We are able to provide a complete characterization of individual stability under two-

sided link formation costs.

Proposition 3.1 Let ϕ and c > 0 be given as above. A network g⊂ gN is individually

stable under two-sided link formation costs if and only if g is strong link deletion proof for

the net payoff functionϕa given by

ϕa
i (g) = ϕi(g) −

∑
j∈Ni (g)

cij .

For a proof of this result we refer to Section 6.

Proposition 3.1 gives a complete characterization of the individually stable networks in

the standard model with two-sided costs of link formation. Note that regardless of the cost

structure, the empty network is always individually stable. The next corollary strengthens

this insight by showing that the empty network is actually “strictly” individually stable for

positive costs.
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Corollary 3.2 If c � 0, then the empty network is supported by a strict Nash equilibrium

of the standard model with two-sided link formation costs.

Proof. First, for everyi ∈ N and` ∈ Aa we definehi(`) = {ij ∈ gN | `ij = 1 and` ji = 0}.

We now show that̀∅ is a strict Nash equilibrium in the game (Aa, πa), where`∅ij = 0 for all

playersi, j ∈ N with i , j. Now, for every playeri ∈ N andl i , `∅i :

πa
i

(
l i , `

∅
−i

)
= ϕi(∅) −

∑
ij∈hi(l i ,`∅−i)

cij < ϕi(∅) = πa
i

(
`∅
)

sincehi

(
l i , `∅−i

)
, ∅. Hence, we may conclude that indeed`∅ is a strict Nash equilibrium

in the link formation game (Aa, πa).

From Corollary 3.2 it should be clear that if players start from the empty network and link

formation costs are positive, then there is no reason to form any links.

Dutta, van den Nouweland, and Tijs (1998) showed that in the cooperative benefits

model under costless link formation, every network is individually stable if the network

payoff function is “link monotonic”. Proposition 3.1 generalizes this insight for situations

with arbitrary network payoff functions. This is stated in the next corollary which proof is

immediate from Proposition 3.1.

Corollary 3.3 Assume thatϕ is link monotonic in the sense thatϕi(g) < ϕi(g + ij ) for all

networks g and players i∈ N with ij < g where j, i. If c = 0, then every network is

individually stable.

4 One-sided link formation costs

Next we address the formalization of the standard model with one-sided link formation

costs. Here links are formed by mutual agreement, but one player initiates the formation

process and the other player responds to it. The initiator incurs the formation costs of the

link, while the respondent incurs no costs.8 Hence, a different strategy space is called for.

Formally, for every playeri ∈ N we introduce an action set

Ab
i = {(`ij , r ij ) j,i | `ij , r ij ∈ {0,1} }. (6)

Playeri acts as the initiator in forming a link with playerj if `ij = 1. Player j responds

positively to this initiative ifr ji = 1. A link is established if formation is initiated and

accepted, i.e., if̀ ij = r ji = 1. This is formalized as follows.

8We remark that a similar link formation structure has been already discussed by Slikker (2000) and
Slikker, Gilles, Norde, and Tijs (2004) in the context of the formation ofdirectednetworks. See also Dutta
and Jackson (2000).
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Let Ab =
∏

i∈N Ab
i . Given the link formation procedure described, for any (`, r) ∈ Ab,

the resulting network is now given by

gb(`, r) = {ij ∈ gN | `ij = r ji = 1}. (7)

When playeri initiates the formation of a link with playerj she incurs a cost ofcij > 0.

Responding to the initiative by another player however, is costless. This results in the

following net payoff function for playeri:

πb
i (`, r) = ϕi(g

b(`, r)) −
∑
j,i

`ij · cij (8)

wherec denotes the link formation costs.

Analogous to the previous model with two-sided link formation costs, the pair〈ϕ, c〉

generates the non-cooperative game (Ab, πb) introduced above. This game represents the

standard model with one-sided link formation costs.

Like before, a networkg ∈ GN is calledindividually stable under one-sided link forma-

tion costsif there exists a Nash equilibrium action tuple
(
ˆ̀, r̂
)
∈ Ab in the standard model

with one-sided link formation costs (Ab, πb) such thatgb
(
ˆ̀, r̂
)
= g.

The next example discusses the simplest possible case of a single link between two

players that illustrates the multitude of individually stable networks under one-sided link

formation costs.

Example 4.1 Let N = {1,2}. Hence, we have two possible networks,g0 = ∅ andgN =

{12}. Consider the network payoff functionϕ given byϕ1(g0) = ϕ2(g0) = 0, ϕ1(gN) = 10,

andϕ2(gN) = 5. We now consider the following (equal) cost structures:

(a) c12 = c21 ∈ [0,5]

In these cases the class of individually stable networks is the same for one-sided

and two-sided link formation costs, namely both feasible networksg0 andgN.

(b) c12 = c21 ∈ (5,10]

In these cases, under two-sided link formation costs, only the empty networkg0 is

individually stable. However, under one-sided link formation costs, again bothg0

andgN are individually stable. Indeed, the complete networkgN is supported by

strategy profiles with̀12 = 1, r21 = 1, and`21 = 0.

These two cases illustrate the main differences between two-sided and one-sided link for-

mation costs. In particular it shows that under one-sided costs there are more individually

stable networks. �
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The next result generalizes the insight of Example 4.1. For a proof of this proposition we

refer to Section 6 of the paper.

Proposition 4.2 Let ϕ and c > 0 be given. Any individually stable network under two-

sided link formation costs is individually stable under one-sided link formation costs.

Example 4.1 for link formation costs in the range (5,10] shows that the assertion stated in

Proposition 4.2 cannot be reversed.

In Proposition 3.1 we characterized the class of individually stable networks under two-

sided link formation costs. However, such a complete characterization is not possible with

one-sided link formation costs. Instead we provide two inclusions that show the largeness

of the set of individually stable networks under one-sided link formation costs.

Proposition 4.3 Letϕ be arbitrary and let c> 0 be such that cij , cji for all potential links

ij ∈ gN.

(a) If a network g⊂ gN is strong link deletion proof for the net payoff functionϕb given

by

ϕb
i (g) = ϕi(g) −

∑
j∈Ni (g): cij<c ji

cij ,

then g is individually stable under one-sided link formation costs.

(b) If g ⊂ gN is individually stable under one-sided link formation costs, then for all

links ij ∈ g it holds that

Di(g, ij ) > cij or D j(g, ij ) > cji .

The assertion of Proposition 4.3(a) is proved in Section 6. Proposition 4.3(b) is a rather

straightforward application of the definition of the marginal payoffs and individual stability

under one-sided link formation costs. A formal proof of this assertion is therefore omitted

and left to the reader.

The next example demonstrates that Proposition 4.3(a) cannot be reversed.

Example 4.4 Again considerN = {1,2}. As before we letg0 = ∅ andgN = {12} with

ϕ1(g0) = ϕ2(g0) = 0, ϕ1(gN) = 1, andϕ2(gN) = 10. We consider two different cost

structures:

(a) Considerc12 = 2 < c21 = 5.

Now bothg0 andgN are individually stable under one-sided link formation costs,
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butgN is not link deletion proof forϕb.

Indeed a Nash equilibrium for the standard model with one-sided link formation

costs supportinggN is given by`12 = 0, r12 = 1, `21 = 1, andr21 = 0. Now,

gb(`, r) = gN, πb
1(`, r) = 1 > 0 = ϕ1(g0), andπb

2(`, r) = 5 > 0 = ϕ2(g0). However,

ϕb
1(gN) = −1 < ϕb

1(g0) = 0, which implies thatgN is not link deletion proof with

respect toϕb for player 1.

(b) Considerc12 = 11> c21 = 5.

In this case again bothg0 andgN are individually stable under one-sided link forma-

tion costs. However, in this case the inclusion stated in Proposition 4.3(a) is tight.

Indeed, it can be checked that

ϕb
1(g0) = ϕ

b
2(g0) = 0

ϕb
1(gN) = 1− 0 = 1

ϕb
2(gN) = 10− 5 = 5

Hence, bothg0 andgN are strong link deletion proof with respect toϕb. This con-

firms that in this case the inclusion stated in Proposition 4.3(a) is indeed tight.

Case (a) demonstrates a form of inefficiency in link formation, since in equilibrium higher

than necessary costs are incurred. This implies that outside regulation of link formation

processes — in the sense that an outside regulator determines who initiates which link —

will restore efficiency. In this example, player 1 should be forced to initiate the link with

player 2. �

With regard to the possibility of the tightness of the inclusion stated in Proposition 4.3(b)

we refer to Example 4.1. There it has been shown that the collection of individually stable

networks under one-sided link formation costs is exactly equal to the class of networks

indicated in 4.3(b) for any cost structure. We refer to Section 5.2 for the discussion of

another class of network payoff structures for which this inclusion is tight.

5 Equilibria and potential maximizers

Thus far we only considered network formation using arbitrary (network) payoff functions

that do not rely on specific payoff structures or even on explicit formulations. In this section

we develop the case of link-based network payoffs. We use this straightforward model to

illustrate some interesting properties and arrive at some startling conclusions.

We first develop a simple formulation of link-based payoff generation. For that purpose

we introduceθi : Li → R+ as alink benefit functionfor player i ∈ N that assigns to every
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potential link ij ∈ Li of player i a benefitθi(ij ) > 0. Next we define the network payoff

functionΘi : GN → R+ with Θi(g) =
∑

j∈Ni (g) θi(ij ), whereθi is the link benefit function for

player i. The resulting network payoff functionΘ is called alink-based network payoff

function.

In this simple model, benefits are only generated from the direct links of a certain

individual with other individuals. There are no benefits from being connected to players

beyond one’s direct neighbors in the network. Thus, there arenospillovers in the network.

The most immediate example of such link-based payoffs are profits generated by trade

relationships between buyers and sellers in a market.

We investigate the properties of this link-based network payoff structure to illustrate the

relationships between the different concepts. The link-based payoff structure in this appli-

cation reflects in particular the benefits obtained from having links with direct neighbors.

Interestingly this simple payoff structure is shown to have some insightful properties.

5.1 Two-sided link formation costs

First we discuss link-based benefits in the setting of the standard model with two-sided link

formation costs. It turns out that this particular case has some interesting and illustrative

properties.

Claim 5.1 Consider the link-based network payoff functionΘ based on the link benefit

functionsθi : Li → R+. Let c> 0 be the link formation cost parameter.

For network payoff functionΘ the individually stable networks with two-sided link forma-

tion costs are given by g⊂ {ij ∈ gN | min{θi(ij ), θ j(ij )} > max{cij , cji } }.

In other words, individually stable networks consist of links for which the formation costs

are covered by their direct benefits. This is exactly as one would expect within this setting.

The properties of the link-based network payoff functions also include a relationship

with potential games. This is the subject of our next proposition. We remark that we

call the link-based benefit structuremutual if there exists a link-based benefit function

θ : gN → R+ such thatθi(ij ) = θ j(ij ) = θ(ij ) for all playersi, j ∈ N with i , j. We are able

to show that mutual link-based benefits generate a potential game.

Proposition 5.2 If for every player i∈ N the link-based network payoff functionΘi(g) =∑
ij∈Li (g) θ(ij ) is founded on a mutual link benefit functionθ : gN → R+, then the standard

model with two-sided link formation costs is a potential game.

Furthermore, in this game the potential maximizing individually stable networks are given

by g= ĝθ ∪ h, wherêgθ = {ij ∈ gN | θ(ij ) > cij + cji } and h⊂ {ij ∈ gN | θ(ij ) = cij + cji }.
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Proof. We proceed by constructing an appropriate interaction potential for the standard

model with two-sided link formation costs. By application of Lemma 2.1 it then is estab-

lished that this model has a potential.

Let ` ∈ Aa. We now introduce an interaction potential for every coalitionS ⊂ N by

ΦS(`S) =


−
∑

j,i `ij · cij if S = {i}

`ij · ` ji · θ(ij ) if S = {i, j}

0 otherwise

Observe that this is indeed an interaction potential. The functionΦ{i}(`i) depends only on

the variables̀ i. The other parts of the definition above are easily checked as well. Also, it

holds that

πa
i (`) =

∑
j∈Nd(i,ga(`))

(θ(ij ) − cij ) −
∑

j<Nd(i,ga(`))

`ij · cij =

=
∑
j,i

`ij · ` ji · θ(ij ) −
∑
j,i

`ij · cij =

=
∑
j,i

Φij (`{i, j}) + Φi(`i) =
∑

S⊂N, i∈S

ΦS(`S).

Now from Lemma 2.1 a potential of the game (Aa, πa) is given by

Q(`) =
∑
S⊂N

ΦS(`S) =
∑

ij∈ga(`)

[
θ(ij ) − cij − cji

]
−
∑

ij<ga(`)

[
`ij · cij + ` ji · cji

]
.

Hence,Q is maximal ifga(`) = ĝθ ∪ h with h ⊂ {ij ∈ gN | θ(ij ) = cij + cji }.

From Proposition 5.2 and the previous discussion of Proposition 3.1 and Corollary 3.2, we

can draw some important conclusions.

First, in game theory the set of potential maximizers is usually considered to be an

important and useful refinement of the Nash equilibrium concept. (More specifically,

we refer to Slikker, Dutta, van den Nouweland, and Tijs (2000) for the relationship be-

tween network formation and potential maximizers.) Proposition 5.2, however, shows

that for mutual link-based benefits and two-sided link formation costs, the set of poten-

tial maximizing networks may not be the most interesting class of networks. Indeed,

for mutual link-based network payoffs, the largest individually stable network is given

by g?θ = {ij ∈ gN | θ(ij ) > max{cij , cji }}. The class of networks identified in Proposition

5.2 does not contain this network. Contrary, this class of networks, in fact, does not have

any significantly distinguishing features. It is clear that we have to resort to other modifi-

cations of the Nash equilibrium concept in our study of the formation of non-trivial stable

networks.
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Second, Monderer and Shapley (1996) introduced the notion of an “improvement path”

to describe an individually myopic improvement process that results in a Nash equilibrium

for a potential game. In the context of the model addressed in Proposition 5.2 such pro-

cesses are less useful. In particular, starting from the empty network — as the most natural

starting point — these improvement paths terminate immediately, thus, rendering the dis-

cussion rather pointless. It is apparent that other behavioral rules besides individually my-

opic behavior have to be introduced in the analysis to support the formation of non-trivial

stable networks. Nevertheless, we remark that individual stability of a network remains a

basic requirement for the outcome of any game theoretic network formation process.

5.2 One-sided link formation costs

In this section we consider the case of one-sided link formation costs for any link-based

network payoff functionΘ introduced above.

Claim 5.3 Consider the link-based network payoff functionΘ based on the link benefit

functionsθi : Li → R+. Let c> 0 be the link formation cost parameter.

For network payoff functionΘ the individually stable networks under one-sided link for-

mation costs are given by g⊂ {ij ∈ gN | θi(ij ) > cij or θ j(ij ) > cji }.

From this claim and the previous analysis it follows immediately that with link-based net-

work payoffs, the class of individually stable networks under two-sided link formation costs

is a strict subset of the class of individually stable networks under one-sided link formation

costs. The claim also shows that the inclusion stated in Proposition 4.3(b) is tight in this

case of link-based network benefits.

In Proposition 5.2 we discussed the class of potential maximizing networks for mutual

link-based benefits and two-sided link formation costs. Here we present an analogue of

that case for one-sided link formation costs.

Proposition 5.4 If for every i ∈ N the mutual link-based network payoff functionΘi(g) =∑
j∈Ni (g) θ(ij ) is founded on the mutual link benefit functionθ : gN → R+, then the standard

model with one-sided link formation costs is a potential game.

Moreover, in this case the potential maximizing individually stable networks are given by

g = g̃θ ∪ h, wherẽgθ = {ij ∈ gN | θ(ij ) > min{cij , cji }} and h⊂ {ij ∈ gN | θ(ij ) = min{cij , cji }}.

Proof. Again we proceed by constructing an appropriate interaction potential. By applica-

tion of Lemma 2.1 it is then established that this model has a potential.

Let (̀ , r) ∈ Ab. We now introduce an interaction potential for every coalitionS ⊂ N as
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follows

ΦS(`S, rS) =


−
∑

j∈Ni (g) `ij · cij if S = {i}

mij (`, r) · θ(ij ) if S = {i, j}

0 otherwise,

wheremij (`, r) = max{`ij · r ji , r ij · ` ji }. It is obvious that this defines an interaction potential.

Indeed, we have

πb
i (`, r) =

∑
j∈Ni (g)

(θ(ij ) − `ij · cij ) =

=
∑
j,i

mij (`, r) · θ(ij ) −
∑

j∈Ni (g)

`ij · cij =

=
∑
j,i

Φij (`{i, j}, r{i, j}) + Φi(`i , r i) =
∑

S⊂N, i∈S

ΦS(`S).

Using Lemma 2.1, a potential of the standard model with one-sided link formation costs is

now given by

Q(`, r) =
∑
S⊂N

ΦS(`S) =
∑

ij∈gb(`,r)

θ(ij ) −
∑
ij∈gN

[`ij · cij + ` ji · cji ].

From this it is clear thatQ is maximal if ga(`) = g̃θ ∪ h with h ⊂ {ij ∈ gN | θ(ij ) =

min{cij , cji }}.

Compared to the conclusion in Proposition 5.2 the assertion of Proposition 5.4 is much

more interesting. It identifies exactly the class of networks that result from the formation of

each profitable link, i.e., when link formation is profitable for the individual with the lowest

link costs, the link is always formed. Hence, we conclude that the potential maximizer as

a refinement of Nash equilibrium, is a more useful tool in explaining the formation of

non-trivial networks in the context of one-sided link formation costs.

5.3 Some lessons from our analysis

We find an interesting contrast between the two-sided and one-sided link formation costs

for the case of link-based network benefits. On the one hand, in general, all equilibria

of the two-sided model are also equilibria in the one-sided model. (Proposition 4.2) On

the other hand, the example of mutual link-based network benefits (Propositions 5.2 and

5.4) in which all benefits are derived only from direct links, provides interesting additional

insights. Under two-sided costs we find that the potential maximizer is not a useful solution

concept since it requires that individual payoffs (stemming from individual actions) must

cover the link costs of both agents. Yet for one-sided costs the potential maximizer is able
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to select the right Nash equilibria since in this case the potential function takes correctly

into account the actions and costs of individual players only.

Our analysis also points to some questions that are worth investigating further. In this

section we investigated a particular example of link-based network payoffs. Can we extend

this class of payoff functions to a more general family with similar properties? Especially it

would be interesting to identify larger classes of network payoff functions that generate po-

tential functions within the setting of link formation games. We refer to Durieu, Haller, and

Solal (2004) for the discussion of a more general setting in which benefits are principally

link-based. In that case the network formation game also has a potential.

6 Proofs of the main results

6.1 Proof of Proposition 2.4

Obviously from the definitions it follows that in generalLs(ϕ) ⊂ L(ϕ).

Only if: Suppose thatg ∈ L(ϕ) and thatϕi is not network convex ong for somei ∈ N and

some link seth ⊂ Li(g). We show thatg < Ls(ϕ).

Indeed, from the hypothesis thatg is link deletion proof, we know thatDi(g, ij ) > 0 for

everyij ∈ Li(g). Then forh it has to be true that since
∑

h Di(g, ij ) > 0, Di(g,h) < 0. But

then this implies that playeri would prefer to sever all links inh. Hence,g cannot be strong

link deletion proof, i.e.,g < Ls(ϕ).

If: Let g ∈ L(ϕ) and assume thatϕ is network convex ong. Then for every playeri ∈ N

and link ij ∈ Li(g) it has to hold thatDi(g, ij ) > 0 due to link deletion proofness ofg. In

particular, for any link seth ⊂ Li(g):
∑

h Di(g, ·) > 0. Now by network convexity this

implies thatDi(g,h) > 0 for every link seth ⊂ Li(g). In other words,g is strong link

deletion proof, i.e.,g ∈ Ls(ϕ).

This completes the proof of Proposition 2.4.

6.2 Proof of Proposition 3.1

If. Suppose thatg ⊂ gN is strong deletion proof with respect to the given payoff function

ϕa. Define`g ∈ Aa by `gij = 1 if and only if ij ∈ g. Now ga(`g) = g. We now show that̀g is

a Nash equilibrium in (Aa, πa). Indeed, from equation (5),

πa
i (`

g) = ϕi(g
a(`g)) −

∑
j,i

`
g
ij · cij = ϕi(g) −

∑
j,i, ij∈g

cij = ϕ
a
i (g) (9)
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Let l i , `
g
i and definehi = {ij ∈ gN | `

g
ij = 1 andl ij = 0}. Then it follows thathi = {ij ∈ g |

l ij = 0} andga(l i , `
g
−i) = g \ hi. From this, equation (9), and strong link deletion proofness

of g it now follows that

πa
i (l i , `

g
−i) = ϕ

a
i (g \ hi) 6 ϕ

a
i (g) = πa

i (`).

Only if. Suppose thatg is individually stable. Then, with the definitions above,`g is a Nash

equilibrium in (Aa, πa). Let M ⊂ Ni(g) and lethM = {ij ∈ g | j ∈ M} be the set of all links

connectingi to the players in the setM. DefineLi ∈ Aa
i by

Lij =

 1 if ij ∈ g \ hM;

0 otherwise.

Then with the above it can be concluded that

πa
i (`

g
−i , Li) = ϕi(g \ hM) −

∑
j,i, ij∈g\hM

cij =

= ϕa
i (g \ hM) 6 πa

i (`
g) = ϕa

i (g).

From this it can be concluded thatg is indeed strong link deletion proof.

This completes the proof of Proposition 3.1.

6.3 Proof of Proposition 4.2

Let ̂̀∈ Aa be a Nash equilibrium strategy tuple in the standard model with two-sided link

formation costs. We construct with̀̂a strategy tuple in the standard model with one-sided

link formation generating exactly the same networkga(̂`) and show that this is a Nash

equilibrium in the model with one-sided link formation costs.9

First we remark that by the Nash equilibrium requirements on̂̀without loss of generality

we may assume that for anyij ∈ gN either̂̀ij = ̂̀ji = 1, or̂̀ij = ̂̀ji = 0. In the first case we

have thatij ∈ ga(̂`) and in the second case we have thatij < ga(̂`).

For̂̀we define (̀, r) ∈ Ab such that

(A) `ij = 1 andr ij = 0 if and only if̂̀ij = ̂̀ji = 1 and

• cij < cji , or

• cij = cji andi < j.

(B) `ij = 0 andr ij = 1 if and only if̂̀ij = ̂̀ji = 1 and

9The cases excluded here are forcij = 0 and/or c ji = 0. These cases are trivial aznd no explicit analysis is
required.
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• cij > cji , or

• cij = cji andi > j.

(C) `ij = r ij = 0 if and only if̂̀ij = ̂̀ji = 0.

So, (̀ , r) ∈ Ab describes that the lowest link formation cost is paid for the formation of

every link ij ∈ ga(̂`) = gb(`, r).

We now show that (̀, r) is indeed a Nash equilibrium of the standard model with one-sided

link formation costs.

Let (Li ,Ri) ∈ Ab
i be such that (Li ,Ri) , (`i , r i). Now we defineL̂ij = 1 if and only if Lij = 1

or Rij = r ij = 1. OtherwiseL̂ij = 0.

Now it holds thatij ∈ ga(̂`−i , L̂i) if and only if ̂̀ij = L̂ij = 1 if and only if

1. `ij = Lij = 1,

2. r ji = Lij = 1, or

3. r ij = Rij = ` ji = 1.

Case 1 implies thatij < gb(`−i , r−i; Li ,Ri), while cases 2 and 3 imply thatij ∈ gb(`−i , r−i; Li .Ri).

This in turn implies — together with the construction thatr ij = 0 implies that̀ ji = 0 —

that

gb(`−i , r−i; Li ,Ri) ⊂ ga(̂`−i , L̂i) ⊂ ga(̂`). (10)

Hence, we may conclude from this that

πb(`−i , r−i; Li ,Ri) = ϕi(g
b(`−i , r−i; Li ,Ri)) −

∑
j,i

Lij · cij

= ϕi(g
b(`−i , r−i; Li ,Ri)) −

∑
ij∈gb(`−i ,r−i ;Li ,Ri )

cij +
∑
j,i

Rij · r ij · cij

6 ϕi(g
a(̂`)) −

∑
ij∈ga(̂`)

cij +
∑
j,i

Rij · r ij · cij

= ϕi(g
a(̂`)) −

∑
j,i

`ij · cij −
∑
j,i

r ij · cij +
∑
j,i

Rij · r ij · cij

6 ϕi(g
b(`, r)) −

∑
j,i

`ij · cij = π
b
i (`, r),

where the first inequality follows from Proposition 3.1 and (10). The second inequality

follows from the fact that
∑

j,i r ij · cij >
∑

j,i Rij · r ij · cij .

The above shows that (`, r) indeed is a Nash equilibrium with regard to the payoff function

πb. Thus,ga(̂`) is supported as a individually stable network in the standard model with

one-sided link formation costs.

This completes the proof of Proposition 4.2.
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6.4 Proof of Proposition 4.3(a)

Let g be a strong link deletion proof network under the net payoff functionϕb.

With g we define the strategy tuple (`g, rg) ∈ Ab as follows: `gij = rg
ji = 1 if ij ∈ g and

cij < cji , and`gij = rg
ji = 0 otherwise.

It is clear that (̀g, rg) describes the cost minimizing link formation scheme that supportsg,

i.e.,gb(`g, rg) = g. We proceed by showing that (`g, rg) ∈ NE(Ab, πb). First, remark that

πb
i (`

g, rg) = ϕi(g
b(`g, rg)) −

∑
j,i

`
g
ij · cij

= ϕi(g) −
∑

j∈Ni (g): cij<c ji

cij = ϕ
b
i (g).

Let (Li ,Ri) ∈ Ab
i such that (Li ,Ri) , (`gi , r

g
i ). We now define

M = { j ∈ Ni(g) | Lij = rg
ij = 0} ∪ { j ∈ Ni(g) | Rij = `

g
ij = 0} , ∅.

Then forhM = {ij ∈ g | j ∈ M} it is clear thatgb(`g
−i , r

g
−i; Li ,Ri) = g \ hM.

From the properties of (`g, rg) and the above it follows thatj ∈ Nd(i,g \ hM) if and only if

[Lij = `
g
ij = 1 andrg

ij = 0] or [Rij = rg
ij = 1 and`gij = 0]. In the first casecij < cji and in the

lattercij > cji .

From this it follows that∑
j∈Nd(i,g\hM)

Lij · cij >
∑

j∈Nd(i,g\hM): cij<c ji

cij (11)

Hence,

πb
i (`

g
−i , r

g
−i; Li ,Ri) = ϕi(g

b(`g
−i , r

g
−i; Li ,Ri)) −

∑
j,i

Lij · cij 6

6 ϕi(g \ hM) −
∑

j∈Nd(i,g\hM)

Lij · cij 6

6 ϕi(g \ hM) −
∑

j∈Nd(i,g\hM): cij<c ji

cij 6

6 ϕb
i (g) = πb

i (`
g, rg),

where the second inequality follows from (11) and the third inequality from the hypothesis

thatg is strong link deletion proof with respect toϕb.

Since this holds for alli ∈ N we conclude that (̀g, rg) is indeed a Nash equilibrium in

(Ab, πb).

This completes the proof of Proposition 4.3(a).
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