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Abstract

We investigate the equilibria of game theoretic models of network formation that are
based on individual actions only. Our approach is grounded in three simple and real-
istic principles: (1) Link formation should be a binary process of consent. (2) Link
formation should be costly. (3) The class of network gayoenctions should be as
general as possible.

It is accepted that these consent models have a very large number of equilibria.
However, until now no characterization of these equilibria has been established in the
literature. We aim to fill this void and provide characterizations of stable networks or
the cases of two-sided and one-sided link formation costs. Furthermore, we provide a
comparison of Nash equilibria with potential maximizers for a certain specification.
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1 Modeling consent in link formation

Networks impact the way we behave, the information we receive, the communities we are
part of, and the opportunities that we pursue. Th&ga the machinations of corporations,

the benevolence of non-profit organizations, and the workings of the state. Two recent
overviews of the literature on statistical properties of large scale networks, Watts (2003)
and Newman (2003), discuss the relevance of networks for fields as diverse as physics,
social psychology, sociology, and biology. There has been a similar resurgence of interest
in economics to understand the phenomenon of network formation. A number of recent
contributions to the literature have recognized that networks play an important role in the
generation of economic gains for groups of decision maker§ef@nt network structures
usually lead to dferent levels of generated gains, and network relationships between indi-
viduals have been interpreted irfigrent ways. Among others, for example, such relation-
ships could represent communication possibilities (Bala and Goyal 2000), trade relations
(Kranton and Minehart 2001), or authority relationships between superiors and subordi-
nates (van den Brink and Gilles 2003, Slikker, Gilles, Norde, and Tijs 2004).

In this paper we study two game-theoretic models of social network formation based
on individual actions only. Players in our framework are represented by nodes and their
social ties with others by links between these nodes. Nodes and links form together a
representation of a social network. Our theory of social network formation is baskcken
simple and realistic principlethat govern most real-world networks: (1) Link formation
should be based on a binary process of consent. (2) Link formation should in principle be
costly. (3) The payfd structure of network formation should be as general as possible.

We develop our approach from the hypothesis that creation of social ties requires some
prior interaction and, therefore, the process of link formation under mutual consent prin-
cipally occurs between social acquaintances. In the sociology literature it has been es-
tablished that social networks are indeed primarily formed between acquaintances. This
literature is founded on Granovetter (1973) and confirmed empirically by Friedkin (1980),
Wellman, Carrington, and Hall (1988), and Tyler, Wilkinson, and Huberman (#p03).

Here we follow this line of reasoning andfi#rentiate between familiarity among in-
dividuals, who can at best only be acquaintances, and the possibility of explicitly creating
a mutually beneficial but costly relationship between the same individuals. This is in line
with Brueckner (2003), who categorically distinguishes the set of acquaintances a player
has, from the friendship links she establishes between them. This also places our approach

IMore recently new methodologies have been developed to detect community structures in social net-
works for testing such hypotheses. We refer to Newman and Girvan (2004) and Newman (2004) for the
details of this methodology.



within the context of Granovetter’'s notion of strong social ties.

In our theory, the creation of a social tie or “link” requires the consent of both players
involved; the link between playeisand j is only established when playgiis willing to
accept the link initiated by playeior vice versa. As suggested by our second principle, we
emphasize that link formation is costly. Costs depend on the strategies chosen by the player
in the link formation process and are incurred independent of the outcome, i.e, even if a link
is not established the initiating player still has to pay for the act of trying to form that link.
We consider both two-sided and one-sided costs of link formation. In the first model both
players bear an individually determined cost of link formation, while in the latter model we
distinguish between an “initiator” and a “respondent” in the link formation process with
only the initiator incurring the link formation cost. To meet our third requirement, we
consider a very general paystructure that has two components — an arbitrary benefit
function corrected for additive link formation cofidie emphasize that benefits depend
on the resulting network, and the costs on the link formation strategies chosen by the actors.

The process of network formation studied here is a generalization of the simple network
formation model developed by Myerson (1991, page 448). Following Myerson, we model
the link formation process as a normal form non-cooperative game. This model incorpo-
rates the fundamental idea that networks are the result of costly, consensual link formation
between pairs of players. We enhance this model by taking into account the three require-
ments discussed above. Since this model is rather well known in the literature, we call this
generalization of Myerson’s model tiseandard model of network formatiﬁh

In the literature, the standard model often features in discussions on social network
formation but has been portrayed as being problematic since it is believed to have “too
many” Nash equilibria. (Jackson 2003, for example) However, until now there has been
made no attempt to provide a complete characterization of the set of these Nash equilibria
and our paper aims to fill this void in the literature. Our characterization reveals that the
resulting networks have some appealing properties. Also, to abandon a realistic and elegant
model because it is not discerning enough in terms of its permissible equilibria seems
hardly justifiable.

In order to understand the importance of the ability to break (or deny) links in the process
of network formation we introduce a stability concept calledk deletion proofnessa

2An arbitrary cost structure would require costs to be dependent on the outcome. THespagification
then would become game dependent forcing us to give up generality in the results. We believe that the
chosen payfb structure based on arbitrary benefits additivelink formation costs has the added advantage
of capturing what genuinely occurs in a realistic process of link formation.

3For other sources on the standard model we refer to Belleflamme and Bloch (2004), Bloch and Jackson
(2004), Calw-Armengol and llkilic (2004), and Gilles, Chakrabarti, Sarangi, and Badasyan (2004).



network is link deletion proof when players get a lower péyry deletingexactly oneof
their established links. A variation calletrong link deletion proofnesslows players to
consider the simultaneous deletionnodltiple links.

Subsequently we examine the relationship between the classes of networks satisfying
these stability concepts, and the set of networks resulting from the Nash equilibria of the
network formation game. The latter class is denoted as the sediofdually stable net-
works In general we find that link deletion proofness and strong link deletion proofness are
equivalent if and only if network payts satisfy a convexity property. Thigetwork con-
vexitycondition is weaker than the-convexity condition introduced by CavArmengol
and llkilic (2004).

Next we turn to the characterization of individually stable networks. For the case with
two-sided link formation costs we find that a network is individually stable if and only if
it is strong link deletion proof. This result confirms the well-accepted conjecture that there
are a multitude of Nash equilibria in network formation models under consent.

Finally, we study the one-sided cost model where only the link initiating player incurs a
cost. We find that if a network is individually stable under two-sided link formation costs,
then itis also individually stable under one-sided link formation costs. The reverse does not
hold. Moreover, we find that all strong link deletion proof networks are individually stable
while the converse does not hold. On the other hand, we provide a (partial) characterization
that shows that individually stable networks can be captured in a very large class of partially
stable networks. Again these insights confirm the well-accepted conjecture that the class
of individually stable networks is extremely large and non-discerning.

We conclude our investigations with the analysis of a simple fiapecification based
on link-based network benefits. This setting is used to investigate the relationship between
potential maximizers and Nash equilibria. We find that the potential maximizer concept
is an useful refinement of Nash equilibrium for the model with one-sided link formation
costs, contrary to the case of two-sided link formation costs.

Since the standard model of network formation ifisiently general it can incorporate
a number of existing network models. We first point to the existence of individually stable
networks. Under two-sided link formation costs, it is possible to find parallels in the liter-
ature on pairwise stability. This implies that the existence of individually stable networks
for the two-sided cost model is guaranteed for a large class of specifications. (Jackson and
Watts 2002) For the case of one-sided link formation costs, similar parallels can be drawn
with the Nash network formulation developed by Bala and Goyal (2000). In our frame-
work the flow of benefits is two-way, while only the initiating player incurs the cost of the
link in the one-sided case. Since giving consent to link formation under one-sided costs



is costless, and under the Bala-Goyal type of specification always yields positive benefits,
the responding player would immediately consent to the link. Hence, existence of individ-
ually stable networks under one-sided link formation costs is guaranteed for a large class
of specifications.

The remainder of this paper is organized as follows. Section 2 of the paper provides nota-
tion and the model setup. Section 3 introduces the standard model of link formation under
consent and two-sided link formation costs. Section 4 discusses the case of one-sided link
formation costs. Section 5 elaborates on the interesting case of link-based netwdfk.payo
The proofs of the main results are relegated to Section 6.

2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-cooperative
games and networks.

2.1 Non-cooperative games

A non-cooperative gamen the fixed, finite player sé\l = {1,...,n} is given by a list
(A, m)ien Where for every player € N, A; denotes an action set ang A — R denotes
playeri's paydt function, whereA = A; x --- X A, is the set ofaction tuples An in-
dividual action of playei € N is denoted byg; € A and an action tuple is written as
a = (as,...,a,) € A For every action tuple € A and playeri € N, we denote by
ai = (as...,q-1,:1,...,a) € A = []j4 A the actions selected by the players other
thani. In the rest of the paper we also denote a non-cooperative gaiédarrshort by the
pair (A, ), wherer = (4, ..., m,): A — RN is the composite paybfunction. In this paper
we only discusdinite non-cooperative games in the sense that for everyN the action
setA is finite.

An actiong; € A for playeri € N is called abest responst a_; € A if for every
actionb; € A, we have thatri(a,a ;) > ni(b,a;). A best responsg to a ; is strict if
for everyb, # a we have thatri(a,a ;) > nj(b,a). An action tuplea”e A is aNash
equilibriumof the game A, n) if for every playern € N

7i(8) > mi(by, &) for every actior; € A,.

Hence, a Nash equilibrium € A satisfies the property that for every player N the action
& Is a best response ;. A Nash equilibriuma e A is calledstrict if for every player
i € N the actiong is a strict best response &o;.”

4



A functionQ: A — R is apotentialof the non-cooperative gamA,(r) on the player sell
if for every playen € N, action tuplea € A and actiorb; € A;:

mi(@) — mi(bi, a) = Q(a) — Q(by, a).

The notion of a potential game was introduced by Monderer and Shapley (1996) based on
the seminal work of Hart and Mas-Colell (1989). Monderer and Shapley (1996) proposed
the notion of gpotential maximizebeing an action tupla € A such thatQ(a) > Q(b) for
everyb € A. The set of potential maximizers is denoted by PM{() c A. It is obvious
that each potential maximizer is a Nash equilibrium and, hence, this notion is a refinement
of the Nash equilibrium concept. Monderer and Shapley (1996) showtigh, 7) + @
for every finite potential gameX(7) on N.

An alternative description of a potential game has been introduced by Ui (2000) as
follows. A coalitionis any subset of playelS c N and for a coalitionS we denote by
As = []ies A its restricted action tuple set. A set of functiddss: As > R| S c N}isan
interaction potentiabf the game A, ) if for everyi € N and everya € A it holds that

mi(a) = Z ®s(as).
ScN: ieS

Ui showed that potentials and interaction potentials are essentially the same:

Lemma 2.1 (Ui 2000, Theorem 3Yhe gamdA, ) has a potential Q A — R if and only
if (A, 7) possesses an interaction potentid®s | S ¢ N}. Furthermore, for the latter case

a potential Q of the gam@A, r) is given by @a) = Y.y Ps(as).

We will use these insights to analyze properties of certain specifications of netwoifkpayo
in Section 5.

2.2 Networks

In our discussion of the foundations of the theory of networks we use established notation
from Jackson and Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2003). The
reader may refer to these sources for a more elaborated discussion.

We limit our discussion taon-directed networksn the player sa¥l. In these networks
the two players making up a single link are essentially equal. Formally, if two players
I, j € Nwith i # | are related we say that there existén& between playersand j. We
use the notatior) to describe the binary link, j}E] We definegy = {ij |i,j € N, i # j} as
the set of all potential links.

“We reiterate that network relationships are non-directed, i.e., in this cdptexii. However, for the
costs of establishing a link one may distinguish between the costs reldfexhtbthe costs related {0, i.e.,
possibly it holds that; # cj.



Any set of linksg c gy now defines anetworkon N. We apply the convention that
g = gn is called thecomplete networland thatg = g9 = @ is indicated as thempty
network We denote bya" = {g | g c gy} the class of all networks oN.

The set of (directheighborsof a playen € N in the networkg is given by

Ni(9) ={j e N1ij € g}.

Similarly we introduce

Li(g) = {ij €ean | | € Ni(9)}

as thelink setof playeri in the networkg. These are exactly the links wiifs direct
neighbors ing. We apply the convention that for every playes N we denote by.; =
Li(an) = {ij | 1 # j} the set of all potential links involving player

For every pair of players j € N with i # j we denote byg + ij = g U {ij} the network
that results from adding the linkto the networlg. Similarly,g —ij = g\ {ij} denotes the
network resulting from removing the linkfrom networkg. More generally for any c g
we letg—h =g\ hand foranyhc gywithhng=oweletg+h=guh.

Within a network, payfis for the players are generated depending on how they are con-
nected to each other. This is represented by a “networkfpéyaction” for every player.
For playeri € N the functiong;: GN — R denotes henetwork pay¢f functionwhich
assigns to every networ§g c gy a valueg;(g) that is obtained by player when she
participates in networl. The composite network paffofunction is now given by =
(o1,...,0n): GN — RN, We emphasize that these p#éiigacan be zero, positive, or negative
and that the empty netwodg = @ generates (reservation) valugs),) € RN that might be
non-zero as well.

Several examples of standard network g&yonctions for both noncooperative and
cooperative games are reviewed in Jackson (2803).

2.3 Link-based stability concepts

We conclude the preliminaries on network theory with the definition and discussion of
several stability conditions. Note that the stability notions introduced below are based on
the properties of the network itself rather than strategic considerations of the players. This
latter viewpoint originates from Jackson and Wolinsky (1996).

5 We mention a specific class of network p#yiinctions, which is investigated in van den Nouweland
(1993), Dutta, van den Nouweland, and Tijs (1998), Slikker (2000), Slikker and van den Nouweland (2000),
and Garratt and Qin (2003). There these network fidymctions are defined as allocation rules based on
underlying cooperative games. These papers extend the seminal contribution Myerson (1977) that set this
game-theoretic literature on network formation into motion.
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First we consider some auxiliary notation: ket GN — RN be some network payo
function. For a given networ§ € GN we now define the following concepts:

(@) For everyj € G themarginal benefit othe linkij in g is given by
D(9.ii) = ¢(@) — (g - ij) e R" 1)
and for every player € N the marginal benefit aj € Li(g) is thus given by
Di(9.1) = ¢i(9) - wi(g-1j) € R.

(b) Forevery player € N and link seth c L;(g) themarginal benefito playeri of link
sethin gis given by

Di(g. h) = ¢i(9) - wi(@-h) e R (2)

Using these additional tools we can give a precise description of the various link-based
stability concepts.

Definition 2.2 Lety be a network paygfunction on the player set N.

(@) Anetwork gc gy islink deletion proofif for every playerie N and every g N;(g)
it holds that (g, ij) > 0.

(b) A network gc gy is strong link deletion proofif for every player ie N and every
h c L;(g) it holds that D(g, h) > O.

(c) A network gc gy is link addition proofif for all players i j € N: ¢i(g+ij) > ¢i(Q)
impliesg;(g+ij) < ¢;(9).

The two link deletion proofness notions are based on the severance of links in a network
by individual players. In particular, the notion of link deletion proofness considers the
stability of a network with regard to the deletion a$iaglelink. Strong deletion proofness
considers the possibility that a player deletes any subset of her existing links. Clearly,
strong link deletion proofness implies link deletion proofness.

Similarly, link addition proofness considers the addition of a single link by two con-
senting players to an existing network. A network is link addition proof if for every pair of
non-linked players at least one of these two players has negative benefits from the addition
of a link between them. Hence, there are no incentives to add any additional links to the
existing networ]

SClosely related to these basic stability concepts is the notigraimvise stabilityseminally introduced
by Jackson and Wolinsky (1996). Formally, a network is pairwise stable if it is link deletion proof as well as
link addition proof.



We denote byL(¢) c GN the family of link deletion proof networks fap. Similarly,
we let L(¢) c GN be the family of strong link deletion proof networks for

Next we state the precise conditions under which link deletion proofness and strong
link deletion proofness are equivalent.

Definition 2.3 For a player i € N the network pay functiony;: GN — R is network
convexon the network g GN if for every link set hc Li(g) we have that

> Di(g.ii) > Oimplies D(g, h) > 0

ijeh
The following result justifies the introduction of this network convexity property. It corrects
the assertion that the equivalence of strong pairwise stability and pairwise stability holds if
and only ifr satisfiesy-convexity. (Calo-Armengol and llkilic 2004, Theorem 1)

Proposition 2.4 Lety be some network pagstructure onGN. ThenLs(¢) = L() if and
only if for every player £ N the network pay@functiony; is network convex on every link
deletion proof network g £(¢).

For a proof of this assertion we refer to Section 6.

Example 2.5 We conclude our discussion with an example which delineates ffexefit
link-wise stability concepts and shows a situation in which link deletion proofness and
strong link deletion proofness lead tdfdrent results.

Consider the network payts given in the following table:

Network ¢1(9) | ¢2(9) | ¢3(9) | Stability
Jo=9 0 0 0 Ls

o = (12 S I R |

% = {13 1] 1| -1

0z = {23} 5 3 3 Ls

Os ={12 13} 1 1 1 Ls

Os = {12 23} 0 4 0

Os = {13 23} 0 0 4

g7 = On 1 S 3 L

In the tableL stands for link deletion proofness ahgdfor strong link deletion proofness.
The main feature here is that netwaygkis link deletion proof, but not strong link deletion
proof. To make the dlierences between the various possibilities more clear we provide an
overview of the marginal benefits:



Network D(g,12) D(g,13) | D(g,23)
Jo=9 — — —

0. = {12 -1,-1,-1 — —

0. = {13} — -1,-1,-1 —

0s = {23 — — 533
04 = {1213} 2,2,2 2,2,2 —

05 ={1223 | -51,-3 0,4,0
Os = {13 23} — -5-3,1 | 0,0,4
g7 = On 1,51 1,15 0,33

Note thatD(g, 12) + D(g7, 13) = (2, 6,6) and thatD(g7, {12 13}) = (-4, 2, 2). Hence, the
case of the removal of the links 12 and 13 from netwgylshows thatp is not network
convex.

In g; player 1 is stuck with bad company if she could delete only a single link at the time;
she would like to break links withoth players 2 and 3 and improve her péiysom 1

unit to 5 units. However, deleting either of these two links separately would make her only
worse df. In this regard network convexity requires that no player is in such a bad company
situation. ¢

3 Two-sided link formation costs

In this section we present the first of two game-theoretic models of costly network forma-
tion. LetN = {1,...,n} be a given set of players agd GN — RN be a fixed, but arbitrary
network payd function representing the gross benefits that accrue to the players in a net-
work. For every player € N we introduce individualized link formation costs represented
by G = (¢j)j«i € RY'". (Recall that for some link € gy it might hold thatg; # c;.) Thus,

the pair{y, c) represents the basic pai@and costs of network formation to the individuals

in N.

A simple, fundamental model of network formation has been introduced by Myerson
(1991, page 448) and is based on the idea that pairs of players approach each other on equal
footing and both have to consent to form a link. Myerson (1991) based the benefits from
network formation on an underlying cooperative gdindere we extend this framework
further to incorporate costs of link formation for arbitrary network gayonctions. We
model link formation costs in two ways: Costs cantbw-sided i.e., both players incur
costs while approaching each other to form a link, or costs cambesided In the latter
case costs are only incurred by the initiating player, not the responding player.

"This cooperative benefits model has been extended by Slikker and van den Nouweland (2000) and Gar-
ratt and Qin (2003) to incorporate link formation costs. Their formulation only allowed them to develop a
complete and exhaustive description of the resulting networks for situations with up to four individuals.

9



We first address the formalization of the standard model with two-sided link formation
costs. For every playere N we introduce an action set

A = {(6j)j=i | 6 €{0,1}} 3

Playeri seeks contact with playgrif ¢; = 1. A link is formed if both players seek contact,
i.e.,{’ij = fji =1.
Let A% = [T,y A? wheret € A% Then the resulting network is given by

g?(6) ={ij eon | &G = €5 = 1). (4)

Link formation is costly. Approaching playgrto form a link costs player an amount
cj > 0. This results in the following net paffdunction for player:

72(0) = (@0 - Y b - i (5)
j#i
wherec is the link formation cost introduced at the beginning of this section.

The pair(¢, c) thus generates the non-cooperative gafiienf?) as described above. We
call this non-cooperative game teandard model of network formation with two-sided link
formation costs

Now a networkg € GN is calledindividually stable under two-sided link formation
costsif there exists a Nash equilibrium action tugle A? in the standard model with two-
sided link formation costs?@, %) such thag? (2) = g. Hence, individually stable networks
are those networks supported through Nash equilibrium strategies.

We are able to provide a complete characterization of individual stability under two-
sided link formation costs.

Proposition 3.1 Let ¢ and ¢ > 0 be given as above. A networkaq gy is individually
stable under two-sided link formation costs if and only if g is strong link deletion proof for
the net payg functiony? given by

D =w@- ), o
jeNi(9)
For a proof of this result we refer to Section 6.

Propositiorj 3.[L gives a complete characterization of the individually stable networks in
the standard model with two-sided costs of link formation. Note that regardless of the cost
structure, the empty network is always individually stable. The next corollary strengthens
this insight by showing that the empty network is actually “strictly” individually stable for
positive costs.

10



Corollary 3.2 If ¢ > 0, then the empty network is supported by a strict Nash equilibrium
of the standard model with two-sided link formation costs.

Proof. First, for everyi € N and¢ € A* we definehi(¢) = {ij € gn | ¢ = 1 and{; = 0}.
We now show thaf? is a strict Nash equilibrium in the gaméd 7%), Where{’i‘f = 0 for all
playersi, j € N with i # j. Now, for every player € N andl; # £7:

2,0 =@@) - ), 6 <@(@) =)

ijehi (11.62,)
sinceh; (Ii,t’?i) # @. Hence, we may conclude that inde€dis a strict Nash equilibrium
in the link formation gameA?, 7?). ]

From Corollary 3.P it should be clear that if players start from the empty network and link
formation costs are positive, then there is no reason to form any links.

Dutta, van den Nouweland, and Tijs (1998) showed that in the cooperative benefits
model under costless link formation, every network is individually stable if the network
paydf function is “link monotonic”. Propositiop 3|1 generalizes this insight for situations
with arbitrary network payd functions. This is stated in the next corollary which proof is
immediate from Propositign 3.1.

Corollary 3.3 Assume thap is link monotonic in the sense that(g) < ¢i(g + ij) for all
networks g and players& N with ij ¢ g where j# i. If ¢ = O, then every network is
individually stable.

4 One-sided link formation costs

Next we address the formalization of the standard model with one-sided link formation
costs. Here links are formed by mutual agreement, but one player initiates the formation
process and the other player responds to it. The initiator incurs the formation costs of the
link, while the respondent incurs no co@thience, a dierent strategy space is called for.
Formally, for every player € N we introduce an action set

A = (G, 1) | Gyo 1 € {0, 1) ). (6)

Playeri acts as the initiator in forming a link with playgrif £; = 1. Playerj responds
positively to this initiative ifr; = 1. A link is established if formation is initiated and
accepted, i.e., ifj = rj = 1. This is formalized as follows.

8We remark that a similar link formation structure has been already discussed by Slikker (2000) and
Slikker, Gilles, Norde, and Tijs (2004) in the context of the formatiowliedctednetworks. See also Dutta
and Jackson (2000).

11



Let A’ = [T;n AP. Given the link formation procedure described, for afy ) € A®,
the resulting network is now given by

o(6.r) ={ij egn | G =r1j = 1}. (7)

When player initiates the formation of a link with playey she incurs a cost afj > 0.
Responding to the initiative by another player however, is costless. This results in the
following net paydt function for playeti:

(1) = @(@(6) - Y b6 (8)
j#i
wherec denotes the link formation costs.

Analogous to the previous model with two-sided link formation costs, the(pa@)
generates the non-cooperative gam& £°) introduced above. This game represents the
standard model with one-sided link formation costs

Like before, a networky € GN is calledindividually stable under one-sided link forma-
tion costsif there exists a Nash equilibrium action tupilfe f) e A? in the standard model
with one-sided link formation cost#¥, 7°) such thag (2, f) =0.

The next example discusses the simplest possible case of a single link between two
players that illustrates the multitude of individually stable networks under one-sided link
formation costs.

Example 4.1 Let N = {1,2}. Hence, we have two possible networgs,= @ andgy =
{12}. Consider the network patofunction¢ given bye:(go) = ¢2(do) = 0, ¢1(gn) = 10,
andg,(gn) = 5. We now consider the following (equal) cost structures:

(@) ci2=0C€[0,5]
In these cases the class of individually stable networks is the same for one-sided
and two-sided link formation costs, namely both feasible netwggledgy.

(b) ci2=c2€(510]
In these cases, under two-sided link formation costs, only the empty negjysk
individually stable. However, under one-sided link formation costs, againdgoth
andgy are individually stable. Indeed, the complete netwgykis supported by
strategy profiles witlf, = 1,r,; = 1, andé,; = 0.

These two cases illustrate the maiffeliences between two-sided and one-sided link for-
mation costs. In particular it shows that under one-sided costs there are more individually
stable networks. ¢

12



The next result generalizes the insight of Exanfipl¢ 4.1. For a proof of this proposition we
refer to Section 6 of the paper.

Proposition 4.2 Let ¢ and ¢ > 0 be given. Any individually stable network under two-
sided link formation costs is individually stable under one-sided link formation costs.

Examplg 4.1 for link formation costs in the range 18] shows that the assertion stated in
Propositiorj 4.2 cannot be reversed.

In Proposition 3.[L we characterized the class of individually stable networks under two-
sided link formation costs. However, such a complete characterization is not possible with
one-sided link formation costs. Instead we provide two inclusions that show the largeness
of the set of individually stable networks under one-sided link formation costs.

Proposition 4.3 Lety be arbitrary and let ¢ 0 be such thatc# c; for all potential links
|J € On.
(a) If anetwork gc gy is strong link deletion proof for the net pagifunctione® given
by
Soib(g) = ¢i(9) - Z Ci»

jeNi(9): cj<cji
then g is individually stable under one-sided link formation costs.

(b) If g c gn is individually stable under one-sided link formation costs, then for all
links ij € g it holds that

Di(g.ij) >¢; or Dj(g.ij) > c;.

The assertion of Propositign 4.3(a) is proved in Section 6. Propositipn 4.3(b) is a rather
straightforward application of the definition of the marginal pgyand individual stability
under one-sided link formation costs. A formal proof of this assertion is therefore omitted
and left to the reader.

The next example demonstrates that Proposition 4.3(a) cannot be reversed.

Example 4.4 Again considemlN = {1,2}. As before we legy = @ andgy = {12} with

01(0o) = ¢2(g0) = 0, p1(gn) = 1, andeo(gn) = 10. We consider two dlierent cost
structures:

(@) Considec;; =2 < ¢y, = 5.
Now bothgy, andgy are individually stable under one-sided link formation costs,
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butgy is not link deletion proof forp®.

Indeed a Nash equilibrium for the standard model with one-sided link formation
costs supportingy is given byf;, = 0,r;, = 1, £, = 1, andrpy; = 0. Now,
g°(6,1) = gn, (6, 1) = 1> 0 = ¢1(Qo), andnmd(€,1) = 5> 0 = py(go). However,
¢P(gn) = -1 < ¢8(go) = 0, which implies thay is not link deletion proof with
respect tay° for player 1.

(b) Considerc;; = 11> ¢ = 5.
In this case again botly andgy are individually stable under one-sided link forma-
tion costs. However, in this case the inclusion stated in Propo§itipn 4.3(a) is tight.
Indeed, it can be checked that

¢2(9o) = ¢3(go) = 0
¢on) =1-0=1
¢3(gn) = 10-5=5

Hence, bothy, andgy are strong link deletion proof with respectgd. This con-
firms that in this case the inclusion stated in Proposjtioh 4.3(a) is indeed tight.

Case (a) demonstrates a form offti@ency in link formation, since in equilibrium higher

than necessary costs are incurred. This implies that outside regulation of link formation
processes — in the sense that an outside regulator determines who initiates which link —
will restore dficiency. In this example, player 1 should be forced to initiate the link with
player 2. ¢

With regard to the possibility of the tightness of the inclusion stated in Propofitipn 4.3(b)
we refer to Example 4]1. There it has been shown that the collection of individually stable
networks under one-sided link formation costs is exactly equal to the class of networks
indicated in 4.B(b) for any cost structure. We refer to Section 5.2 for the discussion of
another class of network paffstructures for which this inclusion is tight.

5 Equilibria and potential maximizers

Thus far we only considered network formation using arbitrary (network) foéyoctions
that do not rely on specific paffcstructures or even on explicit formulations. In this section
we develop the case of link-based network f&s/oWe use this straightforward model to
illustrate some interesting properties and arrive at some startling conclusions.

We first develop a simple formulation of link-based pfiygeneration. For that purpose
we introduced;: Lj — R, as alink benefit functiorfor playeri € N that assigns to every
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potential linkij € L; of playeri a benefitg;(ij) > 0. Next we define the network pafjo
function®;: GN — R, with ©;(g) = Yjenig) Gi(i]), whereg; is the link benefit function for
playeri. The resulting network paybfunction ® is called alink-based network payp
function

In this simple model, benefits are only generated from the direct links of a certain
individual with other individuals. There are no benefits from being connected to players
beyond one’s direct neighbors in the network. Thus, ther@aspillovers in the network.

The most immediate example of such link-based [i@yare profits generated by trade
relationships between buyers and sellers in a market.

We investigate the properties of this link-based network fiastaucture to illustrate the
relationships between theffirent concepts. The link-based pé#ystructure in this appli-
cation reflects in particular the benefits obtained from having links with direct neighbors.
Interestingly this simple paybstructure is shown to have some insightful properties.

5.1 Two-sided link formation costs

First we discuss link-based benefits in the setting of the standard model with two-sided link
formation costs. It turns out that this particular case has some interesting and illustrative
properties.

Claim 5.1 Consider the link-based network pgftunction® based on the link benefit
functionsy;: L — R,. Let c> 0 be the link formation cost parameter.

For network payg function® the individually stable networks with two-sided link forma-
tion costs are given by g {ij € gn | min{6i(ij), 6;(ij)} > maxc;, cji} }.

In other words, individually stable networks consist of links for which the formation costs
are covered by their direct benefits. This is exactly as one would expect within this setting.
The properties of the link-based network p#yfinctions also include a relationship
with potential games. This is the subject of our next proposition. We remark that we
call the link-based benefit structursutual if there exists a link-based benefit function

0: gn — R, such tha®;(ij) = 6;(ij) = 6(ij) for all playersi, j € N with i # j. We are able
to show that mutual link-based benefits generate a potential game.

Proposition 5.2 If for every player ie N the link-based network pagdunction®;(g) =
ZijeLig @(i}) is founded on a mutual link benefit functiéngy — R, then the standard
model with two-sided link formation costs is a potential game.

Furthermore, in this game the potential maximizing individually stable networks are given
by g=1, U h, whereg, = {ij € g | 6(ij) > ¢; + c;i} and hc {ij € g | 6(ij) = ¢; + Cji}.
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Proof. We proceed by constructing an appropriate interaction potential for the standard
model with two-sided link formation costs. By application of Lenma 2.1 it then is estab-
lished that this model has a potential.

Let £ € A% We now introduce an interaction potential for every coalit®a N by

- Yz by ¢ if S={i}
Os(ls) =14 G- -0()) FS=A{ij}

0 otherwise

Observe that this is indeed an interaction potential. The funaig(f;) depends only on
the variableg;. The other parts of the definition above are easily checked as well. Also, it
holds that

i (6)

Z (0(i) — ci) - Z G- ¢y =
JeNd(i.g%(0) JENY(i.g%(0)
qu - - 0(i) - qu "Gj =
j#i j#i

Z CD” (f{i,j}) + (D|(€|) = Z ®S(£S)

j#i ScN, ieS

Now from Lemmd 2.1 a potential of the gan®&®(n?) is given by

Q(6) = Z Ds(ls) = Z [9(”) - GCj — Cji] - Z [fij - Gj + fji . Cji].

ScN ijeg?(6) ij¢g?(0)

Hence,Q is maximal ifg?(¢) =g, U hwith h c {ij € gy | 6(ij) = cj + Cji}. ]

From Proposition 5]2 and the previous discussion of Proposition 3.1 and Cofollary 3.2, we
can draw some important conclusions.

First, in game theory the set of potential maximizers is usually considered to be an
important and useful refinement of the Nash equilibrium concept. (More specifically,
we refer to Slikker, Dutta, van den Nouweland, and Tijs (2000) for the relationship be-
tween network formation and potential maximizers.) Proposition 5.2, however, shows
that for mutual link-based benefits and two-sided link formation costs, the set of poten-
tial maximizing networks may not be the most interesting class of networks. Indeed,
for mutual link-based network paffs, the largest individually stable network is given
by g; = {ij € gn | 6(ij)) > maxcj,c;i}}. The class of networks identified in Proposition
[5.7 does not contain this network. Contrary, this class of networks, in fact, does not have
any significantly distinguishing features. It is clear that we have to resort to other modifi-
cations of the Nash equilibrium concept in our study of the formation of non-trivial stable
networks.
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Second, Monderer and Shapley (1996) introduced the notion of an “improvement path”
to describe an individually myopic improvement process that results in a Nash equilibrium
for a potential game. In the context of the model addressed in Propdsition 5.2 such pro-
cesses are less useful. In particular, starting from the empty network — as the most natural
starting point — these improvement paths terminate immediately, thus, rendering the dis-
cussion rather pointless. It is apparent that other behavioral rules besides individually my-
opic behavior have to be introduced in the analysis to support the formation of non-trivial
stable networks. Nevertheless, we remark that individual stability of a network remains a
basic requirement for the outcome of any game theoretic network formation process.

5.2 One-sided link formation costs

In this section we consider the case of one-sided link formation costs for any link-based
network payd function® introduced above.

Claim 5.3 Consider the link-based network pgjtunction ® based on the link benefit
functionsy;: L — R,. Let c> 0 be the link formation cost parameter.

For network payg function® the individually stable networks under one-sided link for-
mation costs are given by@g/{ij € gn | 6i(ij) > c; or 6;(ij) > c;}.

From this claim and the previous analysis it follows immediately that with link-based net-
work paydfs, the class of individually stable networks under two-sided link formation costs
is a strict subset of the class of individually stable networks under one-sided link formation
costs. The claim also shows that the inclusion stated in Propofitipbn 4.3(b) is tight in this
case of link-based network benefits.

In Propositiorj 5. we discussed the class of potential maximizing networks for mutual
link-based benefits and two-sided link formation costs. Here we present an analogue of
that case for one-sided link formation costs.

Proposition 5.4 If for every ie N the mutual link-based network pajtunction®;(g) =
ienig @(ij) is founded on the mutual link benefit functiéngy — R., then the standard
model with one-sided link formation costs is a potential game.

Moreover, in this case the potential maximizing individually stable networks are given by
g =0, U h, whereg, = {ij € gn | 6(ij) > min{c;, c;i}} and hc {ij € gn | 6(ij) = min{c;, c;i}}.

Proof. Again we proceed by constructing an appropriate interaction potential. By applica-
tion of Lemmg 2.]1 it is then established that this model has a potential.
Let (¢,r) € A°. We now introduce an interaction potential for every coalit®r N as
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follows

- Zjeng Gi - G if S = {i}
Os(ls,rs) = my(L,r)-63j) it S={i,j}
0 otherwise,

wheremy; (¢,r) = max{{; - rji, rj - €ji}. It is obvious that this defines an interaction potential.
Indeed, we have

w(6r) = Y O) -6 6) =
jeNi(9)
= D miEn -6 - Y 6=
j#i jeNi(g)
= Zq)ij(f{i,j},r{i,j})+<Di(5i,ri)= Z Os(Ls).
j#i ScN, ieS

Using Lemma 21, a potential of the standard model with one-sided link formation costs is
now given by

QL) =D @sls) = > 6i) = Y16 -Gy + 6 -5,
ScN ijegb(e.r) jegn
From this it is clear thaQ is maximal if g?(¢) = g, U hwith h c {ij € gy | (i) =
min{cij,cji}}. u

Compared to the conclusion in Propositjon]5.2 the assertion of Propdsition 5.4 is much
more interesting. It identifies exactly the class of networks that result from the formation of
each profitable link, i.e., when link formation is profitable for the individual with the lowest
link costs, the link is always formed. Hence, we conclude that the potential maximizer as
a refinement of Nash equilibrium, is a more useful tool in explaining the formation of
non-trivial networks in the context of one-sided link formation costs.

5.3 Some lessons from our analysis

We find an interesting contrast between the two-sided and one-sided link formation costs
for the case of link-based network benefits. On the one hand, in general, all equilibria
of the two-sided model are also equilibria in the one-sided model. (Propasitibn 4.2) On
the other hand, the example of mutual link-based network benefits (Propogitipns 5.2 and
[5.4) in which all benefits are derived only from direct links, provides interesting additional
insights. Under two-sided costs we find that the potential maximizer is not a useful solution
concept since it requires that individual p&igo(stemming from individual actions) must
cover the link costs of both agents. Yet for one-sided costs the potential maximizer is able
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to select the right Nash equilibria since in this case the potential function takes correctly
into account the actions and costs of individual players only.

Our analysis also points to some questions that are worth investigating further. In this
section we investigated a particular example of link-based networkfijsayean we extend
this class of payfd functions to a more general family with similar properties? Especially it
would be interesting to identify larger classes of network piafgmctions that generate po-
tential functions within the setting of link formation games. We refer to Durieu, Haller, and
Solal (2004) for the discussion of a more general setting in which benefits are principally
link-based. In that case the network formation game also has a potential.

6 Proofs of the main results

6.1 Proof of Proposition[2.4
Obviously from the definitions it follows that in genet8i(¢) c L(¢).

Only if: Suppose thay € L(¢) and thaty; is not network convex og for somei € N and
some link seh c L;(g). We show thag ¢ L(¢).

Indeed, from the hypothesis thgtis link deletion proof, we know thab;(g,ij) > 0 for
everyij € Li(g). Then forh it has to be true that sincg, Di(g,ij) > 0, Di(g,h) < 0. But
then this implies that playemwould prefer to sever all links ih. Hence g cannot be strong
link deletion proof, i.e.g ¢ L(y).

If: Letg e L(¢) and assume that is network convex o. Then for every player € N
and linkij € L;(g) it has to hold thaD;(g,ij) > O due to link deletion proofness gf In
particular, for any link seh c Li(g): >, Di(g,) > 0. Now by network convexity this
implies thatDj(g,h) > O for every link seth c L;j(g). In other wordsg is strong link
deletion proof, i.e.g € L(p).

This completes the proof of Proposition2.4.

6.2 Proof of Proposition[3.1

If. Suppose thag c gy is strong deletion proof with respect to the given p@yonction
¢?. Definef9 € A? by 55’ = 1if and only ifij € g. Now g?(¢%) = g. We now show thaf9 is
a Nash equilibrium in4?, 7). Indeed, from equatiof|(5),

() = a(@ () - D 8 G =w@- Y ¢ =40 9)

j#i j#i, ljeg
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Letl; # fig and defineh, = {ij € g | fﬁl = 1andlj = 0}. Then it follows thath; = {ij € g |
lj = O} andg?(l;, £2) = g\ hi. From this, equationﬂg), and strong link deletion proofness
of g it now follows that

(1, €%) = (9 \ ) < ¢{(Q) = 7{(0).

Only if. Suppose thaj is individually stable. Then, with the definitions abo¥&is a Nash
equilibrium in (A%, 7). Let M c Ni(g) and lethy = {ij € g| j € M} be the set of all links
connecting to the players in the sédl. Definel; € A? by

1 ifijeg\ hw;
"1 0 otherwise.

Then with the above it can be concluded that

¢i(g\ hw) - Z Cj =
j#i, ijeg\hm
@79\ hu) < 7{(€9) = ¢1(0).

From this it can be concluded thgts indeed strong link deletion proof.
This completes the proof of Proposition|3.1.

6.3 Proof of Proposition[4.2

Let¢ € A% be a Nash equilibrium strategy tuple in the standard model with two-sided link
formation costs. We construct witha strategy tuple in the standard model with one-sided
link formation generating exactly the same netwgi"l([) and show that this is a Nash
equilibrium in the model with one-sided link formation cd3ts.

First we remark that by the Nash equilibrium requirementgwithout loss of generality

we may assume that for aifye gy eitheré; = ¢; = 1, or¢; = ¢; = 0. In the first case we
have thaij € ga(?) and in the second case we have ﬁh&tga(?).

For ¢ we define ¢, r) € A° such that

(A) ¢ = Landry = 0if and only if?ij :?ji =1land
e Cj <C;j, Or
® Cj = Cji andi < j

(B) ¢; = 0andr; = 1ifand only ifg; = ¢; = 1 and

9The cases excluded here aredpr= 0 andor c; = 0. These cases are trivial aznd no explicit analysis is
required.
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Cj > Cji, Or

Cj = Cji andi > J

(C) ¢; =r; =0ifand only if; = ¢; = 0.
So, ¢,r) € AP describes that the lowest link formation cost is paid for the formation of
every linkij € g?(¢) = g°(¢, ).
We now show that, r) is indeed a Nash equilibrium of the standard model with one-sided
link formation costs.
Let (Li,R) € AI.b be such thatl, R) # (¢, ri). Now we defind:ij =1lifandonlyifL; =1
orR; = rj = 1. Otherwise_; = 0.
Now it holds thaij € g*(¢_;, [;) if and only if ; = [ = 1 if and only if

1. ¢ =L =1,
2. i = Lij =1, or
3. rj = Rij iji =1
Case 1implies thait ¢ g°(¢_i,r_i; Li, R), while cases 2 and 3 imply thite g°(¢_i, r_i; Li.R).
This in turn implies — together with the construction tinat= 0 implies that/; = 0 —
that
¢°(i, 1 L, R) € (1, L) € ¢°(0), (10)
Hence, we may conclude from this that
(€, r-i; Li, R) = i(g°(€i, r-i; Li, R)) - Z L - Gj
j#i

= ¢i(¢°(La,1; L, R)) - Z Cj + Z Rj - Iij - Cj

ijegP(-i,r-i;Li,R) j#i
< @i(@(0) - Z Gj + Z Rj - Iij - Gj
ljeg®() I#
= @(6*(0) - Zfij " Gj — Z rij - Gj + Z Rj - rjj - Cj
j#i j#i j#i
<@@(6N) - D 6o =aP(Cr),

j#i
where the first inequality follows from Propositipn B.1 and](10). The second inequality
follows from the fact thad’ . rjj - G > X Ry - I - Gj.
The above shows tha, () indeed is a Nash equilibrium with regard to the piyonction
n°. Thus,ga(?) is supported as a individually stable network in the standard model with
one-sided link formation costs.
This completes the proof of Propositijon 4.2.
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6.4 Proof of Proposition/4.3(a)

Let g be a strong link deletion proof network under the net gfunction P,
With g we define the strategy tupléd(r9) e A° as follows: £ = rj = 1if ij € gand
Cj < Cji, andfﬁ’ = r‘f’i = 0 otherwise.
It is clear that {9, r9) describes the cost minimizing link formation scheme that supgerts
i.e.,g?(£9,r9) = g. We proceed by showing that¥(r9) e NE(A®, #°). First, remark that
(1) = @@ r9) - ) 8
i

a@- . 6 =e0)

jeNi(9): cj<c;ji

Let (Li,R) € AP such that(;, R) # (¢7, r?). We now define

M={jeN(@ILj=r=0U{jeN(9) IR =¢ =0 #2.

Then forhy = {ij € g| j € M} itis clear thag”(¢?,r%; Li,R) = g\ hy.

From the properties of’?, r9 and the above it follows thgte NY(i, g\ hy) if and only if
[L = 55‘ =1 andrijf’ =0]or [Rj = rﬁ’ =1 and{’ﬁ.J = 0]. In the first case; < c; and in the
lattercij > c;j;.

From this it follows that
Z Lij - ¢ > Z Cj (11)
jeNd(i,g\hm) jeNd(i,g\hm): cj<c;j

Hence,

(e, r%; L, R)

@i(@°(%,r%; L, R)) - Z Lj - ¢ <

j#i

< ¢i(g\ hv) - Z Lij - Gj <
jeNd(i,g\hm)

< ¢i(g\ hm) - Z Cj <
jeNd(i,g\hm): cj<cji

A EEAGAD)

where the second inequality follows from [11) and the third inequality from the hypothesis
thatg is strong link deletion proof with respect 6.

Since this holds for all € N we conclude thatf@, r9) is indeed a Nash equilibrium in
(AP, 0).

This completes the proof of Proposition 4.3(a).
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