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Abstract
We show how optimal Hankel-norm approximations of dy-

namical systems allow for a straightforward interpretation in
terms of system trajectories. It is shown that for discrete
time single-input systems optimal reductions are obtained by
cutting ’balanced trajectories’, i.e., by disconnecting the past
and future in the input-output pairs relating to left- and right
singular vectors of the system. A self-contained proof of opti-
mality is given, and formulas are derived in terms of Faddeev
sequences. Some parallels with the literature are briefly indi-
cated.

1 Introduction

Optimal Hankel-norm approximation of dynamical systems is
one of the exceptional reduction techniques in linear systems
theory with a well-described optimality property. The impor-
tance of the Hankel-norm model reduction problem therefore
goes beyond the question of complexity reduction alone, as
the optimality properties of reduced order models also give
substantial insight in the intricate structure of linear systems.
This insight, however, may be easily obscured by the com-
plexity of the equations and algorithms which lead to reduced
order models, and also by the common abstract language of
operator theory in which this problem is usually formulated.

Most expositions, including the original work byAdamjan,
Arov and Krein (which we will abbreviate as AAK) [1, 2], are
in terms of (infinite) dimensional operators on Hardy spaces
(See, e.g. [9] and the references therein), or in terms of (finite
dimensional) state space realizations (See [4], [12, Chapter
8] and the references therein), with emphasis on continuous
time systems.

The main purpose of this paper is to show that the construc-
tion and derivation of optimal Hankel-norm approximants is
quite transparant on the level of system trajectories of discrete
time systems. Indeed, we show that by suitably disconnect-
ing the past and future of ‘balanced trajectories’, optimal ap-
proximants (in the Hankel sense) are obtained by removing

the anti-causal part. We restrict the analysis to single-input
systems, mainly for expository reasons. Continuous time sys-
tems are not addressed, but the results carry over to this case
by applying the well-known bilinear transformation, cf. [4].
Hankel-norm reductions of infinite dimensional systems will
not be considered in this paper.

The mathematical essence of the method which we propose
here is not new, and we indicate some points in the existing
literature in which the same observations are made, albeit in
quite a different setting and with a different language. There-
fore, as far as the construction of reduced order models is
concerned, the paper does not address new paradigms, but
its interest lies in the approach we take. A completely self-
contained derivation of results is given, in which no more
mathematics is used than some basic geometric properties of
square summable time series, together with a technical result
that relates the causal degree of a system to its controllability
gramian.

The work is related to [11], in which a similar construc-
tion is presented for reducing the complexity of a system in a
behavioral framework, independent of input and output vari-
ables.

Notation

The space of square summable single-component trajectories
on the time axisZ is denoted by�2, while �p2 denotes the set
of vector valued time series whosep components belong to
�2. The superscripts+ and−, e.g. in�−2 and�+2 , denote the
restriction of the time axis to thepast (i.e. Z− := {t | t < 0})
and to thefuture (Z+ := {t | t ≥ 0}). The symbols‖ · ‖,
〈·, ·〉 and⊥ denote resp. the usual norm, inner product and
orthogonality in any of these spaces. Trajectories are denoted
in boldface, and zero time series (of any length) are denoted
as 0. For τ ∈ Z, the τ -shift operator is denoted byστ ,
with (στ f)(t) := f(t+ τ). Singular values are also denoted
by σ, but never without a subscript. The symbol∧ denotes
concatenation of time series at timet = 0. The k-th unit
vector inR

·×1 is denoted byek, andIn denotes the identity
matrix inR

n×n.



2 Model Reduction

Consider a stable single-input systemΣfull with rational trans-
fer functionG ∈ R(z)p×1 of McMillan degreen,

G(z) =
N(z)
d(z)

=
N0 +N1z + . . .+Nnz

n

d0 + d1z + . . .+ dnzn
(1)

We restrict attention to square summable signals, and define

Σ(G) := {(u,y) ∈ �2 × �p2 | y = G(σ−1)(u)} (2)

where the equationy = G(σ−1)u is to be interpreted as
the difference equationd(σ−1)y = N(σ−1)u. Recall that
(σ−1f)(t) = f(t − 1). By assumption, the polynomiald is
Hurwitz, but (2) is equally well defined ifd is not Hurwitz1.

A particularly useful characterization ofΣ(G) is in terms
of its shortest lag trajectory,

(d,N) ∈ Σ(G) (3)

with

d(t) :=

{
dt if t ∈ [0, n]
0 otherwise

, N(t) :=

{
Nt if t ∈ [0, n]
0 otherwise

.

It is well-known that no pair of different single-input systems
of the form (2) share any non-zero trajectory (cf. e.g. [11]).
Consequently,(d,N) uniquely specifiesΣ(G).

A (linear) state space system is a description of the form

x(t+ 1) = Ax(t) +Bu(t) (4a)

y(t) = Cx(t) +Du(t). (4b)

We writeΣ(A,B,C,D) for the set of all square summable
input-output pairs for which there exists a state sequencex
such that (4) hold. Obviously,

Σ(A,B,C,D) = Σ(G)

if and only if G(z) = C(Iz − A)−1B + D. State space
representations can be constructed from the transfer function
(1) by standard methods. (In Matlab this is performed by
the command[A,B,C,D]=tf2ss(N,d)with N andd the
(matrix) coefficients ofN andd).

The degreeδ(Σ) of the systemΣ = Σ(G) is defined as the
McMillan degree ofG, or, equivalently, as the dimension of
state in a minimal state space representation ofG. For single-
input systems this is equal to the shortest lag of a non-zero
input/output pair, cf. (3).

Model reduction involves the approximation of the system

Σfull = Σ(G) = Σ(A,B,C,D)

by a system

Σred = Σ(Ĝ) = Σ(A′, B′, C ′, D′)
1A complication arises when the polynomiald has roots on the unit circle.

Thenu is no longer an arbitrary time series in�2. This complication is not
further addressed in this paper.

with degreeδ(Σred) = n′ < n. By the previous argument,
this is equivalent to approximating the shortest lag trajec-
tory (d,N) ∈ Σ(G) by a non-zero trajectory(d′,N′) of lag
n′. Before we describe a method that optimizes an approxi-
mation criterion, we first briefly discuss a standard heuristic
technique, based on balanced representations.

3 Balanced truncations

The first step in one of the best-known model reduction tech-
niques amounts to bringing the state representation ofΣfull

in balanced form, i.e., to apply a basis transformation of the
state such that the observability and controllability gramian
are both equal to a diagonal matrix. Precisely,Σ(A,B,C,D)
is balanced if

M = A�MA+ C�C

W = AWA� +BB�

W =M = diag(σ1, . . . σn)

(5)

with M the observability gramian,W the controllability
gramian, andσj the (Hankel-) singular values in descending
order forj = 1, . . . , n. In Matlab this is implemented by
[A,B,C,sing,T]=dbalreal(A,B,C), where sing
records the singular valuesσj andT the required state space
transformation.

In a second step, the singular values are split into two dis-
joint sets oflarge and small values, resp.σ1, . . . , σk and
σk+1, . . . , σn, and the matrices and state vector are parti-
tioned accordingly:

x1(t+ 1) = A11x1(t) +A12x2(t) +B1u(t)
x2(t+ 1) = A21x1(t) +A22x2(t) +B2u(t) (6)

y(t) = C1x1(t) + C2x2(t) +Du(t).

The classical procedure of truncation by balancing ([8]) sim-
ply amounts to removing the ‘small parts’, and result in the
reduced order modelΣred := Σ(A11, B1, C1, D). A simi-
lar approach for the second step is implemented in a model
reduction procedure in Matlab (dmodred), and amounts to
replacing the ‘lower state equation’

x2(t+ 1) = A21x1(t) +A22x2(t) +B2u(t)

by

x2(t) = A21x1(t) +A22x2(t) +B2u(t),

followed by elimination ofx2. This results in the reduced
modelΣred := Σ(A11−A12(A22−I)−1A21, B1−A12(A22−
I)−1B2, C1 −C2(A22 − I)−1A21, D−C2(A22 − I)−1B2).

These techniques are attractively straightforward, and they
have proved their practical value in a huge amount of ap-
plications. Yet, from a theoretical point of view, it is quite
unsatisfactory that the resulting approximate models are not
optimal in a well-defined sense.



4 Hankel-norm approximation

The state space algorithm for optimal Hankel-norm approxi-
mation as described in e.g. [4] starts with the partitioning (6)
and then constructs, in a more complicated second step, an
approximantĜ of McMillan degreek that is optimal in the
sense that the Hankel-distance

δH(G, Ĝ) := sup
0 �=u−∈�−

2

‖[(G− Ĝ)(u− ∧ 0)]+‖
‖u−‖ (7)

is minimized in the class of all stable rational matricesĜ of
McMillan degree at mostk. As shown in [4], this minimum
is attained and equal toσk+1, as we also prove later on.

Some remarks are in order here. The criterion (7) measures
to what extend past inputs effect future outputs of the error
systemG − Ĝ. From an intuitive point of view, this may be
considered as a measure on thememory structure of the error
system, which is fed by past inputs and influences future out-
puts. The criterion discards, therefore, the possible difference
in thepast outputs ofG andĜ, which makes it less appeal-
ing as an approximation criterion from a purely behavioral
point of view. In particular, anti-causal modes are neglected
in the criterion (7). That is,δH(G, Ĝ1) = δH(G, Ĝ2) if the
differenceĜ1 − Ĝ2 is anti-stable. Although the given system
Σfull is stable by assumption, it turns out that unstable systems
arise naturally in Hankel-norm reduction. Therefore we now
first discuss a refinement of the notion of degree of a system.

Let Σ = Σ(G) and denote byΣ+ andΣ− its future and
past behavior, respectively. Define thecausal andanti-causal
degree of a system, resp. by

δ+(Σ) := dim{y+ ∈ (�p2)
+ | (0,y+) ∈ Σ+}

δ−(Σ) := dim{y− ∈ (�p2)
− | (0,y−) ∈ Σ−}.

The causal degree is the dimension of the free future response
of the system (that remains in(�p2)

+). The anti-causal degree
has a similar interpretation for the time-reversed system. Ob-
viously, these numbers are equal to the number of roots ofd
that are resp. inside and outside the unit circle. Assuming that
there are no roots on the unit circle, it follows that

δ(Σ) = δ+(Σ) + δ−(Σ)

and that a systemΣ(G) admits a decomposition into a stable
(or better ‘causal’) and anti-stable (or ‘anti-causal’) part

Σ(G) = Σ(Ga) + Σ(Gc) (8)

with Ga andGc given by

Ga(z) =
Na(z)
da(z)

, Gc(z) =
N c(z)
dc(z)

(9)

with dc(z) andda(z) the unique stable resp. anti-stable poly-
nomials such thatda(z)dc(z) = d(z), and the polynomials
Na andN c such thatGa +Gc = G. This decomposition is
unique modulo a static feedthrough term.

If Gred = Ga
red+G

c
red is such a decomposition of a reduced

order model, thenGred − Gc
red is anti-stable and since the

Hankel distance is invariant for anti-stable effects it follows
that

δH(G,Gred) = δH(G,Gc
red) (10)

for everyG andGred. Consequently, from any candidate ap-
proximant the anti-stable part may be removed without affect-
ing the Hankel distance. This also shows that, in principle,
Hankel-norm reduction may be applied to unstable systems
in a trivial way, namely by first removing the anti-stable part
of a given unstable system.

In [4], the expressions of the optimal reduced order mod-
els are derived directly from(A,B,C,D). However, these
expressions are hard to interpret on the level of system tra-
jectories. The aim of this paper is to show that Hankel-norm
model reduction allows an elegant interpretation on the level
of system trajectories.

5 Hankel-norm approximation by cutting tra-
jectories

In this section we sketch how optimal Hankel-norm approx-
imants can be obtained by cutting system trajectories. In the
next section some details are worked out, and a proof of cor-
rectness is given.

A system trajectory is an input-output pair that is compati-
ble with the system laws. Of particular interest to us are those
input-output pairs related to the singular values of the system.
For this purpose, consider the input-output pairs(

(u−
〈k〉 ∧ 0) , (y−

〈k〉 ∧ y+
〈k〉)

)
with

u−
〈k〉(−j) = B�(A�)j−1W− 1

2 ek for j > 0 (11a)

y−
〈k〉(−j) = F�(A�)j−1W− 1

2 ek for j > 0 (11b)

y+
〈k〉(j) = C�(A�)jW

1
2 ek for j ≥ 0 (11c)

with F := AWC� +BD�. The past inputu−
〈k〉 and normal-

ized future output(1/σk)y+
〈k〉 are also called thek-th Schmidt

pair ofΣfull .
A more basic, representation-free definition is as follows.

The first singular vectoru〈1〉 is characterized by the property
that it maximizes the ratio of norms of future outputs and past
inputs in the system, i.e.,

u〈1〉 = argmax
‖u−‖=1

‖y+‖
‖u−‖ , (12)

wherey+ is an abbreviation for[G(u− ∧ 0)]+. The corre-
sponding maximum ratio is denoted asσ1, which corresponds
to σ1 in (5).



Fork = 2, . . . , n the past inputu−
〈k〉 maximizes the same

criterion subject to some orthogonality requirements:

u−
〈k〉 = argmax

‖u−‖=1,u−⊥u〈1〉,... ,u〈k−1〉

‖y+‖
‖u−‖ (13)

The ratios of the norms define the numbersσk and correspond
to the Hankel singular valuesσk in (5).

Notice that the aforementioned lower boundσk+1 of the
Hankel criterion (7) for approximationsΣred of degreek fol-
lows immediately from this formulation. Indeed, a smaller
value for this bound would imply that the space of free
responses ofΣred (i.e., all future outputs with zero fu-
ture input) is not orthogonal to any element in the span of
{y−

〈j〉}j=1,... ,k+1, which would contradict thatΣred is of de-
greek.

Now define the rational functionGk as the (unique) linear
time-invariant single-input system that maps the past input
u−

〈k〉 onto the truncated output,

Gk : (u−
〈k〉 ∧ 0) → (y−

〈k〉 ∧ 0). (14)

That is, letGk be defined by the system with the property that(
(u−

〈k〉 ∧ 0) , (y−
〈k〉 ∧ 0)

)
∈ Σ(Gk).

Consequently, the error system̃Gk := G−Gk is then deter-
mined by the property

G̃k : (u−
〈k〉 ∧ 0) → (0 ∧ y+

〈k〉). (15)

We remark that, by construction,Gk = G − G̃k has finite
�2-induced norm and thereforeGk has no poles on the unit
circle. We can therefore decomposeGk into a causal and
anti-causal part,

Gk = Gc
k +Ga

k (16)

cf. (9). Then

• Σ(Gc
k) is an optimal(k − 1)st order Hankel-norm ap-

proximant ofΣ(G), i.e., it has degreek − 1 and, within
the class of all rational stable functions of degree at most
k− 1, it has minimal Hankel-distanceδH(G,Gc

k) = σk.

• In particular, Σ(Gn) is the optimal(n − 1)st order
Hankel-norm approximant ofG, and

• Σ(G1) is the Nehari extension ofG.

• Gk is the(k − 1)st order Hankel approximation minus
the Nehari extension of thek − 1st order error system
G̃k.

This implies that, at least for single-input systems, optimal
Hankel-norm reductions are obtained by therealization of a
system from a time series which is obtained by truncation of
a specific output of the original system. This result therefore
connects the problem of optimal Hankel-norm model reduc-
tion with realization theory.

The main observation in this section is not new, and we
mention a few specific places in the literature were a similar
observation is made. In fact, in the original AAK paper [1, p.
34, first formula], the error systems are defined as the quotient
of Schmidt pairs, and approximations as the causal part of the
difference between the original system and the error system,
for siso systems. Some alternative formulations can be found
in e.g. [7, Section 7], [5, formula (5.1)], [3, Section 10], and
[12, Lemma 8.22, fork = 1].

Our formulation differs from this in that it emphasizes a
direct characterization of the approximation system (Gk) in
terms ofy−

〈k〉 (which is not a left- or right singular vector of
Σfull ), rather than an indirect approach via the error system
(G̃k), which maps left- to right singular vectors.

6 Proof

We will proof the following statements

1. ‖G̃k(u)‖ = σk‖u‖
2. Gk as defined in (14) is of (McMillan) degree at most
n− 1.

3. Gc
k is of McMillan degree at mostk − 1.

From the first item it follows thatδH(G,Gk) = σk, hence
alsoδH(G,Gc

k) = σk, asGk − Gc
k is anti-stable, cf. (10).

The optimality ofΣ(Gc
k) then follows from the last item. The

second item is an auxiliary result that is also used for deriving
some explicit formula later on.

Proof of 1.
First observe that the statement is true for inputu = u−

〈k〉, as

the ratio of norms ofy+
〈k〉 andu−

〈k〉 is equal toσk, cf. (13).
Further, these two sequences have exactly the same correla-
tions. Namely, fork = 1, observe that ifσ2

1 〈σju〈1〉,u〈1〉〉 �=
〈σjy+

〈1〉,y
+
〈1〉〉 for somej, impliesu〈1〉 + εσju〈1〉 would cor-

respond to a ratio of norms beyondσ1 for sufficiently small
(not necessarily positive)ε, which contradicts (12). Fork > 1
it follows from a straightforward inductive argument (alter-
natively, it may be derived from the explicit formula (11) for
the singular vectors). Equality of correlations implies that
‖G̃k(u)‖

‖u‖ = σk, for u any linear combination ofu−
〈k〉, and

hence for allu ∈ �12.

Proof of 2.
We first derive that for allj > 0, u−

〈k〉 is orthogonal to all
shifts ofd that have zero future,

u−
〈k〉 ⊥ σj(d) for all j > n (17)

with d as defined below equation (3). Indeed, the output
corresponding to these shifts is given byσj(N), and also has
zero future. Now ifu−

〈k〉 is not orthogonal toσk(d) for some

k > n, then substracting its projection ontoσk(d) would
decrease the norm of past inputs, without changing the free
responsey+. This contradicts (12). The same argument also



applies fork > 1, with a slight adaptation in order to take the
extra orthogonality conditions into account.

Now (17) implies that

(d0u−
〈k〉 + d1σu−

〈k〉 + . . .+ dnσ
nu−

〈k〉) ∈ �−2
is zero fort < −n. Hence also the corresponding output in
Σfull must be zero fort < −n. Consequently,

(d0y−
〈k〉 + d1σy−

〈k〉 + . . .+ dnσ
ny−

〈k〉) ∈ (�p2)
−

is zero fort < −n, which implies that each individual output
component iny−

〈k〉 is orthogonal to the left-shifts ofd with
zero future,

e�k y−
〈k〉 ⊥ σj(d) for all j > n, k = 1, . . . , p. (18)

We remark that these orthogonality properties can also be
deduced on the basis of (11), from the observation thatd(z)
is the characteristic polynomial ofA and an application of the
Cayley-Hamilton theorem.

Now define

d〈k〉 := (d0u−
〈k〉 + d1σu−

〈k〉 + . . .+ dnσ
nu−

〈k〉) (19)

N〈k〉 := (N0y−
〈k〉 +N1σy−

〈k〉 + . . .+Nnσ
ny−

〈k〉) (20)

ThenGk(d〈k〉 ∧ 0) = (N〈k〉 ∧ 0) and, as in (3),(
(d〈k〉 ∧ 0) , (N〈k〉 ∧ 0)

) ∈ Σ(Gk).

We have shown thatd〈k〉 andN〈k〉 are trajectories with sup-
port [−n,−1]. HenceGk is of McMillan degreen − 1 (or
smaller if there are common zeros and poles). In fact, the
elements ofd〈k〉 andN〈k〉 restricted to[−n, 0] consist of the
coefficients of the denominator and numerator ofGk, cf. (1)
and (3).

Proof of 3.
First notice that fork = n the statement has already been
proved in2. At the opposite side, fork = 1 it states that
G1 is in fact the Nehari extension ofG. For values1 <
k < n,Gk contains causal as well as anti-causal modes, and
a decomposition of the stable and unstable part ofGk on a
purely geometric level falls outside the scope of this paper.
Instead, we give a proof that is based on the explicit formulas
in (11).

A backward state representation for the input-output pairs

w =
[
u
y

]
∈ �p+1

2 for Gk is given by

x′ = A�σx′ +A�ekh

w′ =
[
B�

F�

]
σx′ +

[
B�

F�

]
ekh,

which means that all input/output pairs ofGk can be generated
by auxiliary inputh through this state space system.

Eliminatingh again gives

x′ = A�T�
k σx

′ +
A�ek
B�ek

u

y′ = F�T�
k σx

′ +
F�ek
B�ek

u

with Tk := In − Be�
k

e�
k B

.

The poles of this system (forward in time) are the eigenval-
ues of(TkA)−1, and we have to show thatTkA has at most
k − 1 anti-stable eigenvalues. This is proved in a seperate
lemma.

Lemma Let be given an asymptotically stableA ∈ R
n×n,

andB ∈ R
n×1, such that they have diagonal controllability

gramianW = AWA� + BB� = diag(σ1, . . . , σn) with

nonincreasing diagonal entries. Then(In − Be�
k

e�
k B

)A has at

mostk − 1 anti-stable poles.

Proof. The latter matrix equalsTkA with Tk defined as
above. Ifσ1 ≥ 1, first redefineB asµB with 0 < µ < 1/σ1.
As Tk is invariant under scalar multiplication ofB, it now
suffices to prove the lemma forσ1 < 1.

DetermineB̃ ∈ R
n×n such thatAA� +BB� + B̃B̃� =

In. Then the (non-singular) controllabilility gramian of
(A, B̃) equalsIn −W =: W̃ , asA(In −W )A� + B̃B̃� =
In − BB� − AWA� = In −W . Now the controllability
gramianX of (TkA, TkB̃) is given byW̃ − σ−1

k W , which is
derived as follows.

By definition,X is the solution ofX = TkAXA
�T�

k +
TkB̃B̃

�T�
k . As TkB = 0 and e�k Tk = 0, it follows

that Tk(AXA� + B̃B̃�)T�
k = Tk(AXA� + B̃B̃� −

σ−1
k BB�)T�

k = TkXT
�
k = X+(In −Tk)X(In −Tk)� =

X. Observe thatX is diagonal, withk − 1 negative entries.
From a well-known result on Lyaponov solutions (which in
fact admits a straightforward proof) this implies thatTkA has
indeedk − 1 anti-stable poles (cf. e.g. [4, Theorem 3.3]✷

7 Reduction Formula

In the proof we derived some explicit formula for the func-
tionsGk. For k = n − 1 this is equal to then−1-th order
approximant, and fork = 1 this is the Nehari extension ofG,
but fork in between they contain an anti-stable part that still
has to be removed in order to obtain the final approximation.
Here we combine the results forGk into one formula, and do
not address the question of dissolving their stable part.

From (20) and (19) it follows that

Gk(z) =
N 〈k〉(z)
d〈k〉(z)

(21)

with

N 〈k〉(z) = N 〈k〉
0 +N 〈k〉

1 z + . . . N 〈k〉
n−1z

n−1,

d〈k〉(z) = d〈k〉
0 + d〈k〉

1 z + . . . d〈k〉
n−1z

n−1,
(22)

and coefficients given by

N
〈k〉
j = F�A�

n−j−1ek and

d
〈k〉
j = B�A�

n−j−1ek,
(23)



where

Aj := d0Aj + . . .+ dj−1A+ djIn.

The sequence{A0, . . . , An−1} is known as the Faddeev
sequence ofA, and can be computed recursively by setting
A0 = d0In, andAk := AAk−1 +dkIn. We remark that Fed-
deev sequences can be used for determining matrix inverses,
and are applied for solving polynomial Lyaponov equations
([6, 10]). We have not yet investigated these connections in
detail.

We conclude by some remarks on the use of these formulas.
They are easily adapted for state representations that are not
balanced, e.g. controller and observer canonical forms. As a
state space basis transformation does not affect the character-
istic polynomial of theA-matrix, and affect all terms in (22)
in the same way, these formulas hold true forek replaced by
someunknown zk ∈ R

n. Balancing then amounts to find-
ing zk such that the corresponding systems in (21) have the
desired optimality properties.

Further notice thatd〈k〉 has the stable poles of thek−1-
th Hankel-norm approximant, together with (at most)n − k
anti-stable poles of the Nehari extension of the error system.
The formula ford〈k〉 may be grouped into a square matrix

[An−1B,An−2B, . . . , A0B] ∈ R
n×n

Thek-th row then contains the coefficients of the denomina-
tor of Gk, and this compact formula may be used to further
explore the proces of model reduction.

8 Conclusions

We gave a straighforward construction and a self-contained
derivation of optimal Hankel-norm approximants for discrete
time single-input systems. It has been shown that optimal
Hankel-norm approximants can be obtained by therealization
of a system from time series which are obtained by truncation
of specific outputs of the original system. This result therefore
connects the problem of model approximation with realiza-
tion theory of discrete time systems. Indeed, we have shown
that by suitably disconnecting the past and future of ‘balanced
trajectories’ of the original system, optimal approximants (in
the Hankel sense) are obtained by removing the anti-causal
part. A completion of the proof on the level of the trajectories
is under construction. Some explicit expressions have been
obtained for Hankel approximants (with the Nehari extension
of the error system not yet removed) in terms of Faddeev
sequences.

Finally, the basic idea of reduction by cutting ‘balanced’
trajectories is more generally applicable. In ([11]) it is applied
in a behavioral framework, and another variant involving a
criterion with relative output errors will be described in the
near future.
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