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Understanding terrorist network topologies and their resilience

against disruption

Roy Lindelauf a,b Peter Borm b Herbert Hamers b
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Abstract

This article investigates the structural position of covert (terrorist or criminal) networks.
Using the secrecy versus information tradeoff characterization of covert networks it is shown
that their network structures are generally not small-worlds, in contradistinction to many overt
social networks. This finding is backed by empirical evidence concerning Jemaah Islamiyah’s
Bali bombing and a heroin distribution network in New York. The importance of this finding lies
in the strength such a topology provides. Disruption and attack by counterterrorist agencies
often focuses on the isolation and capture of highly connected individuals. The remarkable
result is that these covert networks are well suited against such targeted attacks as shown
by the resilience properties of secrecy versus information balanced networks. This provides an
explanation of the survival of global terrorist networks and food for thought on counterterrorism
strategy policy.
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As researchers have begun to unravel the structure and dynamics of many different social, bi-

ological and other complex networks (Strogatz 2001, Jasny et al. 2003, Newman et al. 2006)) it

is realized that the study of criminal and terrorist networks can also benefit from insights thus

obtained (Zacharias et al. 2008). Typically research on terrorist or criminal networks, i.e., covert

networks, considers destabilization strategies (Farley 2003, Carley 2006), organizational character-

izations (McCormick & Owen 2000, Enders and Su 2007, Morselli et al. 2007) and methods for

key player identification (Sparrow 1991, Borgatti 2002). Network oriented research in this domain

is ordinarily done by either assuming a fixed network topology or by the use of empirical historical

data (Magouirk 2008, Asal et al. 2007). However, data on this topic is often inaccurate and anec-

dotal due to the widespread secrecy surrounding governmental data-sets. Mathematical models
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provide an alternative method for gaining insight into covert organizational structures. Once data

becomes available these models can be evaluated and adjusted if necessary.

For many types of (overt) networks the position of their connection topology between the

extremes of order and randomness has been established (Watts and Strogatz 1998, Watts 2004).

However, little is known about the exact position of the connection topology of covert networks,

and consequently about their resilience against disruption. The current study shows where covert

networks are positioned by making use of their topological characterization as secrecy influenced

communication structures (Lindelauf et al. 2009a/b). We find that the common characterization

of social systems as small-world networks is generally not applicable to covert networks. This

phenomenon can be explained by the fundamental dilemma such organizations have to solve: how to

efficiently coordinate and exercise control while at the same time remaining secret. We corroborate

our results with empirical findings of Jemaah Islamiyah’s bombing of a Bali nightclub (Koschade

2006) and the active core of a heroin distribution network in New York City (Natarajan 2006). In

addition we show that a covert network topology is strongly resilient against disruption strategies

focused on capturing and isolating highly connected individuals, partly explaining the difficulties

in disrupting current terror networks.

Theoretical results and empirical investigations indicate that terrorist organizations have to

make a trade-off between efficient coordination and control on the one hand and maintaining

secrecy on the other. For instance Enders and Su (2007) model the process by which terrorists

select ‘between the competing ends of security versus the unbridled flow of information’. They argue

that rational terrorists will attempt to counter increased efforts at infiltration and restructure

themselves to be less penetrable, often by adopting certain network structures. That terrorist

organizations take secrecy explicitly into account is well known: in a video lecture Mousab al

Suri (an alleged Al Qaeda affiliate that was captured in November 2005) indicates that certain

network structures should be avoided to ensure the secrecy of the organization (Bergen 2006).

Terrorists operating according to networked organizational forms are also observed in practice. For

instance the Nov. 26 Mumbai attack showed tactical commanders and individual team members

using satellite and cell phones to connect to strategic commanders out of theatre. Multiple teams

consisting of several individuals were able to communicate and direct each other as the attacks

progressed. What sets apart such attacks is not the use of technology per se but the networked mode
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of operation that it enables. The organizational form of these attackers is not easily characterized

as being ’hierarchical’ or ’decentralized’. However, what is clear is that terrorist, insurgent and

criminal organizations are increasingly able to cross borders, engage in fluent relationships and

‘swarm’ their objectives to achieve their goals. The underlying mechanism to all these operations

is the networked topology: information is exchanged on communication networks, weapons diffuse

through trafficking networks and Shura councils meet in affiliation networks. It is therefore of

paramount importance to understand these network structures.

Lindelauf et al. (2009a) introduce a multi-objective optimization framework to analyze the

structure of terrorist networks taking the secrecy versus information tradeoff into account. That this

tradeoff exists is intuitively clear: if everybody in the covert organization knows everybody else, then

the security risk to the organization is very high because the exposure of an individual potentially

exposes the entire organization. On the other hand, a very sparsely connected organizational

network topology is difficult to coordinate and control, simply because efficient communication

between individuals in such an organization is hard. We capture these critical considerations by

use of an information measure I, a secrecy measure S, and a balanced trade-off measure µ. A

detailed description of the methodology used can be found in the the appendix. The information

measure I reflects the fact that the ability to transfer information between individuals in a network

is inversely proportional to the number of edges in the shortest path between those individuals.

On the other hand, the secrecy measure S reflects the fraction of individuals in the network that

is expected to remain unexposed upon capture of individuals according to a realistically chosen

probability distribution. Finally the total performance of a covert organization in dealing with the

information versus secrecy trade-off dilemma is reflected by the multi-objective optimization based

function µ = SI. The higher the value of µ a network attains, the better it does in balancing

secrecy and information.

Terrorist networks evolve, i.e., ‘it would be naive to think that terrorists and their networks

would remain invariant to measures designed to track and infiltrate the inner workings of their

organizations’ (Enders and Su 2007). To what kind of structures do these terrorist networks

evolve? Clearly, we argue that the proactive counterterrorism activities after 9/11 have resulted

in terrorist networks adopting more decentralized, non-hierarchical networks, i.e., they have taken

secrecy explicitly into account as design parameter. Thus these terrorist networks are a very special
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subset of general social networks about which a great deal is known (see for instance Wasserman

and Faust 1994). For instance it is well known that many social networks can be characterized

as small-worlds, i.e., most individuals in the network can be reached by a small number of steps.

The evidence concerning terrorist network structures however is often anecdotal, providing an

impetus for the development of theoretical models of covert networks. The aim of this article is

therefore to analyze the structure of secrecy influenced terrorist networks, investigate their small-

world properties and the resulting consequences on their survivability properties. The next section

discusses the application of the secrecy versus information tradeoff characterization of terrorist

networks to the analysis of their small-world structure. The important insight is that such terrorist

networks do not appear to be small-worlds. A fact that can be motivated from a secrecy standpoint.

In addition we will present empirical proof of this claim. Next we investigate the resilience of these

terrorist network structures against disruption. We find that such network structures perform well

against disruption, actually they outperform common social networks in case of targeted attacks.

A fact that should have profound implications for counterterrorist strategies.

Small-world network analysis

Watts and Strogatz (1998) quantified small-worlds as networks with low characteristic path length

L and high clustering coefficient C relative to random networks with the same number of vertices.

The characteristic path length L is a global property that measures the typical separation between

two individuals in the network. Obviously the characteristic path length L will be inversely related

to the information measure I. This because a high separation between terrorists in the network will

make it difficult for them to coordinate and control as reflected by a low information measure. The

clustering coefficient C, a local property, measures the cliqueshness of a typical neighborhood. In

many social networks an individual’s friends are also friends among each other. Clearly, in covert

networks this in general will not be the case because too many interconnections among individuals

will degrade the secrecy of such an organization. The clustering coefficient C is based on the

number of edges that exist between the neighbors of each vertex.

It is generally argued that covert organizations facing an exogenous threat transform into hybrid

network structures that lie somewhere in between sparse networks (such as the star, ring, lattice

or path) and the complete network in which everybody is connected to everybody else (Arquilla
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and Ronfeldt 2001). To simulate this transformation we interpolate between regular networks

and the complete network and for each instance establish the optimality of the resulting network

with regard to the secrecy versus information tradeoff characterization. To investigate whether the

small-world characterization of various social networks also holds true for covert networks, we thus

generate intermediate hybrid networks. Our procedure starts with an initial network (a star, ring,

path or lattice) and with a probability p that each vacant edge is added. For fixed values of p

several indicators relating to the small-world structure (L,C) and the secrecy versus information

tradeoff (µ) of the network are computed and averaged over 20 realizations. In Fig.1 we plot the

normalized values of L, C and µ versus p for each of the four possible initial networks. It can be

seen that the maximum value of µ, indicating approximate optimal covert network structures, is

typically not attained at low characteristic path lengths and high clustering coefficients, features

that characterize small-world networks. For instance, if the initial graph equals the path graph

(Fig. 1 top right), then it can be seen that µ attains its maximum around p = 0.09, where the

value of L is small and C does not attain a high value. In particular, the tiny fraction of shortcuts

that suffices to create small-worlds, although increasing the ability to communicate, increases the

security risk to a covert network. Clearly covert networks favor low clustering because this is in

the interest of secrecy whereas low characteristic path lengths ensure the necessary communication

and control abilities.
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Figure 1: Normalized characteristic path length L, clustering coefficient C and performance measure
µ as a function of the probability p with which each vacant edge is added to an initial network
which is a lattice (top left), path (top right), star (bottom left) or ring (bottom right). All networks
have 100 vertices and L, C and µ are averaged over 20 realizations for each of the values for p.
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Empirical examples

Our simulation shows that the small-world phenomenon is not characteristic of theoretically optimal

covert networks. To obtain additional evidence we compute the characteristic path length and

clustering coefficient for empirical covert networks: a heroin distribution network in New York city

and the Jemaah Islamiyah cell responsible for the Bali bombings in 2002. We compare these values

to the characteristic path length and clustering coefficient of a graph with the same number of

vertices in which every possible edge occurs independently with probability p = 1
2 , i.e., a random

graph. To compare these outcomes with networks that are small-worlds we present an empirical

example of a film-actor network (Watts and Strogatz 1998). It can be seen that both empirical

covert networks do not show the small-world phenomenon because their characteristic path lengths

as well as clustering coefficients are comparable to those of a random network (table 1). The film

actor network however is a small-world: its characteristic path length is of similar order as the

random graph on the same number of nodes whereas its clustering is much higher.

Lactual Lrandom Cactual Crandom

Heroin Network 4.74 4.93 0.44 0.13
Jemaah Islamiyah 3.18 3.11 0.89 0.46

Film actors 3.65 2.99 0.79 0.00027

Table 1: Comparison of characteristic path lengths and clustering coefficients of two empirical
covert networks and an overt empirical network (film actors) and 100.000 randomly generated
graphs with the same number of vertices.

It is also interesting to investigate whether these empirical covert networks optimize their struc-

ture according to the theoretical framework on the secrecy versus information tradeoff dilemma.

Therefore we compute µ for both empirical covert networks (µhe and µji respectively) and we ap-

proximate the optimal value of µ on networks of the same order (µopt
he and µopt

ji respectively). We

find that µhe

µopt
he

= 0.33
0.39 = 0.85 and that µji

µopt
ji

= 0.28
0.38 = 0.74. We may conclude that both networks

attain empirical values for µ that are close to optimal and hence correspond to the region (Fig.

1) within which the existence of a possible small-world structure is contradicted. Thus we obtain

further evidence for the fact that covert organizations are not small-worlds. In the next section we

will explain the advantage of adopting structures differing from small-worlds.
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Covert network resilience

To counter the terrorist threat it is essential to focus on the terrorists (Sageman 2008). Generally

speaking, in countering a covert network, the removal or isolation of individuals is a key strat-

egy, the effect of which is in part determined by the network’s robustness properties. An example

of this is the U.S. government’s hope on decapitating Al Qaeda by pursuing high-value targets.

In complex network theory it has been shown that networks with a few highly connected nodes

(hubs) are resistant to random failures because these hubs dominate their topology (Albert et al.

2000). However, this comes at the cost of vulnerability to deliberate attacks on such hubs. This

appears one of the reasons why empirical covert organizations, instead of relying on a few hubs,

have evolved into decentralized, non-hierarchical structures as theoretically quantified by our se-

crecy versus information trade-off performance measure. A case in point is Al Qaeda (Sageman

2008): local groups self-organize by radicalization and interconnect, for instance through the inter-

net. There is no top to bottom leadership or organization. What results is a sparsely connected

network safeguarding secrecy, however with low separation (due to the internet’s global reach). To

understand the resilience of such an organizational form we investigate the effect of the removal

of a fraction of vertices of an approximate optimal terrorist network on the basis of the secrecy

versus information performance measure. More specifically we compare two scenarios: a fraction f

of vertices is either removed randomly from such an approximate optimal terrorist network or the

same fraction f being removed consists of vertices with the highest degrees. Results are plotted in

Fig.2 (left) in case of random removal and in Fig.2 (right) in case of targeted removal.
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Figure 2: Normalized values of S, I and µ as function of the fraction f of randomly (left) and
targeted (right) removed vertices.
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From Fig.2 (left) it can be seen that the fraction of randomly removed vertices does not seem

to affect the performance of the remaining network structure very much, i.e., µ is only slightly

decreasing with increasing values of f . Only after a very large fraction of vertices has been removed

(f ≈ 0.75) does an effect take shape, which can be explained by the disintegration of the network.

Fig.2 (right) on the targeted removal of high degree vertices shows a surprising result. Even

though the information measure decreases rapidly with increasing f , the secrecy performance of

the organization in fact increases. Balancing these two aspects, the total performance measure µ

increases with respect to the fraction f of targeted removals. Thus the more one focuses a desta-

bilization strategy on the targeted removal of central individuals the more a covert organization’s

capacity to coordinate and control is reduced but the higher its performance in balancing the infor-

mation versus secrecy trade-off will be. Only at very high values for the fraction f ≈ 0.8 does the

performance measure start to decrease. The implication for terrorist networks is obvious. Their

evolution towards global, sparsely connected, leaderless networks has enabled them to survive the

continuing targeted attack on their nodes.

Conclusion

By studying terrorist networks from the small-world perspective we shed new light on their struc-

tures and the implications this holds for their survival. Since covert organizations are aware of

their need to balance secrecy and information, our analysis, using the total performance measure

as an evaluation criterion, shows that their network topology will not satisfy a ‘small-world’ char-

acterization as common in many social systems. In addition we presented empirical evidence to

support this claim. That terrorist networks avoid small-world structures can be explained by the

low secrecy a highly clustered networked organizational form offers. Another reason for adopting

a non small-world topology is found in the remarkable advantage the derived network topology

offers against targeted removal. It is known that ‘normal’ social network topologies will show fast

degradation in case of removal of hubs. However we have shown that terrorist networks adopting

secrecy and information balanced networks are perfectly capable to outlast targeted attacks. This

may partly explain why current transnational terrorist networks appear to be so resilient: as long

as disruption strategies do not completely disintegrate the network such efforts only strengthen

their ability to attain a balance at remaining secret while being operationally effective...instead of
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disabling them to operate at all.

Appendix

A covert network is modeled by a graph g = (N, E), where N represents the set of members

(terrorists or terror cells) of the organization and E represents the links among these members. For

instance such links may represent the exchange of bomb making material or the communication

over the internet. We set |N | = n and |E| = m. The set of all such networks is indicated by

G(n,m).

Information measure I

The information measure of a graph g ∈ G(n,m) is defined by the normalized reciprocal of the

total distance in g, i.e.,

I(g) =
n(n− 1)

T (g)
.

Here T (g) equals the total geodesic distance, i.e., T (g) =
∑

(i,j)∈N2 lij(g) with lij(g) the geodesic

distance between vertex i and vertex j. It follows that 0 ≤ I(g) ≤ 1. Thus the information measure

captures the ability of the terrorist organization to exchange information, i.e., to coordinate and

control. The higher the value for I the better the organization can do so.

Secrecy measure S

The secrecy measure of a graph g ∈ G(n,m) is defined by

S(g) =
2m(n− 2) + n(n− 1)−∑

i∈N d2
i (g)

(2m + n)n
.

Here di(g) equals the degree of vertex i in g. It follows that 0 ≤ S(g) ≤ 1. It can be seen that the

secrecy measure equals the expected fraction of the organization that survives given that members

of the organization are exposed according to a realistically chosen probability distribution.

Balanced trade-off performance measure µ
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For g ∈ G(n,m) it holds that,

µ(g) = S(g)I(g) =
(n− 1)(2m(n− 2) + n(n− 1)−∑

i∈N d2
i (g))

(2m + n)T (g)
.

Following multi-objective optimization theory the terrorist organization, faced with trading off

secrecy versus information, adopts those values of S and I that maximize their product. For a

more thorough motivation of this measure see Lindelauf et al. (2009a).

Small-world indicators

For g ∈ G(n,m) the characteristic path length is defined by

L(g) =
1
2

T (g)
n(n− 1)

=
1

2I(g)
,

and the clustering coefficient is defined by,

C(g) =
1
n

∑

i∈N

Ci,

where

Ci =
|Ni(g)|

|Γi(g)|(|Γi(g)| − 1)
.

Here Γi(g) = {j ∈ N |lij(g) = 1} is the set of neighbors of vertex i in network g, and Ni(g) =

{{k, l} ∈ Γi(g)|lkl(g) = 1} is the set of neighbor pairs of vertex i that are connected in g. Small-

world networks are characterized by low L and high C. When compared to random networks a

small-world network satisfies L ≈ Lrandom and C is of a different order of magnitude than Crandom.

Use of normalization

Since only relative comparison plays a role we normalized the indicators I, S, L, C and µ by dividing

them by the maximum they attained at each relevant instance. This avoids scaling differences in

the corresponding figures but does not affect the resulting analysis.

Generating an approximate optimal covert network

A theoretically optimal covert network was approximated on n = 100 individuals as follows. We

let p ∈ {0.3, 0.4, 0.5, 0.6, 0.7} and for each fixed p we generated 100.000 random graphs with each
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possible edge present independently and identically distributed with probability p. Among these

500.000 networks the one that attained the highest value for µ was selected.
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