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Abstract:

In this paper we use Lagrange interpolation polynomials to obtain good gradient estimations.

This is e.g. important for nonlinear programming solvers. As an error criterion we take the

mean squared error. This error can be split up into a deterministic and a stochastic error.

We analyze these errors using (N times replicated) Lagrange interpolation polynomials. We

show that the mean squared error is of order N−1+
1

2d if we replicate the Lagrange estimation

procedure N times and use 2d evaluations in each replicate. As a result the order of the

mean squared error converges to N−1 if the number of evaluation points increases to infin-

ity. Moreover, we show that our approach is also useful for deterministic functions in which

numerical errors are involved. Finally, we consider the case of a fixed budget of evaluations.

For this situation we provide an optimal division between the number of replicates and the

number of evaluations in a replicate.
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1 Introduction

In this paper we estimate the gradient �f(x) of a function f : IRn → IR. The function f is

not explicitly known and we cannot observe it exactly. All observations are the result of an

evaluation of the function, which is subject to certain perturbations. These perturbations

can be of stochastic nature (e.g. in discrete-event simulation) or numerical nature (e.g.

deterministic simulation models are often noisy due to numerical errors).

Obviously, gradients play an important role in all kind of optimisation techniques. In

most non-linear programming (NLP) codes first-order and even second-order derivatives are

used. Sometimes these derivatives can be calculated symbolically: in recent years automatic

differentiation has been developed, see e.g. Griewank (1989). Although this is becoming

more and more popular, there are still many optimisation solvers which use e.g. finite

differencing to obtain a good approximation of the gradient. See e.g. Gill et al. (1981) or

Dennis and Schnabel (1989).

Finite differences schemes have also been applied and analysed for problems with stochas-

tic functions. Kiefer and Wolfowitz (1952) were the first to describe the so-called stochastic

(quasi)gradients; see also Blum (1954). Methods based on stochastic quasi gradients are

still subject of much research; for an overview see Ermoliev (1980). It was shown that the

estimation error by using optimal stepsizes is O(N−
1

2 ) for forward finite differencing and

O(N−
2

3 ) for central finite differencing, in which N is the number of replicates; see Glynn

(1989), Zazanis and Suri (1988), L’Ecuyer and Perron (1990) and L’Ecuyer (1991).

In this paper we will improve these convergence rates by extending the finite difference

method. Instead of using two evaluations for each dimension, we use 2d evaluations. We

use Langrange interpolation polynomials to obtain a good point estimate of the gradient

of a function f : IRn → IR. More precisely, each partial derivative is estimated using an

interpolating function h(x) = a0+a1x+a2x
2+ ...+a2d−1x

2d−1 that equals f in 2d evaluated

points in one coordinate direction of f , with d a positive integer. Then h′(0) = a1 is an esti-

mate for this partial derivative. We consider the errors in the gradient estimation both due

the deterministic approximation error (’lack of fit’) and the presence of noise. We provide

bounds for both the deterministic and the stochastic error. We show that the convergence

rate is N−1+
1

2d , where N is the number of replicates of the Lagrange interpolation. This

improves the above mentioned convergence rates for finite differencing when d ≥ 2. Note
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that d = 1, resulting into a linear Lagrange interpolation function, corresponds to the central

finite difference method. Moreover, we provide some results in case we have a deterministic

function in which numerical errors are involved. Finally, given a fixed budget of evaluations,

we provide an optimal division between the number of replicates (N) and the number of

evaluations in such a replicate (2d).

This paper is organized as follows. Section 2 discusses the estimate of the gradient using

Lagrange polynomials. The replicated Lagrange polynomials and the behavior of the mean

squared error are considered in Section 3. In Section 4 we consider the error of the gradient

estimation if the function is deterministic. The optimal division between the number of

replicates and the number of evaluations in such a replicate, if there is a fixed budget of

evaluations, is discussed in Section 5. An illustrative example is provided in Section 6.

2 Gradient estimation of stochastic noisy functions us-

ing Lagrange polynomials

In this section we estimate the gradient of a 2d times continuously differentiable function

f : IRn → IR that is subject to stochastic noise using Lagrange interpolation polynomials.

We provide an upper bound for the mean squared error.

Let f : IRn → IR be a function subjected to stochastic noise. Hence, for a fixed y ∈ IRn

we observe

g(y) = f(y) + ε(y). (1)

The error term ε(y) represents a random component. In this paper we assume that the error

terms in (1) are i.i.d. random errors with E[ε(y)] = 0 and V [ε(y)] = σ2. This assumption

implies that the error terms do not depend on y. Note that g can also be a computer

simulation model.

We will approximate ∂f(y)

∂yi
,(i = 1, ..., n) in a point y ∈ IRn using the approximation

function g, defined in (1). Without loss of generality we take y = (0, ..., 0)T . For convenience,

let I = {−d, ...,−1, 1, ..., d}. Next, the function g is evaluated in the grid points yi
v
= vhei

for all v ∈ I, where h > 0 and ei is the i-th unit vector of dimension n. Observe that the grid
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points are equidistant on each side of zero and that this distance is given by h (see Figure

1.1).

he1    ....    dhe1

-dhe1    .... -he1

Figure 1.1: The 2d grid points for some h.

Now, take the interpolating polynomial hi : IR→ IR defined as

hi(x) = a0 + a1x+ a2x
2 + ...+ a2d−1x

2d−1 (2)

that is exact in the evaluated points, i.e., according to (1) it holds that

hi(x
i

v
) = g(yi

v
) for all v ∈ I, (3)

where xi
v
= eT

i
yi
v
. Obviously, h′

i
(0) = a1 is an estimate of ∂f(0)

∂yi
.

hi

-hei-2hei-3hei-4hei 4hei3hei2heihei

h’i(0)= a1

Figure 1.2: Estimate of gradient using interpolating polynomial.
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Using the Lagrange functions lv,i : IR→ IR defined as

lv,i(x) = Πu∈I\{v}

x− xi
u

xi
v
− xi

u

,

for any v ∈ I, (2) can be rewritten into

hi(x) =
∑
v∈I

lv,i(x)g(y
i

v
). (4)

Hence, the derivative of hi(x) equals

h′
i
(x) =

∑
v∈I


lv,i(x)g(yiv) ∑

u∈I\{v}

1

x− xi
u


 . (5)

From (5) it follows that the estimate of the partial derivative is a linear combination of the

evaluations. Observe that the corresponding coefficients only depend on the 2d evaluation

points. Table 1.1 provides the coefficients for 2d = 2, 4, 6, 8, 10, respectively. The example

in Section 6 will illustrate the use of the coefficients in Table 1.1.

2d=2 2d=4 2d=6 2d=8 2d=10

v = ih coeff g(yi
v) v = ih coeff g(yi

v) v = ih coeff g(yi
v) v = ih coeff g(yi

v) v = ih coeff g(yi
v)

-1 -0.5 -2     0.0833 -3    -0.0167 -4     0.0036 -5    -0.0008
1 0.5 -1    -0.6667 -2     0.1500 -3    -0.0381 -4     0.0099

1     0.6667 -1    -0.7500 -2     0.2000 -3    -0.0595
2    -0.0833 1     0.7500 -1    -0.8000 -2     0.2381

2    -0.1500 1     0.8000 -1    -0.8333
3     0.0167 2    -0.2000 1     0.8333

3     0.0381 2    -0.2381
4    -0.0036 3     0.0595

4    -0.0099
5     0.0008

Table 1.1: Coefficients to generate estimate partial derivative.

Obviously, we are interested in the quality of h′
i
(0) as estimate of the partial derivative ∂f(0)

∂yi
.

Therefore we define

h′
i,1(x) =

∑
v∈I


lv,i(x)f(yiv) ∑

u∈I\{v}

1

x− xi
u


 (6)
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and

h′
i,2(x) =

∑
v∈I


lv,i(x)ε(yiv) ∑

u∈I\{v}

1

x− xi
u


 . (7)

It follows that

h′
i
(x) = h′

i,1(x) + h′
i,2(x). (8)

A well-known measure for the quality of the estimate of the partial derivative ∂f(0)

∂yi
by h′

i
(0)

is the mean squared error:

E

(
h′
i
(0)−

∂f(0)

∂yi

)2

.

By defining the deterministic error

(
error

h′
i

d

)2

=

(
h′
i,1(0)−

∂f(0)

∂yi

)2

and the stochastic error

(
error

h
′

i

s

)2

= E( h′
i,2(0))

2

we get, because E[ε(x)] = 0, that

E

(
h′
i
(0)−

∂f(0)

∂yi

)2

=
(
error

h′
i

d

)2

+
(
error

h′
i

s

)2

. (9)

From (9) we learn that the mean squared error is the sum of the deterministic and the

stochastic error. The following Lemma provides an upper bound for the deterministic error.

Lemma 2.1 For the Lagrange estimate we have

(
error

h′
i

d

)2

≤M2

2dC
2

1(d)h
4d−2,

where C1(d) =
2

(2d)!

∑
d

q=1

[
q2d−1Πr∈I\{q}

|r|

|r−q|

]
and M2d is an upper bound for the 2d order

derivative of f .

P����:

For an upper bound of the deterministic error we use the Kowalewski’s exact remainder for

polynomial interpolation (cf. Davis (1975), pp. 72):

fi(x)− hi,1(x) =
1

(2d− 1)!

∑
v∈I

lv,i(x)

∫
x

xiv

(xi
v
− t)2d−1f 2d(t)dt, (10)
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where fi is the slice function of f taking the ith component as variable. Taking the derivative

to x on both sides of (10), substituting x = 0 and using | f 2d(y) |≤M2d we obtain

error
h
′

i

d
≤
M2d

(2d)!

∑
v∈I

[
| l′

v,i
(0) | (xi

v
− 0)2d

]
,

where l′
v,i
(0) = Πu∈I\{v}

[
0−xi

u

xi
v
−xi

u

]
·
[∑

u∈I\{v}

1

0−xi
u

]
.

Because

| l′
v,i
(0) |=

∣∣∣∣Πu∈I\{v}

0− xi
u

xi
v
− xi

u

∣∣∣∣ 1

| xi
v
|
.

and xi
u
= hu for all u ∈ I, we have

error
h
′

i

d
≤

M2d

(2d)!
2

d∑
q=1

[
(qh)2dΠr∈I\{q}

| r | h

| r − q | h
·
1

qh

]

= M2dC1(d)h
2d−1,

which completes the proof. �

The next Lemma shows, as illustrated in Figure 1.3, that C1(d) converges to zero. Hence,

error
h
′

i

d
will also converge to zero, if M2d is bounded.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C (d)
1

d

Figure 1.3: C1(d) converges to zero.

Lemma 2.2 Let C1(d) = 2

(2d)!

∑
d

q=1

[
q2d−1Πr∈I\{q}

|r|

|r−q|

]
. Then the following two state-

ments hold:

(i) C1(d) ≤ 2d

(
3

4− ε

)d

,
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with ε > 0 small,

(ii) C1(d) → 0 if d→ ∞.

P����: It is sufficient to prove (i). First observe that C1(d) can be rewritten into

C1(d) =
2(d!)2

(2d)!

2d−1∑
q=1

q2d−1

(d+ q)!(d− q)!
.

Let ad = (2d)!

2(d!)2
. Then ad+1 = (d+1)2

(2d+2)(2d+1)
ad. Hence, there exists a small ε > 0 such that

ad ≥ (4− ε)ad+1 for large d. This implies that there is a constant c such that for large d we

have

ad ≥ c(4− ε)d. (11)

Let bd =
∑

d

q=1

q2d−1

(d+q)!(d−q)!
. Then for each q = 1, ..., d we have

q2d−1

(d+ q)!(d− q)!
≤ q−1

q2d−1(
d+q

3

)d+q (d−q

3

)d−q

= 32d
(
d+ q

q

)−d−q (
d− q

q

)−d+q

= 32d

[(
1 + x

x

)−1−x(
1− x

x

)−1+x
]d

≤ 32d ·

(
1

3

)d

= 3d

where the first inequality follows from Stirlings formula and that q−1 ≤ 1. In the second

inequality we use that the continuous and concave function z : (0, 1] → IR defined by

z(x) =
(
1+x

x

)−1−x(1−x

x

)−1+x
is upper bounded by 1

3
. Hence, we can conclude that

bd ≤ d3d. (12)

From (11) and (12) it follows that for large d we have

C1(d) ≤ 2d
( 3

4− ε

)d
,

which completes the proof. �

The following Lemma provides an expression for the stochastic error.
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Lemma 2.3 For the Lagrange estimate we have

(
error

h
′

i

s

)2

= C2(d)
σ2

h2
,

with C2(d) = 4
∑

d

q=1

(
Πr∈I\{q}

|r|

|r−q|

1

q

)2

.

P����: We obtain

(
error

h′
i

s

)2

= E(h′
i,2(0))

2

= E


∑

v∈I

Πu∈I\{v}

0− xi
u

xi
v
− xi

u

ε(xi
v
)

∑
u∈I\{v}

1

0− xi
u




2

= σ2
∑
v∈I


Πu∈I\{v}

0− xi
u

xi
v
− xi

u

∑
u∈I\{v}

1

0− xi
u




2

= 4
σ2

h2

d∑
q=1

(
Πr∈I\{q}

| r |

| r − q |

1

q

)2

which completes the proof. �

The next lemma shows, as Figure 1.4 suggests, that C2(d) is upper bounded.

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

3

3.5

4

C2(d)

d

Figure 1.4: The behavior of C2(d) if the number of evaluation points increases.

Lemma 2.4 Let C2(d) = 4
∑

d

q=1

(
Πr∈I\{q}

|r|

|r−q|

1

q

)2

. Then C2(d) ≤
2

3
π2 for all d.

P����: Observe that C2(d) = 4
∑

2d−1

q=1

(
(d!)2

(d+q)!(d−q)!)

1

q

)2
. Because (d!)2

(d+q)!(d−q)!)
≤ 1 for all q

we have that C2(d) ≤ 4
∑

2d−1

q=1

1

q2
≤ 4 · 1

6
π2 = 2

3
π2, which completes the proof. �
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3 Derivative estimation of stochastic noisy functions

using replicates

In this section we estimate the gradient of a 2d continuous differentiable function f : IRn →

IR that is subject to stochastic noise by replicating the Lagrange estimation of the previous

sections. We investigate the mean squared error.

The following lemmata with respect to the deterministic and stochastic error follow

straightforward from Lemma 2.1 and Lemma 2.3, respectively. Obviously, the upper bound

for the deterministic error will not change in case of replicates.

Lemma 3.1 For the Lagrange estimation with N replicates we have

(
error

h′

i

d

)
2

≤M2

2d
C2

1
(d)h4d−2.

Evidently, the stochastic error in case of replicates is decreased by a factor N , the number

of replicates.

Lemma 3.2 For the Lagrange estimation with N replicates we have

(
error

h′

i

s

)
2

= C2(d)
σ2

Nh2
.

In the final part of this section we determine the step size h that minimizes the mean squared

error. From Lemma 3.1 and 3.2 it follows that the mean squared error, as a function of h,

is upper bounded by

UMSE(h) =M2

2d
C2

1
(d)h4d−2 + C2(d)

σ2

Nh2
. (13)

The following Theorem states the optimal step size and shows that the minimum mean

squared error converges to N−1 if d goes to infinity.

Theorem 3.3 Let UMSE(h) be defined as in (13). Then :

(i) The optimal step size h∗ is h∗ = (PN)
−1

4d with P =

(
C2(d)σ

2

M2

2d
C2

1
(d)(2d− 1)

)
−1

,

(ii) The minimum of UMSE is UMSE(h∗)
−1

4d =M
1

d

2d
σ2−

1

dC3(d)N
−1+

1

2d

with C3(d) = (C1(d))
1

2d (C2(d))
1−

1

2d (2d− 1)
1

2d

(
2d

2d− 1

)
,
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(iii) C3(d) ≤ 0.9π2 for large d,

(iv) UMSE(h∗) → O(N−1) if d→ ∞.

P����:

The proof of (i) and (ii) is straightforward and (iv) results from (ii) and (iii). We will prove

(iii). From Lemma 2.2 (i) it follows that C1(d)
1

2d = (2d)
1

2d

(
3

4−ε

) 1

2 . Because (2d)
1

2d converges

to 1, we have that (2d)
1

2d ≤ 1.1 for large d and
(

3

4−ε

) 1

2 ≤ 1. Hence,

C1(d)
1

2d ≤ 1.1 if d is large. (14)

Obviously, it holds that

C2(d)
1−

1

2d ≤
2

3
π2. (15)

Because both (2d− 1)
1

2d and 2d

2d−1
converge to 1 we have that both terms are upper bounded

by 1.1 if d is large. Combining this last observation with (14) and (15) we obtain

C3(d) ≤ 1.1 ·
2

3
π2 · 1.1 · 1.1 < 0.9π2.

�

In Figure 3.1 the behavior of C3(d) is illustrated.

0 10 20 30 40 50 60 70 80
1

1.5

2

d

C3(d)

Figure 3.1: The behavior of C3(d).

Table 3.1 provides the UMSE for some specific values of d. Observe that already for small
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d the best results in forward finite differencing (O(N−
1

2 )) and central finite differencing

(O(N−
2

3 )) are improved. In fact, for d = 1 our result is identical to forward finite differenc-

ing.

d UMSE

1 1 ·M2σN
−

1

2

2 2.10(M4)
1

2σ
3

2N−
3

4

10 1.68(M20)
1

10σ
19

10N−
19

20

20 1.94(M40)
1

20σ
39

20N−
39

40

50 2.12(M100)
1

50σ
99

50N−
99

100

Table 3.1: The UMSE for some values of d.

4 Gradient estimation of numerically noisy functions

using Lagrange polynomials

In this section we estimate the gradient of a 2d times continuously differentiable function

f : IRn → IR that is subjected to numerical noise using Lagrange polynomials.

Let f : IRn → IR be a function that is subjected to numerical noise. Hence, for a fixed

y ∈ IRn we observe

g(y) = f(y) + ε(y),

where ε(y) is the fixed, unknown numerical error. To estimate the gradient of f we take the

same approach as in section 1.2. Let the function h, h′
i,1

and h′
i,2

be defined as in (4), (6)and

(7), respectively.

Then the total error of the estimate of the partial derivative is equal to∣∣∣∣∂f(0)∂yi
− h′

i
(0)

∣∣∣∣ . (16)

We define the deterministic model error by∣∣∣∣∂f(0)∂yi
− h′

i,1
(0)

∣∣∣∣
11



and the numerical error by∣∣h′
i,2
(0)

∣∣ .
We get, by using (8), the following upper bound for the total error∣∣∣∣∂f(0)∂yi

− h′
i
(0)

∣∣∣∣ ≤
∣∣∣∣∂f(0)∂yi

− h′
i,1
(0)

∣∣∣∣ + ∣∣h′
i,2
(0)

∣∣ . (17)

Similarly to section 2.1 we can provide upper bounds for the deterministic model and

the numerical error. The proofs of the following two Lemmata are omitted because they are

almost identical to the proofs of Lemma 2.1 and 2.3, respectively.

Lemma 4.1 For the Lagrange estimate we have∣∣∣∣∂f(0)∂yi
− h′

i,1
(0)

∣∣∣∣ ≤M2dC1(d)h
2d−1.

Lemma 4.2 For the Lagrange estimate we have∣∣h′
i,2
(0)

∣∣ ≤ C2(d)
1

2

K

h
,

where K is an upper bound of ε.

In the final part of this section we determine the step size h that minimizes the total error.

From 4.1 and 4.2 it follows that the total error TE, as a function of h, is upper bounded by

UTE(h) =M2dC1(d)h
2d−1 + C2(d)

1

2

K

h
. (18)

The next Theorem provides the step size that minimizes the total error.

Theorem 4.3

(i) The optimal step size h∗ is h∗ =

(
C2(d)

1

2K

(2d− 1)2d−1M2dC1(d)

)
−

1

2d

,

(ii) The minimum of UTE is

UTE(h∗) =M
1−

1

2d

2d
C1(d)

1

2dC2(d)
1

2
−

1

4dK1−
1

2d (2d− 1)
1

2d

(
2d

2d− 1

)
.

The proof is straightforward and is therefore omitted.

Observe that for the special case d = 1 that the result in Theorem 4.3 is similar to the

result obtained in Gill et al. (1981), pp.340, for the forward finite-difference approximation.
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5 Grid points versus replicates

In this section we provide an optimal division between the number of grid points and repli-

cates in case the number of evaluations is fixed.

Let B be the total number of evaluations available, N the number of replicates and 2d

the number of evaluations per replicate. The problem to solve is the following:

minimize UMSE(KN
−1

4d ) = C3(d)

(
M2d

σ

) 1

d

σ2N−1+
1

2d (19)

subject to B = 2dN,

d,N positive integers.

In Table 5.1 we provide the optimal division between d and N for some values of B and a

specific ratio of M2d

σ
.

σ   =  1 ,  M 2 d  =  1 σ  =  0 .1 , M 2 d  =  1
B d e r r o r N B d e r r o r N

2 4 2     0 .2 8 7 9 6 4 2 0 . 0 3 4 9 1
8 0 4 3     0 .0 2 0 7 13 4 1 2 3 0 . 0 1 4 8 2

2 1 9 8 4 4     0 .0 0 1 3 2 74 8 2 4 0 4 0 . 0 0 1 2 3 0
3 8 6 7 2 0 5     0 .0 0 0 1 3 8 67 2 3 8 8 0 5 0 . 0 0 0 1 3 8 8

5 4 6 1 4 7 6 6 9 .8 5 E - 0 6 4 5 5 12 3 54 6 6 0 6 9 .8 5 E - 0 .6 4 5 5 5

σ   =  0 . 0 1 , M 2 d  =  1 σ   =  1 0 , M 2 d  =  1
B d e r r o r N B d e r r o r N
4 2 0 .0 0 1 1 1 2 3 7 6 2     0 . 2 9 0 1 5 9 4

1 2 3 0 .0 0 0 3 2 79 9 3 2 3     0 . 0 2 0 8 1 3 3 2 2
2 4 4 0 .0 0 0 1 3
4 0 5 0 .0 0 0 1 4

6 0 0 6 9 .0 3 E - 0 6 5 0

Table 5.1: The optimal division between d and N at a fixed number of evaluations B

In the upper left cell of Table 4.1 we have chosen σ = 1 and M2d = 1. This cell illus-

trates that for a fixed budget B = 24 till B = 803 it is optimal to evaluate 4,(i.e., d = 2),

points in each replicate. Obviously, in this case the number of replicates is determined by

the quotient of the budget and 4. From B = 804 till B = 21984 it turns out that it is

optimal to evaluate 6 points in each replicate. For example, if B = 6000 then we take d = 3,

which equals 6 evaluations, and 1000 replicates. The other three cells of Table 4.1 present
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the results for different ratios of σ andM2d. Observe that the error decreases if σ decreases.

Moreover, the turning points to increase the number of grid points are also decreased if σ

is decreased. For example, if σ = 1, then we turn to 6 grid points if B = 804, whereas if

σ = 0.01 we already increase to 6 grid points if B = 12.

6 An illustrative example

The function under consideration is f(y) = −1 + ey. We observe the function g(y) =

f(y)+ε(y) , where ε(y) is normal distributed with expectation µ = 0 and standard deviation

σ = 0.01. For the true derivative of the function f we have f ′(0) = 1.

In Table 6.1 we compare the performance of CFD and our method, denoted by L. More

precisely, we compare the average absolute error for CFD (| eCFD |) and our method (| eL |)

for several simulation budgets. These averages are based on 1000 replications. The optimal

values for d are derived from Table 4.1. The number of replications for our method, NL,

then equals B

2d
, while for CFD we have NCFD = B

2
. The optimal step size hL is calculated

with formula hL = (PN)
−1

4d with P =
(

C2(d)σ
2

M2

2d
C2

1
(d)(2d−1)

)
−1

. For CFD we used the formula

hCFD = 6

√
9σ2

M2

3

(cf. Brekelmans et al. (2003)) to determine the optimal step size. In both

methods we used M2d = 1 and M3 = 1, respectively.

B d N L N C F D h L h C F D |e L | |e C F D | |e C F D |/ |e L |

3 2 4 4 1 6 7 .6 2 E -0 1 1 .9 6 E - 0 1 2 .1 4 E - 0 4 6 .4 0 E - 0 3 3 0
1 0 0 5 1 0 5 0 8 .2 5 E -0 1 1 .6 2 E - 0 1 7 .1 0 E - 0 5 4 .3 8 E - 0 3 6 2
5 0 0 5 5 0 2 5 0 7 .6 1 E -0 1 1 .2 4 E - 0 1 3 .1 0 E - 0 5 2 .5 6 E - 0 3 8 3

1 2 0 0 6 1 0 0 6 0 0 8 .1 8 E -0 1 1 .0 7 E - 0 1 1 .4 5 E - 0 5 1 .9 1 E - 0 3 1 3 2

Table 6.1: Comparison of the error and optimal step sizes for different simulation budgets

between our method and CFD.

The last column of Table 6.1 shows that the absolute difference between the estimated

derivative and the real derivative is smaller for our method than for CFD, and the larger

the budget, the bigger the gap between the two methods. Hence, in a stochastic setting our

14



method reduces the average absolute error.

Now let us look at the deterministic situation. CFD needs only two function evaluations, and

using replications is useless as evaluating the same point more than once results in exactly

the same function value each time. Table 6.2 shows the added value of our method when the

evaluation budget is not limited to two evaluations only. We carried out the calculations for

different values of h, namely h = 0.01, h = 0.05, and h = 0.1. The table shows that the error

reduces significantly as can be expected from Lemma 2.1. The machine accuracy yields that

for h = 0.01 we can evaluate at most 6 point, whereas in the cases h = 0.05 and h = 0.1 we

can evaluate at most 10 points.

d h  = 0 .0 1 h = 0 .0 5 h = 0 .1
1  ( = C F D ) 1 .6 7 E - 0 5 4 .1 7 E - 0 4 1 .6 7 E - 0 3
2 3 .3 3 E - 1 0 2 .0 8 E - 0 7 3 .3 4 E - 0 6
3 4 .8 9 E - 1 5 1 .1 2 E - 1 0 7 .1 6 E - 0 9
4 6 .1 4 E - 1 4 1 .5 9 E - 1 1
5 4 .4 4 E - 1 6 3 .6 9 E - 1 4

Table 6.2: Comparison of the error in deterministic setting between our method and CFD.

Acknowledgement: The authors thank Henk Norde for the proof of Lemma 2.2.
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