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1 Introduction

A social choice correspondence assigns to each social choice situation a non-
empty subset of alternatives. Elements of this subset can be interpreted as
most preferred alternatives by society as a whole. There is an abundant
literature on different types of social choice correspondences, cf. Fishburn
(1977) and Laslier (1997) for surveys. Van den Brink and Borm (1994) and
Borm, Van den Brink, Lev́ınsky, and Slikker (2000) use tools of coopera-
tive game theory to define two new social choice correspondences. These
correspondences are based on the Shapley value.

Quant, Borm, Reijnierse, and Voorneveld (2002) introduce and charac-
terize the τ -value (cf. Tijs (1981) and Tijs (1987)) of digraph games. This
paper analyzes the compromise social choice correspondence derived from
the τ -value of digraph games. We show that if the compromise correspon-
dence selects some alternative, it remains selected when some agent changes
his profile by ranking this alternative higher (monotonicity). Moreover we
establish a connection between properties of social choice correspondences
based on game theoretical solutions and monotonicity of these solutions.
This result can not only be applied to the compromise correspondence, but
also to for instance the one derived from the Shapley value.

2 Social choice situations and digraph games

A social choice situation can be represented by a triple (N,A, p), in which
N is a finite group of individuals or agents, A a finite set of alternatives
and p a vector of preference relations of the group of individuals on the set
A. The class of all social choice situations is denoted by S. A social choice
correspondence C assigns to each social choice situation (N,A, p) ∈ S a
non-empty subset C(N,A, p) of A. This set can be interpreted as the set of
most preferred alternatives by the group of individuals.

The preference relation of individual i will be denoted by pi, xpiy means
that i prefers alternative x to alternative y. We assume that preference
relations are linear order preferences. This means that pi is reflexive 1,
complete 2, transitive 3 and antisymmetric 4. A profile p = (pi)i∈N contains

1A preference relation pi on A is reflexive if for all x ∈ A it holds that xpix
2A preference relation pi on A is complete if for all x, y ∈ A it holds that xpiy or ypix

(or both).
3A preference relation pi on A is transitive if for all x, y, z ∈ A it holds that: if xpiy

and ypiz, then xpiz.
4A preference relation pi on A is antisymmetric if for all x, y ∈ A, x 6= y, xpiy implies

2



the preferences of the individuals in N .
With (N, A, p) ∈ S, one can associate a simple majority win digraph

Dp ⊂ A×A in the following way. For x, y ∈ A, x 6= y:

(x, y) ∈ Dp ⇐⇒ np(x, y) > np(y, x),

where np(x, y) := |{i ∈ N | xpiy and ¬ypix}| denotes the number of agents
who strictly prefer x to y in profile p. Moreover we assume that (x, x) ∈ Dp

for each x ∈ A. So for each social choice situation, Dp is a reflexive digraph.
Here our approach differs from the approach chosen in Borm et al. (2000),
where no loops are present in the digraph Dp.

The following example illustrates that the digraph Dp can contain a
cycle.

Example 2.1 Consider the following social choice situation in which we
have a group of three agents N = {1, 2, 3} and three alternatives {a1, a2, a3}.
Suppose that (with obvious notation) linear preferences are given by p1 =
a1a2a3, p2 = a2a3a1, p3 = a3a1a2 (we assume that pi puts most preferred
alternatives to the left and least preferred alternatives to the right). Then
Dp is the graph drawn in figure 1. For example, the arc (a2, a3) is drawn,
because two of three agents prefer a2 to a3.
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Figure 1: The digraph Dp of example 2.1.

For a digraph D ⊂ A×A and x ∈ A the set PD(x) = {y ∈ A | (y, x) ∈ D}
is the set of predecessors of x in Dp. The set SD(x) = {y ∈ A | (x, y) ∈ D}
consists of all successors of x. We denote the set of successors of x, for which
x is the only predecessor by S̃D(x): S̃D(x) = {y ∈ A | PD(y) = {x}}. For
a reflexive digraph D, S̃D(x) is either empty or consists only of the node
x. The set ID consists of all nodes with a non-zero indegree, the subset ĨD

¬ypix.
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contains all nodes with exactly one predecessor. If D is reflexive, the set ID

contains all nodes and ĨD is the set of all nodes with no other predecessors
than itself.

Following Van den Brink and Borm (1994) and Quant et al. (2002) we
have:

Definition 2.1 The score game corresponding to a digraph D ⊂ A × A is
the game vD : 2A → R given by:

vD(T ) = |{x ∈ A | PD(x) ⊂ T, PD(x) 6= ∅}| for all T ∈ 2A\{∅}.
As usual we take vD(∅) = 0.

There is a natural way to associate a social choice correspondence with
a (one-point) game theoretical solution. If γ is a game theoretical solution,
then the corresponding social choice correspondence Cγ is given by:

Cγ(N,A, p) = {x ∈ A | γx(vDp) ≥ γy(vDp), ∀y ∈ A},
the set of alternatives to which γ assigns the highest payoff in the corre-
sponding score game.

3 Monotonicity of the compromise social choice
correspondence

Borm et al. (2000) examines the social choice correspondence Cφ corre-
sponding to the Shapley value φ. The τ -value or compromise value, intro-
duced in Tijs (1981), is a an alternative to the Shapley value based on the
minimum right of players and their utopia demand. In this paper we will
concentrate on the corresponding so called compromise correspondence Cτ .
The τ -value of an arbitrary (quasi-balanced) TU-game (A, v) is given by:

τ(v) = λm(v) + (1− λ)M(v),

in which λ is chosen in [0, 1] such that τ is efficient. The vectors m(v) and
M(v) are, for x ∈ A defined by:

Mx(v) = v(A)− v(A\{x})

mx(v) = max
T :x∈T



v(T )−

∑

y∈T\{x}
My(v)



 .
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Quant et al. (2002) proved that for an arbitrary digraph D ⊂ A×A and
for x ∈ A:

τx(vD) = |S̃D(x)|+ (|SD(x)| − |S̃D(x)|) ∗ |ID| − |ĨD|
|D| − |ĨD|

.

This formula holds if |D| 6= |ĨD|. If |D| = |ĨD| each alternative gets exactly
the amount |S̃D(x)| (its minimum right). This case is not very challenging,
especially if the digraph D is reflexive, since then the graph consists of all
loops only.

For a reflexive digraph D, with |D| 6= |A|, the formula above becomes:

τx(vD) =





1 + (|SD(x)| − 1) ∗ |A| − |ĨD|
|D| − |ĨD|

if x ∈ ĨD,

|SD(x)| ∗ |A| − |ĨD|
|D| − |ĨD|

if x 6∈ ĨD.

(1)

For (N,A, p) ∈ S the compromise social choice correspondence Cτ is
given by:

Cτ (N, A, p) = {x ∈ A | τx(Dp) ≥ τy(Dp), ∀y ∈ A}.

Note that for a social choice situation (N, A, p) ∈ S and x ∈ Cτ (N, A, p),
with x 6∈ ĨDp , it holds that for all y ∈ A, |SDp(x)| ≥ |SDp(y)|. If y 6∈ ĨDp

this is immediately clear from formula (1). For y ∈ ĨDp this readily follows
from the fact that, since |Dp| > |A|:

|A| − |ĨDp |
|Dp| − |ĨDp |

< 1.

An important property of social choice correspondences is monotonicity.
Monotonicity implies that if in a situation (N, A, p) alternative x is a best
alternative according to C, then x should be a best alternative according to
C in the situation (N, A, p′), where p′ is a preference relation obtained from
p by moving x to the left.

Property 3.1 Monotonicity: C is monotonic if for all (N, A, p), (N,A, p′) ∈
S, x ∈ A, such that for all i ∈ N :

(i) ypiz ⇒ yp′iz for all y, z ∈ A\{x}, y 6= z,
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(ii) xpiy ⇒ xp′iy for all y ∈ A\{x},
(iii) x ∈ C(N,A, p),

it holds that x ∈ C(N, A, p′).

The following theorem states that Cτ is monotonic as social choice cor-
respondence.

Theorem 3.1 The compromise social choice correspondence Cτ satisfies
monotonicity.

Proof: Let (N, A, p), (N,A, p′) ∈ S and x ∈ A be such that the condi-
tions (i)-(iii) in property 3.1 hold. We assume that p′ differs only slightly
from p, in the sense that there is only one agent i ∈ N for which p′i 6= pi and
in p′i alternative x has moved one step to the left compared to pi. If one can
prove monotonicity for this case, one can prove monotonicity for all cases,
just by changing preference profile p into p′ in small steps and applying the
above result at each step. Let y ∈ A be the alternative which is preferred to
x in pi, but not to x in p′i. The digraphs Dp and Dp′ can only differ in three
different ways (it is also possible that they are the same, but then there is
nothing to prove):

• An arc (y, x) that is present in Dp, is removed in Dp′ .

• A new arc (x, y) arises in Dp′ , where in Dp no arc between x and y is
present.

• An arc (y, x) present in Dp is reversed in Dp′ .

Let D1, D2 ⊂ A × A be such that D2 only differs from D1 by deleting
the arc (y, x) or adding the arc (x, y), or reversing the arc (y, x). Clearly
it suffices to prove the following: if τx(vD1) ≥ τz(vD1), for all z ∈ A, then
τx(vD2) ≥ τz(vD2). Note that the last case (reversing an edge (y, x) in D1)
is a combination of the first two cases and hence we only need to consider
the first two cases. The trivial cases that |D1| = |A| or |D2| = |A| are left
to the reader.

To simplify notations, we denote e.g. τx(D1) instead of τx(vD1) and
define for i ∈ {1, 2}:

ni = |A| − |ĨDi |,
di = |Di| − |ĨDi |,
ci =

ni

di
.
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Case 1: Assume that (y, x) ∈ D1, D2 = D1\{(y, x)} and τx(D1) ≥
τz(D1) for all z ∈ A.

We first consider the case x 6∈ ĨD2 . From x 6∈ ĨD1 and τx(D1) ≥ τz(D1),
for all z ∈ A, we can conclude that |SD1(x)| ≥ |SD1(z)| for all z ∈ A. It
holds that for z ∈ A\{y}: SD2(z) = SD1(z), and SD2(y) = SD1(y)\{x},
furthermore |D2| = |D1| − 1 and ĨD2 = ĨD1 . Hence c2 > c1 and we can
conclude that for z ∈ A:

τx(D2)− τx(D1) ≥ τz(D2)− τz(D1).

Consequently τx(D2) ≥ τz(D2).
Secondly assume that x ∈ ĨD2 , then the following is true: |D2| = |D1| −

1, ĨD2 = ĨD1 ∪ {x} and for z ∈ A\{y}, SD2(z) = SD1(z) and SD2(y) =
SD1(y)\{x}. Since the indegree of a node not in ĨD1 is at leat two, it holds
that:

2(|A| − |ĨD1 |) ≤ |D1| − |ĨD1 |,
it follows that:

c2 − c1 =
n1 − 1
d1 − 2

− n1

d1
=

2n1 − d1

d1 ∗ (d1 − 2)
≤ 0.

One can conclude that for z ∈ A\{x}, τz(D2) ≤ τz(D1). Because τ is
efficient, it then holds that:

τx(D2) ≥ τx(D1).

Hence τx(D2) ≥ τz(D2).
Case 2: Let D1 and D2 be such that (y, x), (x, y) 6∈ D1, D2 = D1 ∪

{(x, y)} and τx(D1) ≥ τz(D1), for all z ∈ A.
We first consider the case that x, y 6∈ ĨD1 . Then |SD1(x)| ≥ |SD1(z)| for

all z ∈ A. The following equations hold: SD2(z) = SD1(z) for z ∈ A\{x},
SD2(x) = SD1(x) ∪ {y}, |D2| = |D1| + 1, ĨD2 = ĨD1 . Hence c2 ≤ c1.
Consequently for each z ∈ A\{x}, it holds that τz(D2) ≤ τz(D1). Using
efficiency we have:

τx(D2) ≥ τx(D1).

It then directly follows that τx(D2) ≥ τz(D2).
Secondly assume that x 6∈ ĨD1 and y ∈ ĨD1 . One can deduce that

ĨD2 = ĨD1\{y} and |D2| = |D1|+1. Together with 2(|A|−ĨD1) ≤ |D1|−|ĨD1 |,
this implies that:
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c2 − c1 =
n1 + 1
d1 + 2

− n1

d1
=

d1 − 2n1

d2(d1 + 2)
≥ 0.

Because |SD1(x)| ≥ |SD1(z)|, for all z ∈ A, one can conclude that:

τx(D2)− τx(D1) ≥ τz(D2)− τz(D1),

and hence τx(D2) ≥ τz(D2).
In the third case we assume that x ∈ ĨD1 and y 6∈ ĨD1 . It holds that:

ĨD2 = ĨD1 , |D2| = |D1| + 1, from which we can conclude that c2 ≤ c1.
Because SD2(z) = SD1(z) for all z ∈ A\{x}, it holds that τz(D2) ≤ τz(D1).
Efficiency yields that:

τx(D2) ≥ τx(D1).

It follows that τx(D2) ≥ τz(D2).
In the final case we assume that x, y ∈ ĨD1 . It holds that ĨD2 = ĨD1\{y},

|D2| = |D1| + 1. One can conclude that |SD1(x)| ≥ |SD1(y)| and SD2(x) =
SD1(x) ∪ {y}, SD2(y) = SD1(y). It immediately follows that τx(D2) ≥
τy(D2).

Let z ∈ A\{y}. There are two possible cases. First let z ∈ ĨD1 . It holds
that |SD1(x)| ≥ |SD1(z)| and hence τx(D2) ≥ τz(D2) according to formula
(1).

Secondly let z 6∈ ĨD1 . Suppose that after adding the arc (y, x) the value
of τ -measure of z is larger than the value assigned to x:

τz(D2) = |SD1(z)| ∗ |A| − |ĨD1 |+ 1
|D1| − |ĨD1 |+ 2

> 1 + (|SD1(x)|) ∗ |A| − |ĨD1 |+ 1
|D1| − |ĨD1 |+ 2

= τx(D2) (2)

Since x achieves the highest payoff in D1 according to τ , it holds that:

τz(D1) = |SD1(z)| ∗ |A| − |ĨD1 |
|D1| − |ĨD1 |

≤ 1 + (|SD1(x)| − 1) ∗ |A| − |ĨD1 |
|D1| − |ĨD1 |

= τx(D1) (3)
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From (2) and (3) it follows that:

|SD1(z)| ∗ (|A| − |ĨD1 |+ 1) > |D1| − |ĨD1 |+ 2 +
+|SD1(x)| ∗ (|A| − |ĨD1 |+ 1) (4)

−(|SD1(z)| ∗ (|A| − |ĨD1 |)) ≥ −(|D1| − |ĨD1 |+
+(|SD1(x)| − 1) ∗ (|A| − |ĨD1 |)). (5)

Adding (5) and (4) results in:

|SD1(z)| > 2 + |A| − |ĨD1 |+ |SD1(x)|. (6)

However, since z 6∈ ĨD1 we have that SD1(z)∩ ĨD1 = ∅. So |SD1(z)|+ |ĨD1 | ≤
|A|, which contradicts formula (6). ¤

4 Pareto optimality and Smith’s Condorcet prin-
ciple

There are several other interesting properties of social choice correspon-
dences besides monotonicity. We will mention some of them shortly. An
alternative x ∈ A is a Condorcet winner in a social choice situation (N, A, p)
if for all y ∈ A\{x}, (x, y) ∈ Dp. C is a Condorcet social choice correspon-
dence if if for this type of social choice situations C(N, A, p) = {x}.

The next property states that if all agents prefer alternative x to alter-
native y, then y is not a most preferred alternative.

Property 4.1 Pareto optimality: C is Pareto optimal if for all (N, A, p) ∈
S and for all x, y ∈ A: if xpiy for all i ∈ N , then y 6∈ C(N, A, p).

Suppose that the set of alternatives can be partitioned in A1 and A2

such that the majority of the group prefers an arbitrary alternative from
A1 to an arbitrary alternative of A2. The following property states that no
alternative of A2 is a most preferred alternative.

Property 4.2 Smith’s Condorcet principle: C satisfies Smith’s Con-
dorcet principle if for all (N, A, p) ∈ S: if A = A1∪A2, A1∩A2 = ∅, A1 6= ∅,
A2 6= ∅, and (x, y) ∈ Dp, for all x ∈ A1, y ∈ A2, then A2 ∩ C(N,A, p) = ∅.

Borm, Van den Brink, Lev́ınsky, and Slikker (2000) proved that Cφ is
a Condorcet social choice correspondence satisfying Pareto optimality and
Smith’s Concorcet principle. One can prove that Cτ is also a Condorcet

9



social choice correspondence satisfying Pareto optimality and Smith’s Con-
corcet principle. This gives rise to the thought that there exists a game
theoretical property which implies some properties of social choice corre-
spondences based on a game theoretical solution.

We will define a special type of monotonicity in TU-games. It will turn
out to imply various properties in social choice theory.

Property 4.3 Monotonicity: A game theoretic (one-point) solution γ
satisfies monotonicity if for each game (A, v), it holds that γx(v) > γy(v),
if for all T ∈ 2A\{x,y} the following holds: v(T ∪ {x}) ≥ v(T ∪ {y}), with a
strict inequality if T = A\{x, y}.

The following proposition states a relation between monotonicity in TU-
games and properties of social choice correspondences.

Proposition 4.1 If a game theoretic solution γ satisfies monotonicity on
the subclass of convex games 5, then Cγ is a Condorcet social choice cor-
respondence satisfying Pareto optimality and Smith’s Condorcet principle
6.

Proof: Let (N,A, p) ∈ S be a social choice situation. Then the game
vDp is convex (cf. Van den Brink and Borm (1994)). Let γ be a game
theoretical solution satisfying monotonicity on the class of convex games.
First of all we prove that Cγ is a Condorcet social choice correspondence.

Suppose x ∈ A is a Condorcet winner. This means that for each y ∈ A
it holds that (x, y) ∈ Dp and hence for each y ∈ A and each T ∈ 2A\{x,y}:

vDp(T ∪ {x}) > vDp(T ∪ {y}) = 0.

The solution γ is monotonic and hence γx(vDp) > γy(vDp) for all y ∈ A,
which implies Cγ(N, A, p) = {x}.

We proceed with Pareto optimality. Let x, y ∈ A, such that for all i ∈ N ,
xpiy. The digraph Dp contains the arc (x, y) and if an arc (y, z), z ∈ A,
is present, then arc (x, z) is present too. This structure of Dp implies that
SDp(y) ( SDp(x), from which we can conclude that:

5A game v is convex if for all x ∈ A, for all T1, T2 ⊂ A\{x}, T1 ⊂ T2 it holds that
v(T1 ∪ {x})− v(T1) ≤ v(T2 ∪ {x})− v(T2).

6One can also prove that if γ is efficient and individual rational on the subclass of
convex games, then Cγ satisfies the so called subset condition 2, dicussed in Fishburn
(1977).
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vDp(A\{x}) = vDp(A)− |SDp(x)|
< vDp(A)− |SDp(y)|
= vDp(A\{y}).

For all T ∈ 2A\{x,y} the inequality vDp(T ∪ {x}) ≥ vDp(T ∪ {y}) holds
and for T = A\{x, y} this inequality is strict. Monotonicity of γ yields
γx(vDp) > γy(vDp) and hence y 6∈ Cγ(N,A, p).

Finally, we show that monotonicity of γ implies Smith’s Condorcet Prin-
ciple. Let (N,A, p) ∈ S be such that A = A1 ∪ A2, A1 ∩ A2 = ∅ and
(x, y) ∈ Dp for all x ∈ A1, y ∈ A2. Let x ∈ A1 and y ∈ A2, then
SDp(y) ( SDp(x). In a similar way as above it follows that for each
T ∈ 2A\{x,y}: vDp(T ∪ {x}) ≥ vDp(T ∪ {y}), and for T = A\{x, y} this
inequality is strict. Monotonicity of γ implies γx(vDp) > γy(vDp) and
y 6∈ Cγ(N,A, p), hence A2 ∩ Cγ(N,A, p) = ∅. ¤

As a consequence of theorem 4.1 we can prove that the social choice cor-
respondences based on the τ -value and the Shapley value are Condorcet so-
cial choice correspondences satisfying Pareto optimality, Smith’s Condorcet
principle.

Corollary 4.1 Cτ is a Condorcet social choice correspondence satisfying
Pareto optimality and Smith’s Condorcet principle.

Proof: According to theorem 4.1 we only need to prove that the τ -value
is monotonic on the class of convex games. Let (A, v) be a convex TU-game
and let x, y ∈ A be such that for all T ∈ 2A\{x,y} it holds that:

v(T ∪ {x}) ≥ v(T ∪ {y}), (7)

with a strict inequality for T = A\{x, y}. Then:

Mx(v) = v(A)− v(A\{x})
> v(A)− v(A\{y}) = My(v),

mx(v) = v({x})
≥ v({y}) = my(v).

This yields τx(v) > τy(v) 7. ¤
7It is not possible that

P
x∈A mx(v) = v(A) and mx(v) = my(v), because together with

convexity this implies that v is an additive game with v({x}) = v({y}). This contradicts
the fact that v(A\{x}) < v(A\{y}).
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Corollary 4.2 Cφ is a Condorcet social choice correspondence satisfying
Pareto optimality and Smith’s Condorcet principle.

Proof: According to theorem 4.1 we only need to prove that the Shapley
value is monotonic on the class of convex games. Let (A, v) be a convex TU-
game and x, y ∈ A. Suppose that for each coalition T ∈ 2A\{x,y} it holds
that:

v(T ∪ {x}) ≥ v(T ∪ {y}), (8)

with strict inequality if T = A\{x, y}. Then it holds that:

φx(v) =
∑

T :x6∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {x})− v(T ))

=
∑

T :x,y 6∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {x})− v(T )) +

+
∑

T :x6∈T, y∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {x})− v(T ))

>
∑

T :x,y 6∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {y})− v(T )) +

+
∑

T ′:x,y 6∈T ′

(|T ′|+ 1)!(|A| − |T ′|)!
|A|! (v(T ′ ∪ {x, y})− v(T ′ ∪ {y}))

≥
∑

T :x,y 6∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {y})− v(T )) +

+
∑

T :x,y 6∈T ′

|T ′|+ 1!(|A| − |T ′|)!
|A|! (v(T ′ ∪ {x, y})− v(T ′ ∪ {x}))

=
∑

T :y 6∈T

|T |!(|A| − 1− |T |)!
|A|! (v(T ∪ {y})− v(T ))

= φy(v).
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