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1 Introduction

The theory of strategic games with complete information starts with the works
of J. von Neumann [10] and J. Nash [5]. Here the payoff functions assign real
numbers to strategy profiles. Extensions to multicriteria games (MC-games for
short) are given in Shapley [6] and Borm et al. [1]. The payoff functions here
assign to strategy profiles vectors of length equal to the number of criteria of
a player. For more details about multi-criteria games the reader can see also
[7] and [12].
Harsanyi in [3] introduces games with incomplete information for a player
about the real valued payoff functions of the other players.
A natural follow up is taken in this paper where we study interactive
situations with incomplete information and where each player may have vari-
ous objectives.
As far as we know, these Bayesian MC-games are not studied till now. It is
easy to imagine practical interactive situations demanding to be modeled as
Bayesian-MC-games (BM-games for short).
Natural solution concepts will be that of BM-equilibrium and of approximate
BM-equilibrium.
In this paper we first concentrate on the existence of such equilibria in mixed
strategies for situations where each player has a finite number of pure strate-
gies, a finite number of criteria and a finite number of types.
Then we consider situations where one of the players may have an infinite
set of pure strategies. The work of A. Wald [13] indicates already that it is
difficult to obtain general equilibrium results if more than one player has a
large strategy space.
The outline of the paper is as follows. In section 2 we introduce the Bayesian
Multi-Criteria games (BM-games) and the natural equilibrium concept of
Bayesian Multi-Criteria Equilibrium (BM-equilibrium). We prove that in case
the type spaces and action spaces are finite there exists a BM-equilibrium in
mixed strategies. In section 3 we study BM-games with finite type spaces and
all but one finite action spaces. An upper boundedness condition guarantees
then the existence of ε-BM-equilibria. Section 4 concludes.

2 Bayesian multi-criteria games

A Bayesian multicriteria game (BM-game for short) models a conflict situation
with incomplete information where possibly players have multiple objectives.
The incomplete information is described with the aid of a type space for each
player and a probability distribution on the set of type space profiles. In this
paper we restrict our attention to finite type spaces. Further the criteria spaces
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for each player will be supposed to be finite. To be more concrete an n-person
BM-game is a tuple:
Γ =< N, A1, A2, ..., An, T1, T2, ..., Tn, p, C1, C2, ..., Cn, u1, u2, ..., un >,

for short: Γ =< N,A, T, p, C, u >. Here

- N = {1, 2, ..., n} is the set of players;
- for each i ∈ N the action space is Ai, and A =

∏
i∈N Ai, the type space is Ti

and Ci is the criteria space;

- p is a probability distribution on the set T =
∏

i∈N Ti of type profiles;

- ui : Ci × A × T → R is the payoff function which assigns to player i the
payoff ui(ci, a1, a2, ..., an, t1, t2, ...tn) to his criterium ci given that the players
1,2,...,n have type t1, t2, ..., tn and choose actions a1, a2, ...an respectively.

A play of such a game proceeds as follows: before the types are announced
each player i chooses a strategy xi ∈ Ai

Ti (where then action xi(t) is chosen
if ti turns out to be the type of player i). Each type profile t results then for
player i in a payoff ui(ci, x1(t1), ...xn(tn), t1, ..., tn) w.r.t. his criterion ci.

The a-priori expected payoff for player i w.r.t. criterion ci ∈ Ci, if the players
use strategies x1, ..., xn equals:

Ui(ci, x1, ..., xn) =
∑

t∈T p(t)ui(ci, x1(t1), x2(t2), ..., xn(tn), t).

Let ε > 0.

An ε−BM equilibrium of < N, A, T, p, C, u > is a strategy profile
(x̂1, x̂2, ..., x̂n) ∈ AT1

1 × AT2
2 × ...× ATn

n such that for each i ∈ N , each ci ∈ Ci,
each xi ∈ ATi

i :

Ui(ci, x̂1, x̂2, ..., x̂n) ≥ Ui(ci, x̂−i, xi)− ε.

Here (x̂−i, xi) :=(x̂1, ..., x̂i−1, xi, x̂i+1, ...x̂n), the profile which we obtain when
player i deviates from x̂i to xi.

Remarks 2.1

(i) If in Γ the criteria spaces are trivial i.e. |C1| = |C2| = ...|Cn| = 1, then we
can write < N,A, T, p, u > and we obtain a classical Bayesian game (B-game)
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and then an approximate Bayesian Pareto equilibrium (ε − BPE for short)
boils down to an approximate Bayesian equilibrium (ε−BE for short).

(ii) If in Γ the type spaces are trivial i.e. |T1| = |T2| = ...|Tn| = 1 then we can
write < N, A, C, u > and we obtain a classical multi-objective game (M-game)
and an ε−BPE boils down to an ε− PE (approximate Pareto equilibrium).

(iii) If the type spaces and the criteria spaces are trivial then we obtain a
classical game in strategic form with complete information (C-game for short).

We will need the notion of f-mixed extension of a BM-game for existence results
of equilibria.

The letter ”f” in f-mixed extension stands for finite because we allow only
finite mixtures of pure strategies to avoid convergence problems.

Let Γ =< N,A1, A2, ..., An, T1, T2, ..., Tn, p, C1, C2, ..., Cn, u1, u2, ..., un >.

Then the f -mixed extension of Γ is the BM-game

Γ̃ =< N, Ã1, Ã2, ..., Ãn, T1, T2, ..., Tn, p, C1, C2, ..., Cn, ũ1, ũ2, ..., ũn >

Here Ãi is the family of probability measures (on the σ-algebra of all subsets
of Ai) with finite support. Such probability measures are of the form
µi = Σs

k=1pkeak
where a1, a2, ..., as ∈ Ai, pk ≥ 0 for all k ∈ {1, 2, ..., s} and

Σs
k=1pk = 1, where

eak
(B) =

1 if B ⊂ Ai, ak ∈ B

0 if B ⊂ Ai, ak /∈ B

Further ũi(c, µ1, µ2, ..., µn, t) =
∫

ui(c, a1, a2, ..., an, t)dµ1(a1)dµ2(a2)...dµn(an)
for all i ∈ N and (µ1, µ2, ..., µn) ∈ Ã =

∏
i∈N Ãi

A BM-game is called a finite game if the action spaces A1, A2, ..., An are finite

sets. For finite C-games Γ, Nash in [5] proves that the f-mixed extension Γ̃
possesses an equilibrium point and for finite B-game Γ, Harsanyi in [3] proves
the existence of Bayesian equilibrium for the mixed extension Γ. In both proofs
fixed point theorems play a role applied on the aggregate best response mul-
tifunction.
In [1] the existence of Pareto equilibria is proved for mixed extensions of finite
M-games by transforming such a game to a C-game with the aid of weight
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vectors for each player on the various objectives and then using the classi-
cal existence result of J. Nash. We do not know literature where BM-games
are studied. But inspired by the proof in [1] it is not difficult to obtain the
following existence result.

Theorem 2.2 Mixed extensions of finite BM-games have a BM-equilibrium.

Proof Transform with the aid of weight vectors the BM-game into a B-game
and apply the existence theorem of Bayesian equilibria of Harsanyi. It is easy
to show that each Bayesian equilibrium in the B-game is a Bayesian multi-
criteria equilibrium in the BM-game. �

3 Almost finite BM-games and approximate equilibria

We will call a BM-game

Γ = 〈N, A1, A2, ..., An, T1, T2, ..., Tn, p, C1, C2, ..., Cn, u1, u2, ..., un〉

almost finite if

(i) N, A1, A2, ..., An−1, T1, T2, ..., Tn, C1, C2, ..., Cn are finite sets and An is infi-
nite,
ii) un : Cn × A× T → R is an upper bounded function.

Let ε > 0. We are interested in the existence of ε-BM equilibria for Γ̃. Our
main result in this section is:

Theorem 3.1 Let Γ be an almost finite game. Then for each ε > 0 there is
an ε-BM equilibrium for Γ̃.

Proof (i) Take ε > 0. The proof is based on the following claim which we
prove at the end of this section.
CLAIM. Given Γ, there is a finite BM -subgame Γ(ε) of Γ with

Γ(ε) = 〈N, A1, ..., An−1, An(ε), T1, T2, ..., Tn, p, , C1, C2, ..., Cn, u1, ..., un〉

and An(ε) is a finite subset of An such that for each an ∈ An there is an
an(ε) ∈ An(ε) such that for all cn ∈ Cn, t ∈ T, a−n ∈ A−n we have

un(cn, (a−n, an(ε)), t) ≥ un(cn, (an−1, an), t)− ε (3.1)
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[ So an(ε) is ε-almost as good as an for player n].
We call Γ(ε) an ε-approximation of Γ.

(ii) Using the above claim we prove that the f -mixed extension Γ̃(ε) of Γ(ε)
is an ε-approximation of Γ̃ i.e. for each ν = (νtn)tn∈Tn ∈ Ãn

Tn there is a
νε = (νε

tn)tn∈Tn ∈ (Ãn(ε))Tn such that for all cn ∈ Cn, t ∈ T, µ−n ∈ Ã−n, we
have

ũn(cn, µ−n, ν
ε
tn , t) ≥ ũn(cn, µ−n, νtn , t)− ε (3.2)

For the proof note that the CLAIM implies that we can define a selection

β : An → An(ε) such that β(a) = a for each a ∈ An(ε) and

un(cn, (a−n, β(an)), t) ≥ un(cn, (a−n, an), t)− ε (3.3)

for each cn ∈ Cn, t ∈ T , a−n ∈ A−n, an ∈ An \ An(ε). Given ν ∈ Ãn
Tn and

t ∈ T , νt is a finite sum of the form

∑
a∈An

νtn({a})ea.

Take

νε
tn =

∑
b∈An(ε)

(
∑

a∈An

{ν(a) : β(a) = b})eb.

Then (νε
tn)tn∈Tn ∈ (Ãn(ε))Tn , and (3.2) follows from (3.3).

(iii) By theorem 2.2 we can find a mixed BM-equilibrium

(ν̂1, ν̂2, ..., ν̂n) ∈ Ã1
T1 × ...× Ãn−1

Tn−1 × ...Ãn(ε)Tn of the mixed extension Γ̃(ε)
of the finite game Γ(ε).

Define for each µ ∈ Ãn(ε) the mixed strategy α(µ) ∈ Ãn by

α(µ)(C) = µ(C
⋂

An(ε)) for each finite C ⊂ An.

We prove that (ν̂1, ν̂2, ..., ν̂(n−1), (α((ν̂n)tn))tn∈Tn) is an ε-BM equilibrium of Γ.

First, note that for each i ∈ N \ {n}, ci ∈ Ci, µi ∈ Ãi we have
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Ui(ci, (ν̂k)k∈N\{i,n}, µi, (α((ν̂n)tn))tn∈Tn)=
∑

t∈T p(t)ũi(ci, (ν̂k(t))k∈N\{i,n}, µi(t), α((ν̂n)tn , t))=

=
∑

t∈T p(t)ũi(ci, (ν̂k(t))k∈N\{i,n}, µi(t), ν̂n(t), t)=

=Ui(ci, (ν̂k)k∈N\{i,n}, µi, ν̂n)≤ Ui(ci, (ν̂k)k∈N),

where the last inequality follows from the fact that ν̂ is a mixed

BM-equilibrium of Γ̃(ε). So deviation from ν̂i to µi does not pay for player
i ∈ N \ {n}.

Secondly, note that for player i = n deviation from α((ν̂n)t)t∈T to µn ∈ Ãn

pays at most ε because

Un(cn, (ν̂k)k∈N\{n}, µn)=Σt∈T p(t)ũn(cn, (ν̂k(t))k∈N\{n}, µn(t), t) ≤

≤ Σt∈T p(t)ũn(cn, (ν̂k(t))k∈N\{n}, (µ
ε
n(t))t∈T , t) + ε ≤

≤ Σt∈T p(t)ũn(cn, (ν̂k(t))k∈N , t) + ε=

=Un(cn, (ν̂k)k∈N\{n}, α((ν̂n)t)t∈T ) + ε

where the first inequality follows from (3.2) and the second inequality from
the fact that (ν̂1, ν̂2, ..., ν̂n−1, ν̂n) is an ε-BM equilibrium of Γ̃(ε). �

It remains to prove the CLAIM in the proof of theorem 3.1. For this objective
the following two theorems are helpful.
A proof of theorem 3.2 can be found in [9].

Theorem 3.2 (Finite covering property by orthants for upper bounded sets
in an Euclidean space).

For each upper bounded set V in Rn and each ε > 0, there is a finite subset W
of V such that

V ⊂
⋃
{O(w, ε) s.t. w ∈ W}

where O(w, ε) is the orthant

7



{x ∈ Rm s. t. xi ≤ wi + ε ∀i ∈ {1, 2, ...,m}}. �

A direct consequence of this theorem is the next theorem 3.3, which one can
also find in [8] as lemma 4.3.

For convenience of the reader we give also the proof.

Theorem 3.3 Let E be a finite set, ε > 0 and let F be an upper bounded
family of real valued function on E. Then there exists a finite subfamily G of
F which ε-dominates F i.e.

∀f ∈ F ∃g ∈ G : ∀x ∈ E [f(x) ≤ g(x) + ε]

Proof. Let E = {a1, a2, ..., am}. For each f ∈ F let α(f) be the vector
(f(a1), f(a2), ..., f(am)) in Rm. Since F is an upper bounded family of func-
tions, the set V = {α(f) : f ∈ F} is an upper bounded subset of Rm.
In view of theorem 3.2 we can find a finite subset W of V, which ε domi-
nates V . But then G= {f ∈ F : α(f) ∈ W} is a finite subfamily of F which
ε-dominates F . �

Now we are able to give the
Proof of the CLAIM in theorem 3.1. Given the almost finite game Γ, we con-
sider the upper bounded family
F={ân : E → R : an ∈ A} of functions on the finite set
E = Cn × A−n × T , where ân is defined by
ân(cn, a−n, t) = un(cn, (a−n, an), t) for each (cn, a−n, t) ∈ E.
According to theorem 3.3 there is a finite subfamily G of F such that
G ε-dominates F .
Note that G is of the form {b̂n : E → R : bn ∈ An(ε)} where An(ε) is a
suitable finite subset of An. The ε-dominance of F by G implies that for all
(c, a−n, t) ∈ E we have:
b̂n(c, a−n, t) ≥ ân(c, a−n, t)− ε or
un(c, (a−n, bn), t) ≥ un(c, (a−n, an), t)− ε (3.4)
Let Γ(ε) be the finite game with
Γ(ε) =< N,A1, A2, ..., An−1, An(ε), T1, T2, ..., Tn, p, C1, C2, ..., Cn, u1, u2, ..., un >.
By taking an(ε) = bn in (3.4) we obtain (3.1). �

4 Concluding remarks

In theorem 2.2 we established the existence of BM-equilibria in mixed strate-
gies for finite BM-games. Using the covering theorem and then the approxi-
mation with finite games, the existence of ε-BM equilibria is established for
semi-infinite BM-games with upper bounded payoff functions.
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A topic for further research could be the study of BM-games where all (or
all but one) strategy spaces are compact sets and the payoff functions satisfy
suitable continuity and concavity properties guaranteeing BM-equilibria (or
ε-BM-equilibria).

For the subclass of strategic games such a research was done in [8].

Another topic for further research could be the study of BM-games with a
potential ( [4], [2], [11]).
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References

[1] Borm P. E. M., Tijs S. H., van den Aarssen J. C. M. (1988), Pareto Equilibria
in Multiobjective Games, Methods of Operation Research, 60, 303-312.

[2] Facchini G., van Megen F., Borm P., Tijs S. (1997), Congestion Models and
Weighted Bayesian Potential Games, Theory and Decision, 42, 193-206.

[3] Harsanyi J. (1967-1968), Games with Incomplete Information Played by
Bayesian Players, Management Science, 14, 159-182, 320-334, 486-502.

[4] Monderer D., Shapley L. S. (1996), Potential Games, Games and Economic
Behavior, 14, 124-143.

[5] Nash J. F. jr (1950), Equilibrium Points in n-Person Games, Proc. Nat. Acad.
Sci. U.S.A., 36, 48-49.

[6] Shapley L. S. (1959), Equilibrium Points in Games with Vector Payoffs, Naval
Research Logistic Quarterly, 6, 57-61.

[7] Steuer R. E., Gardiner L.R., Gray J. (1996), A Bibliographic Survey of the
Activities and International Nature of Multiple Criteria Decision Making,
Journal of Multi-Criteria Decision Analysis, 5, 195-217.

[8] Tijs S. H. (1981), Nash Equilibria for Noncooperative n-Person Games in
Normal Form, SIAM Rev., 23, 225-237.

[9] Tijs S., Reijnierse, H. (2003), Finite Covering by Cones and an Application in
Multiobjective Programming, Positivity, 7, 61-72.

[10] von Neumann J. (1928), Zur Theorie der Gesellschaftsspiele, Mathematische
Annalen, 100, 295-320.

9



[11] Voorneveld M. (1997), Equilibria and Approximate Equilibria in Infinite
Potential Games, Economic Letters, 56, 163-169.

[12] Voorneveld M. (1999), Potential Games and Interactive Decisions with Multiple
Criteria., phD Thesis CentER, Tilburg University.

[13] Wald A. (1945), Generalization of a Theorem by Neumann Concerning Zero
Sum Two-person Games, Annals of Mathematics, 46, 281-286.

10


