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Abstract

This paper introduces optimal competition: the best form of compe-

tition in an industry that a competition authority can achieve under the

information constraint that it cannot observe firms’ efficiency levels. We

show that the optimal competition outcome in an industry becomes more

competitive as more money is spent in the industry, as the competition

authority puts less weight on producer surplus and more weight on em-

ployment. The relation between competition and entry costs is U-shaped.

Finally conditions are derived under which Cournot competition is too

competitive compared to the optimal competition outcome.
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Keywords:competition, competition policy, objectives of competition
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1 Introduction

Competition authorities around the world face a daunting task: with limited

means they have to monitor a huge number of sectors to see where intervention

could be welfare enhancing. A natural strategy in such a situation is to target

industries where there is (or seems to be) a lack of competition and where inter-

vention by the competition authority could make a big difference. The problem

is that economic theory does not give any guidance on this issue. Generally

speaking, economic models show how market imperfections create distortions
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relative to the first best outcome. However, no intervention effort by a competi-

tion authority will create the first best outcome. Hence a competition authority

which bases its selection process of industries to scrutinize on the comparison

of the current market outcome with the first best outcome is likely to waste its

scarce resources on industries where its intervention will hardly make a differ-

ence.

This paper introduces a benchmark industry outcome, called ’optimal com-

petition’, which is better achievable for a competition authority than the first

best outcome. This benchmark is called optimal competition to signal that in

contrast to ’perfect competition’ competition is optimized under (information)

constraints. The policy recommendation is that competition authorities should

target their resources on industries where there is a big gap between the current

industry outcome and the optimal competition outcome. Before introducing the

details of this approach, consider the following motivating example.

Consider two industries, denoted I and II , which have the same structural

characteristics except for their entry costs. In particular, assume that in both

industries consumers are willing to spend 100 (dollar, say) in total. Consumers’

utility for the products in each industry is given by a CES function

(∫
Nj

0
q0.5
ji

di

)2

where qji denotes product i in industry j and Nj denotes the number of prod-

ucts in industry j (= I, II). Further, assume that in both industries output is
produced with a constant returns to scale technology using only labor, where

the wage is normalized to 1 (one). Efficiency (or productivity) n is defined as
the amount of output produced by one unit of labor. Assume that n in both

industries is distributed uniformly on [0,10]. Finally, the entry cost in industry
I equals γ

I
= 31 and in industry II it equals γ

II
= 150. Now you are told that

industry profits (sum of profits of all firms in the industry minus the entry costs

paid) in industry I equal 18.21 and in industry II they equal 0.72. Further,
in industry I firms with productivity above 3.52 are active and in industry II

firms with productivity above 3.55 are active. Which of these two industries
should a competition authority target for further examination?1 Guided by the

first best benchmark, a number of people may choose to target industry I : en-

try costs are lower than in II while industry profits are a lot higher. Defining

an entry barrier as the amount of industry profits that can be sustained in ex-

cess of the entry cost, clearly entry barriers are higher in industry I than they

are in II. Moreover, in industry I almost 20% of total expenditure goes into

firms’ pockets as net profits. However, using this intuition to decide on which

sector the competition authority should focus its attention is incorrect! As we

will show below, the industry outcome and profits in industry I are identical

to the optimal competition outcome. Hence no intervention by the competition

authority will reduce these industry profits.2 In industry II , however, compe-

1Clearly one would need more information than just industry profits to make this decision.

And below we will introduce the example in more detail. However, for illustrative purposes

the information given is sufficient to make the point.
2That is to say, no intervention which does not reduce welfare. Clearly, if the competition

authority would introduce a maximum price just above
1

10
(marginal cost level of the most
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tition is inefficiently weak. That also explains why industry II attracts almost

the same number of firms as industry I while its entry costs are considerably

higher. The optimal competition outcome in industry II differs from the out-

come described above. Therefore, it is better to target industry II because

there the competition authority can make a difference and raise welfare.

The optimal competition benchmark introduced here is the solution to a

mechanism design problem, where the designer does not observe firms’ effi-

ciency levels but does know the distribution of these costs. In particular, the

mechanism offers a menu of contracts with different output-revenue options.

Firms then self-select their optimal output-revenue combination based on their

efficiency level. In other words, the difference with the first best outcome is

that the optimal competition benchmark does not assume that a competition

authority will be able to observe firms’ efficiency levels. This assumption seems

natural and is, in fact, the standard assumption in mechanism design problems.

An obvious criticism is that even the solution to this mechanism design

problem may be more than a competition authority may hope to achieve. Our

response to this criticism are the following three arguments. First, in an industry

context it is not unreasonable to assume that information is available on firms’

efficiency distribution and consumers’ utility function. In fact, an important

part of the empirical literature (see Reiss and Wolak (2002) for a survey) is

devoted to estimating industries’ cost and demand structures. In other words,

the informational problems may not be worse here than in other mechanism

design problems, like regulating a monopolist or designing optimal auctions.

Second, it may seem far fetched to have a competition authority offering a

menu of choices from which firms must choose, however, this is beside the point.

To illustrate, consider the optimal tax literature. Although, to the best of our

knowledge, no government has ever proposed a tax code given by the differential

equation that follows from an optimal tax problem, a lot has been learned from

the optimal tax literature on how taxes should be designed. Below we will derive

a number of properties of optimal competition, which will be surprising to people

using the first best benchmark. For instance, we will derive conditions under

which Cournot competition is, in fact, optimal competition. Since we allow

for a set of mechanisms which may seem to be stretching what is realistically

feasible, this is a very strong result indeed. Third, worrying about the feasibility

of the optimal competition benchmark goes to the core of this paper: our point

is exactly that using the first best outcome as a benchmark is not helpful. It is

not realistic to assume that a competition authority can intervene in a way that

will create the first best outcome in an industry. Hence optimal competition is

a first step toward a better benchmark for competition authorities. In the light

of the mechanism design literature it is a natural step, but it need not be the

last step.

The main motivation of the paper is the optimal competition benchmark as

a tool for competition authorities to help them select which industries require

efficient firm), industry profits would be lower. But, as shown below, welfare would be lower

as well.
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further investigation. However, there are broader lessons that can be learned

from the optimal competition outcome. This paper makes the following five

additional contributions to the Industrial Organization literature.

First, the economic analysis of the effects of intensity of competition on wel-

fare is rather complex. We will first explain where this complexity comes from

and then how this paper contributes to this issue. When modelling the effect

of competition on welfare there are, broadly speaking, two ways in which com-

petition can be intensified. First, one can increase the number of firms in the

industry. This is the route taken in papers, like Dixit and Stiglitz (1977) and

Mankiw and Whinston (1986). These papers derive the optimal number of firms

(or optimal product variety) in an industry with given competitive behavior (say,

Cournot competition). Another way in which competition can be intensified is

more aggressive interaction between existing firms. The way in which this is

often formalized is by increasing the elasticity of substitution between goods

(see, for instance, Aghion et. al. (2002) and Blanchard and Giavazzi (2001)).

This, however, implies changing the consumers’ utility function. Thus welfare

comparisons become hazardous. Another option to model more aggressive in-

teraction (without affecting agents’ utility function) is a switch from Cournot to

Bertrand competition. This approach has two disadvantages. It is rather messy

in terms of the mathematics and it only considers two possibilities instead of

working with a continuum.3

A major contribution of this paper is that by viewing the problem as a

mechanism design problem we both generalize the modelling of competition

outcomes4 and we manage to make the mathematics simpler. The innovation

is the identification of intensity of competition in a mechanism design problem.

In this way, we determine the optimal number of firms and the optimal inten-

sity of competition using a simple two dimensional graph with two curves: a

downwardsloping budget constraint and an upwardsloping entry condition.

The second contribution of the paper is the following. People guided by the

first best benchmark tend to believe that prices should be equal (or at least

close) to marginal cost. This leads them to believe that Bertrand competition is

always preferable to Cournot competition from a welfare perspective. Although

Bertrand competition is welfare maximizing in the case where firms produce

perfect substitutes, this is not the case when consumers value variety. We will

show that in the case where consumers’ utility function is of the CES form (with

a finite elasticity of substitution) and the efficiency distribution in an industry

follows the Pareto distribution, Cournot competition can be optimal. Moreover,

we will show that if the least efficient firms cannot enter the market, Cournot

competition is, in fact, too fierce. Welfare would be increased if competition

3One way in which one can introduce a continuous variable here is to model the, so called,

conjectural variations. However, this approach has its own limitations (no clear foundation

for where the firms’ conjectures come from) and it is rather messy as well.
4More formally, let q (.) denote a firm’s output level as a function of its efficiency level, n.

Then comparing the Cournot and Bertrand competition outcomes boils down to calculating

welfare under two specific functional forms, q
B (.) and q

C (.), determined by the Bertrand

Nash and Cournot Nash equilibrium resp. In contrast, below we consider any functional form

q (.) that satisfies incentive compatibility.
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would become less intense, because then more firms could enter the industry

with differentiated products.

Third, this idea that competition in the market can be too fierce from a

social point of view is an important conceptual contribution. To illustrate,

Bolton et al. (2000) state that ’Predatory pricing poses a dilemma that has

perplexed and intrigued the antitrust community for many years. On the one

hand, ... predatory pricing can be an instrument of abuse; on the other hand,

price reductions are the hallmark of competition and the tangible benefit that

consumers perhaps most desire from the economic system’. The idea implicit in

this dilemma is that more competition is always better from a welfare point of

view. Bolton et al. (2000) survey how predatory pricing can indeed be optimal

for a firm and welfare reducing in a dynamic world with incomplete information.

However, we will show below that competition can be too fierce also in a static

context with symmetric information among firms. Thus one can formalize that

firms may have to be punished for competing too fiercely as well as for lack

of competition. Comparing the optimal competition outcome with the market

outcome yields that the monopoly power effect causes too little output and

the appropriability effect too little entry in the market outcome. On the other

hand, the rent creation effect leads to excessive production and entry levels in

the market outcome as compared to the optimal competition outcome.

One can also relate this issue to a competition authority’s task of approving

mergers. Consider a certain industry where the market outcome is more com-

petitive than the optimal competition outcome. Then a merger that reduces

the intensity of competition can be welfare enhancing. Hence a competition

authority should take a more favourable stance towards such a merger in this

case than in an industry where the market outcome is less competitive than the

optimal outcome.

Fourth, we derive the following comparative static results. As the amount

of money spent in the industry goes up, the optimal competition outcome be-

comes more competitive. This suggests that, ceteris paribus, a competition au-

thority should spend more resources monitoring mature industries than starting

industries. Further, as competition authorities put more weight in their objec-

tive function on consumer surplus (as compared to producer surplus) and more

weight on employment, the outcome should become more competitive. The em-

ployment effect may be surprising as competition authorities often claim that

they allow soft competition in an industry to protect employment. This ar-

gument overlooks that low competitive pressure creates rents thereby reducing

output and therefore employment. Finally, the relation between the level of

the sunk entry cost and the intensity of competition in the optimal outcome is

U-shaped.

Finally, the optimal competition benchmark allows us to derive sufficient

conditions under which regulating a monopolist is preferrable to liberalizing

the industry and inviting entry. Without the optimal competition concept, it

is hard to derive such sufficient conditions because there is no upperbound on

welfare achievable in the market outcome. To illustrate, one can show that

regulating the monopolist leads to higher welfare than a market outcome with
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Cournot competition. But that does not prove much as it leaves open the

question whether there are other market outcomes (like Bertrand competition)

that yield higher welfare than the regulation outcome. Optimal competition

yields (by definition) the highest welfare that any market outcome can achieve.

Hence, showing that the regulated outcome leads to higher welfare than optimal

competition makes a strong case for regulation.

This paper is related to several strands of the literature. First, the optimal

competition benchmark is derived as the solution to a mechanism design prob-

lem. In particular, it is reminiscent of the literature on optimal auctions, see for

instance Bulow and Roberts (1989) and Bulow and Klemperer (1996), and the

optimal allocation of prizes in a contest as in Moldovanu and Sela (2001). This

will become even more clear lateron when we introduce the notion of industry

marginal costs (as compared to an individual firm’s marginal costs) which is

closely related to marginal revenue in auctions. The difference with optimal

auctions is that we maximize welfare, not revenue. Second, the efficiency distri-

bution is the realized distribution of the firms in the industry. That is, it is not a

probability distribution from which agents are drawn. Finally, firms pay a sunk

entry cost to enter the industry and hence the number of firms is determined

endogenously. In Bulow and Roberts (1989) the number of participants in the

auction is exogenously given.

Second, the result that an increase in sunk entry costs can reduce the in-

tensity of competition in the optimal outcome is similar to a result by Gilbert

and Klemperer (2000). They show that because of a sunk entry cost for buyers

it may be optimal ex ante for a seller to commit to rationing. In particular,

in this case competition is reduced (rationing instead of market clearing prices)

by the seller to encourage entry by weak (low valuation) buyers. We generalize

this idea by considering the optimal competition outcome as a function of the

entry cost and find a U-shaped relationship.

The rest of this paper is organized as follows. The next section introduces

the model, defines the optimal competition outcome and represents the solution

in a simple diagram. Section 3 derives the implications for competition policy

of the optimal competition benchmark. Section 4 compares the optimal com-

petition outcome with a market outcome and derives conditions under which

they coincide. Section 5 discusses three extensions of the basic model. What

happens to the optimal competition benchmark if the competition authority at-

taches value to producer surplus and employment? When should deregulation

in one market spill over into more intense competition in another market? And,

finally, when is regulating a monopolist better from a social point of view than

breaking up the monopoly and inviting entry into the industry? Mathematical

proofs are given in the appendix.

2 Model

This section formalizes the concept optimal competition. It is the solution to

a mechanism design problem where firms’ efficiency levels cannot be observed.
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A competition authority offers a menu of output and revenue combinations and

firms select the most profitable combination. The difference between the optimal

competition benchmark and the first best is precisely the assumption that firms’

efficiency levels cannot be observed. Hence under optimal competition, the

competition authority cannot force firms to price at marginal costs. Since it

seems indeed unrealistic to assume that a competition authority can observe

firms’ marginal cost levels, the optimal competition outcome gives a better

benchmark for authorities to decide which sectors should be scrutinized. We

first introduce the demand side of the economy and then the supply side.

Consider an economy with sectors j ∈ [0,1] where each sector consists of a
number of firms producing goods. Consumers have a nested utility structure

with Cobb Douglas preferences over sectors, that is overall utility is given by

∫
1

0

α (j) lnQ (j) dj (1)

where Q (j) is a utility index for sector j, with α (j) ≥ 0 for all j ∈ [0, 1] and∫
1

0
α (j) dj = 1. The within sector utility for industry j is given by

Q (j) =

∫
Nj

0

v (qj (i)) di

where qj (i) is the output level of firm i in industry j and the function v (.)
satisfies v (0) = 0, v′ (q) > 0 and v′′ (q) ≤ 0. If v′′ (q) < 0 we say consumers have
a taste for variety, while products are perfect substitutes if v′′ (q) = 0. Let Y
denote aggregate income that is spent on consumption in this economy. Then

the Cobb Douglas structure gives us that expenditure in market j is given by

Ej = α (j)Y . This assumption allows us to consider each industry in isolation
without worrying about spillover effects to other industries (we come back to

this in section 5). Below we focus on one industry j and drop the subscript j

where this does not cause confusion.

Now turn to the firm side in the industry. Each firm produces one and only

one product. Each firm has a constant returns to scale technology. Let n denote

the productivity of a firm, that is the marginal cost of producing an additional

unit equals
1

n
. We assume that n is distributed on [n0, n1] with density function

f (.) and distribution function F (.). Further, in order to enter the industry each
firm has to pay a sunk entry cost γ ≥ 0.
The mechanism design problem is to determine the menu of contracts which

maximizes utility or consumer surplus under the restriction that total expen-

diture in the industry equals E. In particular, the planner offers combinations

(R (n) , q (n)) of revenue R (n) and output levels q (n). Firms announce their
efficiency level in such a way that they get the combination of revenue and out-

put level that maximizes their profits.5 Consider incentive compatibility and

individual rationality in turn.

5Using the revelation principle (see for instance Fudenberg and Tirole (1991: chapter 7)) we

can indeed focus, without loss of generality, on such a direct mechanism where firms announce

their type.
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Once a firm of type n enters the market, it announces its efficiency level ñ

to maximize profits, that is

π (n) = max
ñ

{
R (ñ) −

q (ñ)

n

}

As shown by Fudenberg and Tirole (1991: 258-261) and Guesnerie and Laffont

(1984) a necessary and sufficient condition for truthful revelation in this case

is that R (.) and q (.) are nondecreasing in n. If R (.) and q (.) are strictly
increasing in n, we have full separation of types.6 Given that we have truthful

revelation, we find (using the envelope theorem) that

π
′ (n) =

q (n)

n2
(2)

Next consider individual rationality. Firms enter the market if and only

if their profits exceed the entry cost γ, π (n) ≥ γ. Since quantities q (n) are
nonnegative, equation (2) implies that profits are nondecreasing in n. Hence,

if type n enters the market, all types n
′
> n enter as well. Let nw denote the

least efficient firm that enters the market. Then the profits for firm n can be

written as follows.

Lemma 1 Consider an incentive compatible menu of choices (R (.) , q (.)) for

firms. If firm nw > n0 is the least efficient firm to enter the market,
7
then the

profits for firm n ≥ nw equal

π (n) = γ +

∫
n

nw

q (t)

t2
dt (3)

The proof of the lemma is straightforward. First, since firms enter the market

freely, it must be the case that π (nw) ≥ γ. Next, the case where π (nw) > γ

can be ruled out because in that case firms with efficiency nw − ε (for ε > 0
but small) would enter the market as well,8 contradicting that nw is the least

efficient firm to enter the market. Hence we have π (n
w
) = γ. Second, equation

(2) with π (nw) = γ is a differential equation with a boundary condition, and it

is routine to verify that (3) is the solution.

We first assume that the competition authority’s goal is maximization of con-

sumer surplus and lateron we consider other objectives. Thus we can formulate

the optimization problem by the competition authority as

max
q(.),π(.),nw

∫
n1

nw

v (q (n)) f (n) dn

6We will ignore this monotonicity condition in the derivation of the outcome and check

lateron that the solution indeed satisfies this condition.
7 If nw = n0 the result still holds if the competition authority puts enough weight on

consumer surplus (as compared to producer surplus) because that will imply π (nw) = γ

(instead of π (nw) > γ).

8To see this, note that R (nw) −
q(nw)

nw

> γ implies that R (nw) −
q(nw)

nw−ε
> γ for ε > 0

small enough.
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subject to

π
′ (n) =

q (n)

n
2

π (nw) = γ∫
n1

nw

[
π (n) +

q (n)

n

]
f (n) dn = E

Note that now we index firms by their efficiency level (i.e. not by their identity

i ∈ [0,N ] as above). The first and second constraint have been discussed above.

The last constraint is that total expenditure,
∫
n1

nw

R (n) f (n) dn, in the market

is equal to E,9 where R (n) = π (n)+ q(n)
n

. Let λ denote the Lagrange multiplier

on this budget constraint, then this optimization problem can be formulated as

follows.

Lemma 2 The competition authority’s optimization problem can be written as

max
q(.),n

w

∫
n1

n
w

[v (q (n))− λMC (n) q (n)] f (n) dn− λ (1− F (nw)) γ

subject to ∫
n1

nw

MC (n) q (n) f (n) dn+ (1− F (nw)) γ = E

where MC (n) denotes firm n’s industry marginal costs

MC (n) ≡
1

n

[
1 +

1− F (n)

f (n)n

]
(4)

The lemma shows that the competition authority’s optimization problem has

a very simple structure. It maximizes utility, v (q (n)), minus total variable costs

of production, MC (n) q (n), minus total entry costs, (1− F (nw)) γ, where the

costs are priced with the shadowprice, λ, of expenditure E. The definition of

industry marginal costs in (4) is borrowed from the auction literature’s concept

marginal revenue.10 To see why industry marginal costs for firm n, MC (n),
exceed private marginal cost for firm n,

1
n
, consider the industry cost of raising

output for firms with efficiency n with one unit, i.e. ∆q (n) = 1. That implies

that total costs for these firms rises with
∆q(n)

n
f (n) = f (n)

n
. In addition to

this, it becomes more attractive for firms with n
′
> n to mimic firm n. In

order to keep incentive compatibility, equation (2) implies that the profits of

9Since we have assumed non-satiation (v′ (q) > 0 for all q ≥ 0), total expenditure will

never be less than E.
10See, for instance, Bulow and Roberts (1989) and Bulow and Klemperer (1996)). Their

motivation for calling it (industry) marginal costs is the following. Let x (n) denote the

’quantity’ of firms with efficiency greater than n, that is x (n) = 1−F (n). Then marginal costs

at the industry level can be defined as
d[ 1
n
x(n)]

dx(n)
. Writing this derivative as

d[ 1
n
x(n)]
dn

(
dx(n)
dn

)
−1

it is routine to verify that this expression equals that for MC (n) in equation (4).
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the firm just above n has to rise with ∆π =
∆q(n)

n2
=

1

n2
. Further, to maintain

incentive compatibility for all firms above n, the profits of these firms have to

rise as well with ∆π. Since there are (1−F (n)) firms above n, the total costs

of maintaining incentive compatibility equal ∆π (1− F (n)) =
1−F (n)

n2
. Hence

the total increase in industry costs in response to ∆q (n) = 1 equal

f (n)
1

n

(
1 +

1−F (n)

f (n)n

)
= f (n)MC (n)

This explains the intuition why industry marginal costs exceed marginal

costs
1

n
at the firm level. By letting firm n produce an additional unit, an

informational rent (or virtual surplus) is created for types n′ > n. The industry

marginal costs MC (n) takes this informational rent into account as well.

The following proposition characterizes the solution to the maximization

problem above. That is, it characterizes the optimal competition outcome.

Proposition 1 Assume thatMC (n) is non-increasing in n,n0 = 0, γ > 0, v
′′

(.) <

0 and limq−→+∞ v
′

(q) = 0. Then q (.) , nw and λ are determined by the following

three equations

v
′

(q (n)) = λMC (n) (5)

for all n ≥ nw,

v (q (nw)) = λ [q (nw)MC (nw) + γ] (6)∫ n1

n
w

MC (n) q (n) f (n) dn+ (1−F (nw)) γ = E (7)

The proposition shows the trade off that a competition authority faces. On

the one hand, the concavity of the utility function v (.) implies that consumers

like variety and hence nw should be low. However, a low value of nw is costly not

only because the entry cost γ has to be incurred for a bigger number of firms but

also because entry by low efficiency firms creates rents for more efficient firms

(MC (n) goes up as n falls). Hence to keep a balanced budget, lower values of

nw lead to lower values of q (n) for all n > nw. In other words, the trade off here

is between variety (number of goods) and the quantity of each good on offer.

The intuition for the equations (5)-(7) is as follows. The first equates the

marginal utility of output q (n) with its marginal cost (in terms of the shadow

price of expenditure). Equation (6) says that the benefit of having the least

efficient firm nw in the industry, v (q (nw)), equals the cost of having it in the

industry γ plus the cost of producing q (nw), λ [q (nw)MC (nw) + γ]. Put differ-

ently, the planner is indifferent whether nw enters the industry or not. Finally,

total industry costs (total variable production costs plus entry costs) should

equal total expenditure E.

The intuition for the assumptions made in the proposition is the following.

A sufficient condition forMC (n) to be decreasing in n is that the distribution of

efficiency satisfies the monotone-hazard-rate condition,
d
dn

(
f(n)

1−F (n)

)
≥ 0. This
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is a standard condition in mechanism design problems. If the efficiency distri-

bution is such that industry marginal costs are rising in n over some interval,

we get that more efficient types produce less than less efficient types. This con-

tradicts incentive compatibility of the solution.11 The condition that n0 = 0

ensures that we have an interior solution for nw. Clearly, with γ > 0 it is never

optimal to let a firm which cannot produce any output enter an industry, so

nw > n0 = 0. If n0 > 0, equation (6) needs to be adjusted to allow for a corner

solution.12 The condition that utility v (.) is strictly concave, rules out that

goods are perfect substitutes. If goods are perfect substitutes, the solution to

the planner’s optimization problem is not well defined. In principle, in that case

it is optimal to have only the most efficient firms enter the industry, nw = n1.

However, the firms with efficiency n1 have zero mass and hence industry produc-

tion equals zero.13 Assuming that consumers value variety (v′′ (.) < 0) avoids

this technical complication. Finally, assuming that v′ (+∞) = 0 ensures that

we do not need to worry about corner solutions in equation (5).14

The outcome in proposition 1 can be represented by two curves in (nw, λ)

space as illustrated in figure 1. Equation (6) is upwardsloping in (nw, λ) space,

with slope
∂λ
∂nw

∣∣∣
(6)

= λ
−MC′(nw)
MC(nw)+γ

> 0. We call this the entry condition (EC): as

the marginal value of income, λ, decreases then less efficient firms can enter as

well and nw falls. We call equation (7) the budget constraint (BC). This curve

is downwardsloping, with
∂λ
∂n
w

∣∣∣
(7)

= f (nw)
q(nw)MC(nw)+γ∫

n1
nw

dq(n)

dλ
MC(n)f(n)dn

< 0 because

equation (5) implies
dq(n)
dλ

< 0. As the marginal value of income decreases,

high efficiency firms’ production goes up and hence to satisfy the budget con-

straint (7) money has to be saved on production and entry costs by eliminating

inefficient firms from the industry (nw goes up).

With an upward sloping EC and downward sloping BC curve in (nw, λ)

space, we have three possibilities as illustrated in figure 1. Panel a describes

the case with an interior solution for nw as characterized in proposition 1. In

panel b we find that at the point (n0, λBC) it is the case that v (q (n0)) >

λBC [q (n0)MC (n0) + γ]. Thus here we get the corner solution nw = n0. Fi-

nally, panel c of figure 1 describes a situation where the industry closes down

11 Interestingly, in this case the solution to the competition authority’s optimization problem

involves bunching or rationing. This means that firms of different efficiency levels get the same

output and revenue combinations. Put differently, optimal competition in that case involves

(over some range of types n) the weakest competition possible: more efficient firms are not

rewarded by higher market shares (but they do have higher profits). This line of research is

not further pursued in this paper.
12 In particular, it would read v (q (nw)) ≥ λ [q (nw)MC (nw) + γ] with strict inequality

only if nw = n0 . For instance, it is routine to verify that v′′ (q) < 0, γ = 0 and n0 > 0 imply

nw = n0.
13Formally, the solution can be characterized as nw = n1−ε with ε > 0 as small as possible.

The value of ε has to be as close to zero as possible in order to have only the most productive

firms in the industry and hence reduce both industry marginal costs and entry costs.
14Note that we do not need the assumption that lim

q↓0 v
′ (q) = +∞ to rule out corner

solutions. If v′ (0) is finite, and equation (5) would imply that q (n̂) = 0 for some n̂, then

equation (6) would imply that nw > n̂.
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as nw > n1. This case can be ruled out by the assumption that the inverse of

the function v
′ (.) is finite valued on �+.

15

3 Implications for competition policy

This section interprets the results in proposition 1 in terms of optimal compe-

tition and considers some simple examples. To do this, we introduce a formal

definition of competition in this context. We identify competition by its out-

put reallocation effect (see, for instance, Boone (2001) or Vickers (1995)). The

idea is that a rise in competition reallocates output from less efficient to more

efficient firms. From this point of view, the ultimate uncompetitive outcome is

rationing (each firm produces the same output level)16 not monopoly. In fact, a

highly concentrated industry is associated here with competition that is so in-

tense that less efficient firms cannot enter. More formally, we define competition

as follows.

Definition 1 Consider an industry characterized by its efficiency distribution

f (n) on an interval [n0, n1]. Comparing two industry outcomes, denoted I and

II, we say that outcome I is more competitive than II if there exists n̄ ∈ 〈n0, n1〉

such that

q
I (n) > q

II (n) for all n > n̄

q
I (n) ≤ q

II (n) for all n < n̄ and

q
I (n) < q

II (n) for all n < n̄ with q
II (n) > 0

This definition says that industry outcome I is more competitive than II if

there is a pivotal efficiency level n̄ such that all firms above n̄ produce more in

outcome I than in II while the firms below n̄ produce less in outcome I than in

II. Clearly, if qII (n) = 0 for low efficiency levels a rise in competition cannot

reduce these output levels further. Figure 2 illustrates this definition graphically.

In panels a and b the outcome in industry I is more competitive than in II .

Note however that the definition does not imply a complete ordering of industry

outcomes in terms of which outcome is more competitive. This is illustrated in

figure 2c where the outcomes I and II cannot be ranked. Yet, for our purposes

here that turns out not to pose any problems. That is, although we use this weak

criterion, we can rank the outcomes in terms of competition intensity where we

want to do so. The following example illustrates the definition by comparing a

Cournot and Bertrand outcome, where the Betrand outcome is generally seen

as more competitive.

15To see this, note that this implies q (n) as determined by equation (5) with λ = λBC > 0
is finite valued. Therefore the left hand side of equation (7) goes to zero as nw goes to n1 and

equation (7) cannot hold at the point (n1, λBC) . This rules out the case where the BC curve

lies everywhere above the EC curve.
16Note that incenitive compatibility excludes the case where more efficient firms produce

lower output levels than less efficient firms.

12



Example 1 Consider an industry with two firms producing perfect substitues

where the demand curve is given by p = 1 − q1 − q2. Assume that the con-

stant marginal costs of firm 1 equal c1 = 0 while the marginal costs of 2 equal

c2 = c < 1

2
. The Cournot outcome in this industry features output levels

qC1 =
1+c

3
,qC2 =

1−2c

3
and price level pC =

1+c

3
. The Bertrand outcome has

qB1 = 1 − c, qB2 = 0 and price level pC = c. Using definition 1 we say that

the Bertrand outcome is more competitive than the Cournot outcome, because

qB
1
> qC

1
and qB

2
< qC

2
.

Using this example we can also illustrate why variables like concentration and

industry profits are not useful to measure competition. First, the switch from

Cournot to Betrand competition is a move from duopoly to monopoly. Hence

competition goes up and concentration as well. Next, consider industry prof-

its. Under Cournot competition, industry profits equal ΠC =
1+c

3

(
1+c

3
− 0

)
+

1−2c

3

(
1+c

3
− c

)
and under Bertrand competition ΠB = (1− c) c. It is routine to

verify that ΠB > ΠC
for c ∈ 〈

2

7
, 1
2
〉.

Boone (2001) shows that for well known parametrizations of competition,

an increase in competition always features the output reallocation effect. The

intuition is that in a more competitive environment firms are punished more

harshly (in terms of output) for a fall in efficiency. Although this notion of

competition is, in general, not directly related to price cost margins, in the case

considered here there is a clear relationship as shown below.

The following result gives a straightforward way to determine how competi-

tive the optimal competition outcome is.

Lemma 3 The shadow price of expenditure λ is an inverse measure of compe-

tition.

This result follows immediately from equations (5) and (7). As λ falls,

output q (n) rises for all active firms (since v′′ (.) < 0) and hence equation (7)

implies that nw rises. Hence, using definition 1, the outcome with lower λ is

more competitive. As a further motivation for using λ as a measure competition

consider the following comparative static results which are partial results since

we vary λ as an exogenous variable.
17

Lemma 4 The profits of the least efficient firm increase with λ

∂π (nw)

∂λ
> 0

If
v
′
(q1)

v′(q2)
can be written as a function of

q1

q2
only, then a rise in λ raises price

cost margins

∂

(
R(n)− q(n)

n

R(n)

)

∂λ
> 0

for all n ≥ nw.

17More precisly, q (n) is determined by (5) and nw is determined by the budget constraint

(7).
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Hence a fall in λ reduces the profits of the least efficient firm by reducing

its production level through the reallocation effect. A rise in competition (and

a fall in λ) does not necessarily reduce all firms’ profits since the most efficient

firms may gain from more aggressive competitive interaction in the industry.

Further, a fall in λ reduces price cost margins for all active firms which is

another motivation to view a fall in λ as a rise in competition. The condition

that
v
′(q1)
v
′(q2)

can be written as a function of
q1

q2

only is, for instance, satisfied if

the utility function is given by v (q) = 1
α
q
α (implying a CES utility function at

the industry level).

Using figure 1a, we can derive the effects of entry cost γ and expenditure E

on the optimal intensity of competition λ and entry nw. As expenditure goes

up, the budget constraint shifts to the left: for given intensity of competition

more firms can enter. Hence the effect of a rise in E is a fall in both λ and nw.

If consumers are willing to spend more, the competition authority can afford to

have both more intense competition and more varieties.

A rise in entry cost γ shifts both curves to the right. For given intensity

of competition, λ, both the entry condition and the budget constraint indicate

that less firms can enter the industry (that is, nw goes up). The effect of γ on

λ depends on relative slopes of the two curves.

Lemma 5 The effect of a rise in the amount E spent in the industry on the

optimal competition benchmark is

dλ

dE
≤ 0,

dnw

dE
< 0

and the effect of a rise in entry cost γ is

dn
w

dγ
> 0

dλ

dγ
� 0 if and only if [1− F (n

w
)]− f (n

w
) [γ + q (n

w
)MC (n

w
)]
∂n

w

∂γ
� 0

where
∂nw

∂γ
=

1

q(nw)[−MC′(nw)]
> 0 as determined by equation (6).

The first result can be seen as a formalization of the following two forms

of an infant industry argument. First, an industry that starts off in a country

has a relatively low share of total income Y spent on its goods (i.e. α (j)

is low in equation (1)). Hence, ceteris paribus the efficiency distribution in

the industry and the entry cost, such a starting industry should be relatively

less competitive than a mature industry which attracts a higher share of total

income Y . In other words, the optimal competition benchmark is indeed tighter

(λ is lower) for mature industries than for infant industries. In this sense, for

given competitive behavior in the market, a competition authority should pay

more attention to the mature than the infant industry. Similarly, considering

an industry moving from maturity into decline in the sense that the amount

of money spent in the industry decreases over time, the optimal competition

14



outcome becomes less intense. Hence competition reducing mergers should be

viewed more favourably by a competition authority in a declining industry than

in a mature industry.

Second, comparing the same industry (with the same share of total income

spent in the industry) in two countries where one country is more developed

than the other in terms of income Y , we find that the less developed country

has a less competitive optimal competition benchmark than the more developed

country. This shows that the claim that developing countries should have the

same competition standards as developed western countries is, in general, not

correct.18

The interpretation of the condition for
dλ

dγ
is the following. As γ goes up,

the effect on λ is determined by the overall effect on the budget constraint.

On the one hand, as γ goes up with 1 expenditure on entry costs for all types

n > nw goes up. This is the term [1−F (nw)]. On the other hand, equation

(6) implies that a rise in γ increases nw because a higher efficiency is needed

to pass the (now) tougher entry condition. Clearly, the rise in nw reduces total

expenditure. The higher the savings due to the rise in nw, i.e. the higher

f (nw) [γ + q (nw)MC (nw)]
∂nw

∂γ
, the more likely that more intense competition

can be afforded,
dλ

dγ
< 0. If total costs rise with the increase in γ, competition

becomes less intense in order to lower active firms’ output levels and keep the

budget constraint satisfied.

The condition for the sign of
∂n
w

∂γ
suggests that for low γ the effect is pos-

itive because nw is small and hence [1− F (nw)] is big. Then as γ is raised

[1−F (nw)] falls and the effect becomes negative. More formally this can be

described as follows.

Corollary 1 Assume n0 > 0, v
′′ (.) < 0 and limq↓0 v

′ (q) = +∞. Then there

exist γ
∗
, γ

∗
with γ

∗
< γ

∗
such that

dλ

dγ
> 0 for γ < γ

∗

and
dλ

dγ
< 0 for γ > γ

∗

The intuition for this result is as follows. If γ is low, most firms can enter

and the post entry game can be rather competitive without damaging variety

much. If γ is big, duplication of entry costs is too expensive and hence not too

many firms should be attracted to the industry. Consequently, the post entry

game should be rather competitive. It is only when entry costs are somewhere

in between that weakening competition makes sense. The goal of softening

competition is to attract more firms into the industry (at the expense of lower

output per firm) which raises welfare because consumers value variety.

18
Yet, it does not necessary follow that the reduction in competition in developing countries

should take the protectionist form of introducing import tariffs for competing foreign goods.
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Another interpretation of this result is in terms of the uncertainty surround-

ing the industry. Consider the following modification of the model above. A

firm invests γ in R&D to invent a new product and enter the industry. With

a probability (1− s) this investment is not successful and the firm earns noth-

ing. With probability s the new product is successfully introduced and the

firm earns profits as stated above. It is routine to verify that results of this

new model are the same as the results derived above with sunk costs
γ

s
. Hence

a fall in s (making R&D more risky for firms) may initially call for a fall in

competition. Eventually for low values of s further reductions in s should raise

competition. This goes against the Schumpeterian intuition that more risk in

the R&D process should lead to more monopoly power for firms. The reason is

that for low s the R&D is unlikely to be successful and it is efficient to limit the

number of firms undertaking R&D by raising competition. An in-depth analysis

of the effects of R&D on optimal competition is beyond the scope of this paper

and left for future research.

The U-shaped relation between competition and entry cost is illustrated in

the following example.

Example 2 Assume that efficiency has a uniform distribution on [0, n1]. That

is, f (n) =
1

n1
and F (n) =

n

n1
. It follows that MC (n) =

n1

n2
. If we assume that

v (q) =
1

α
q
α
, then equation (5) implies that q (n) is determined by

q (n) = λ
−

1

1−α

(
n2

n1

) 1

1−α

Routine manipulation of equations (6) and (7) yields

α

1 + α

(
nw

n1

)
−

2α

1−α

−

1 + 2α

1 + α

nw

n1

+ 1 =
E

γ

λ =

(
1− α

αγ

)1−α(
n2
w

n1

)α

Finally, industry profits can be written as

Π = αγ

[
1− α

2 (1 + α)

(
n1

nw

) 2α

1−α

−

1

1 + α

nw

n1

+
1

2

(
nw

n1

)2
]

Figure 3 plots Π, nw and λ as a function of γ. We have chosen the following
parameter values for this graph: α = 1

2
,E = 100, n1 = 10 and γ ∈ [1,500]. Note

that we find indeed the inverse-U relation between γ and λ suggested above.

Hence, as γ rises competition becomes less intense in the optimal competition

benchmark while for higher values of γ a rise in γ intensifies competition in the

benchmark.
The example given in the introduction also follows from this example. In in-

dustry I the entry cost equals γ
I
= 31, then it follows that nw = 3.52, λ = 0.20
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and Π = 18.21. In industry II the entry cost γ
II

= 150 and thus the optimal
competition outcome features nw = 7.25, λ = 0.19 and Π = 7.23. The out-

come presented in the introduction has been derived with λ
m = 1 and hence

qm (n) = n
4

100
. To guarentee incentive compatibility we assume π′ (n) =

q
m

(n)

n2
=(

n

n1

)2

. Finally, nm
w
is then determined by

∫
n1

nm
w

[
πm (n) + q

m

(n)

n

]
1

n1
dn = 100

where πm (n) = 150 +
∫
n

nm
w

(
t

n1

)2

dt. Although industry profits equal Πm = 0.72

in the market outcome, which is below Π = 7.23 in the optimal competition
benchmark for industry II , it is clearly the case that the market outcome is less

competitive

As another illustration, the next example considers the optimal competition

benchmark for the case where the efficiency distribution is a Pareto distribution.

Example 3 Assume that the efficiency distribution on [n0,+∞〉 (with n0 > 0)

takes the Pareto form: f (n) = 1

φ
n

1

φ

0
n
−

1+φ

φ and F (n) = 1 −
(
n0
n

) 1

φ . Then

industry marginal costs take the following simple form

MC (n) =
1 + φ

n

Further, assume that the function v (.) takes the form v (q) = 1

α
q
α for α > 0.

To ensure that nw ∈ �,
19 we impose the condition that

φ <
1− α

α

Then equation (5) implies that

q (n) =

(
n

λ (1 + φ)

) 1

1−α

(8)

The budget constraint (7) can be written as

λ =

∫ +∞
n
w

(
n

λ(1+φ)

) α

1−α 1
φ
n

1

φ

0 n
−

1

φ
−1
dn

E −

(
n0

nw

) 1

φ

γ

or equivalently

λ
1

1−α =

(1 + φ)
−α

1−α 1
φ
n

1

φ

0
n

−(
1

φ
−

α

1−α )
w

1

φ
−

α

1−α

E −

(
n0

nw

) 1

φ

γ

(9)

19
Since the Pareto distribution is unbounded at the top it is tempting to produce output

only with the firms that have
1

n
= 0. This solution, however, is not optimal if consumers value

variety. The condition
1−α

α
> φ says that consumers value variety more than the tail of the

efficiency distribution is thick for high n. Hence it is optimal to have nw ∈ � and
1

nw

> 0.
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Finally, equation (6) can be written as

λ
1

1−α =
1−α

αγ

(
nw

1 + φ

) α

1−α

(10)

Combining equations (9) and (10) yields

nw

n0
=

(
1− αφ

1−
α

1−α
φ

γ

(1−α)E

)φ
(11)

Substituting this into (10) yields the following expression for λ

λ
1

1−α =
1−α

αγ


 n0

1 + φ

(
1−αφ

1−
α

1−α
φ

γ

(1− α)E

)φ


α

1−α

(12)

Finally, equation (8) can now be written as

q (n) =

(
n

1 + φ

) 1

1−α αγ

1−α

(
1 + φ

n0

(
1−

α

1−α
φ

1−αφ

(1− α)E

γ

)φ) α

1−α

(13)

Using this example it becomes relatively straightforward to illustrate the
comparison between the optimal competition benchmark and the Cournot mar-
ket outcome.

4 Comparing optimal competition with themar-

ket outcome: Cournot case

In this section we compare the optimal competition outcome with the market

outcome in case of Cournot competition. We show that three effects determine

the difference between the optimal and market outcome: monopoly power effect,

appropriability effect and rent creation effect. These effects work in opposite

directions and hence it is not a priori clear whether the optimal competition

outcome is more competitive than the Cournot outcome. Looking at the exam-

ple of a CES utility function and Pareto efficiency distribution we show that for

γ sufficiently high the Cournot outcome is too competitive.

4.1 General case

First, we derive the demand function that a firm faces under Cournot compe-

tition. Consumers maximize utility under the budget constraint that they are

willing to spend E in this market, that is they solve

max

∫
n1

n0

v (q (n)) f (n) dn
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subject to

∫
n1

n0

p (n) q (n) f (n) dn = E

where p (n) denotes the price of a good produced by a firm with efficiency n.20

Let µ denote the Lagrange multiplier for the budget constraint, then the first

order condition for q (n) can be written as

v′
(q (n)) = µp (n)

Hence, each firm faces a demand curve of the form

p (q) =
v′ (q)

µ

and firms view µ as an exogenous parameter that their output decisions do not

affect. The Lagrange multiplier µ is determined by the budget constraint which

can be written as ∫
n1

nc

v′ (q (n))

µ
q (n) f (n) dn = E

where nc denotes the least efficient firm that still produces under Cournot com-

petition (to be determined below). Note that under Cournot competition firms

are right that they cannot affect µ in the sense that their own direct effect on

the budget constraint is negligible and they conjecture that
dq(n)
dq(i) = 0 for n �= i.

Hence, a firm in the market with efficiency n chooses output level q (n) to solve

max
q

(
p (q) −

1

n

)
q

and its profits equal

π (n) = max
q

{
v

′
(q) q

µ
−
q

n

}

The first order condition for q (n) can be written as

v
′′
(q (n)) q (n) + v

′
(q (n)) =

µ

n
(14)

Comparing this equation to equation (5) which determines output of firm n

under optimal competition we see two differences. First, on the left hand side

the Cournot outcome features the term v
′′
(q (n)) q (n) < 0 which does not

appear in the optimal competition benchmark. This is the monopoly power

effect that tends to reduce output in the private outcome as compared to the

optimal competition benchmark. Firms take into account that increasing output

q tends to reduce the price at which they sell (
dp(q)
dq

=
v′′(q)
µ

< 0). On the right

hand side of (14) we find the private marginal cost
1
n
instead of the industry

marginal costMC (n) in (5). SinceMC (n) >
1
n
this tends to raise output in the

20Note that to simplify notation we have used that firms with the same efficiency level

choose the same price-output combination in a (symmetric) Cournot equilibrium.
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private outcome above output in the optimal competition benchmark. We call

this the rent creation effect. Low efficiency firms tend to produce too much in

the private outcome thereby raising the rents that accrue to more efficient firms.

In order to understand the overall effect (including the effect on µ) we need to

derive the least efficient firm nc that still enters in the Cournot outcome. This

is determined as the efficiency level at which a firm generates enough profits to

pay for the entry cost γ,

v
′
(q (nc))

µ
q (nc)−

q (nc)

nc
= γ

Writing this as

v
′
(q (nc)) q (nc) = µ

[
q (nc)

nc
+ γ

]
(15)

and comparing this equation with (6) we see two effects appearing. On the right

hand side we have again the rent creation effect: MC (n) >
1
n
: by entering a

firm creates additional rents for firms with higher efficiency as they can now

mimic this firm. Hence in the private outcome there tends to be too much

entry. However, comparing the left hand sides of these two equations, we see

the appropriability effect which tends to lead to insufficient entry in the private

outcome since v′
(q) q < v (q) for a strictly concave function v (.). The intuition

is that a social planner sees the utility created by a firm, v (q), as the incentive

to enter while a firm looks at the revenue which is generated by entering, v′
(q) q.

Since firms cannot appropriate the whole consumer surplus in this model, the

private incentive to enter falls short of the social incentive.

Hence when comparing the optimal competition outcome with the private

(Cournot) outcome along both the output and the entry dimension, we see

effects pulling in opposite directions. On the one hand, the rent creation effect

leads to excess entry and production in the private outcome as compared to the

optimal outcome. On the other hand, the monopoly power effect leads to output

levels that are too low and the appropriability effect leads to insufficient entry

in the private outcome as compared to the optimum. Hence it is impossible

to derive an unambiguous comparison of the Lagrange multipliers µ and λ.

Thus we cannot say, in general, whether the private outcome is more or less

competitive than the optimal competition benchmark. To get further intuition

on this issue we consider the special case with v (q) =
1
α
q
α
and the Pareto

efficiency distribution introduced in example 3.21

21The reason why this combination of utility function and efficiency distribution makes the

comparison particularly easy is (as we will see below) that they lead to fixed mark ups of

prices over private marginal costs
1

n
. In the private outcome this mark up is determined by

α and in the optimal competition benchmark by φ.
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4.2 CES utility and Pareto efficiency distribution

Assuming that v (q) = 1

α
q
α
, F (n) = 1−

(
n0

n

) 1

φ for n > n0 with φ <
1−α

α
we can

write output in the Cournot outcome as

q
c (n) =

(
αn

µ

) 1

1−α

Using this, equation (15) can be written as

µ
1

1−α =
1−α

γ
(αnc)

α
1−α (16)

and the budget constraint can be written as

µ
1

1−α =
1

E
α

α
1−α

∫
+∞

nc

n
α

1−α f (n) dn (17)

Standard manipulation of these equations yields the following comparison with

the optimal competition benchmark derived in example 3.

Proposition 2 Let γ̄ and γ̃ denote resp. γ̄ = E (1−α (1 + φ)) > 0 and

γ̃ = E
1−α(1+φ)

1−αφ
> γ̄. Then we find that if

γ ∈ [0, γ̄〉 then nc = nw = n0 and qc (n) < qo (n) for all n ∈ [n0, n1];

γ = γ̄ then nc = nw = n0 and qc (n) = qo (n) for all n ∈ [n0, n1];

γ ∈ 〈γ̄, γ̃] then nc > nw = n0 and qc (n) > qo (n) for all n ∈ [nc, n1];

γ > γ̃ then nc > nw > n0 and qc (n) > qo (n) for all n ∈ [nc, n1].

In words, if γ is big enough that some firms do not enter in the market

outcome (nc > n0) then the Cournot outcome is more competitive than the

optimal competition benchmark. This can be seen by using definition 1 with

n̄ = nc. The intuition is the rent creation effect: firms produce too much output

thereby generating excess rents for high efficiency firms. Both the high output

and the excess rents cost money and therefore there is no budget left for entering

firms. Hence the market outcome here is biased towards quantity at the expense

of variety.

Hence from a social point of view, competition authorities should not only

intervene when competition is too soft in an industry, but there may also be

a call for action when competition is too intense. Hence without recourse to

dynamic models with incomplete information as used in the literature on entry

deterence and predation, we have formalized here the idea that competition in

the market may be too intense.

Further, there is a knife edge case (γ = γ̄) where Cournot competition is

actually optimal competition. That is, there is no mechanism (operating under

the information constraint assumed here) that can improve upon the Cournot

outcome. Cournot competition maximizes consumer welfare.
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Finally, when entry costs are rather low (γ < γ̄) then Cournot competition

is not competitive enough. The intuition is that Cournot competition in this

case where all firms enter (nc = n0) gives away excess profits in the sense that

π (n0) > γ. The optimal competition outcome, in contrast, has as a condition

π (nw) = γ, as shown in lemma 1. Therefore there is not enough budget left in

the Cournot outcome to have output levels as high as in the optimal outcome.

Note how this result contrasts with the conventional wisdom that competi-

tion authorities need not worry too much about industries with low entry costs.

This intuition is based on a Cournot model with symmetric firms. In that case,

as the entry cost goes to zero, the Cournot outcome converges to the perfect

competition outcome. Above we take seriously the idea that not all firms are

equally efficient. Then with a CES utility function and Pareto distribution of

firms’ efficiency levels we find that Cournot competition becomes too slack ex-

actly when the entry cost is low. This is not to say that a Pareto efficiency

distribution is necessarily a realistic assumption. The point is that with this

assumption and a CES utility function it is straightforward to capture the idea

that the market outcome can be too competitive. Unfortunately, we are not

aware of empirical results on the efficiency distribution of firms in an indus-

try (this in contrast to the public economics literature on wage and income

distributions).

5 Extensions

This section considers three simple extensions of the model above. First, we

analyze how different objectives for the competition authority affect the optimal

competition benchmark. Second, we generalize the utility function in equation

(1) to the case where expenditure per market is not fixed but depends on relative

prices. Third, we use the optimal competition benchmark to derive under which

conditions regulating a monopolist is better than opening up the industry for

competition.

5.1 Different objectives

As surveyed by Motta (2003), historically there have been a number of objectives

specified for competition policy. Above we have focused on consumer welfare,

but other possibilities are total welfare, employment, protection of the environ-

ment, supporting national champions or defending small firms. To illustrate

how the optimal competition benchmark is affected by different objectives for

the competition authority, we consider an objective function that puts weight

on firms’ profits and employment in the industry.

In this way, we show that a competition authority that wants to maximize

total welfare instead of consumer surplus tends to soften competition, as is

indeed often claimed. However, the idea that a competition authority that takes

industry employment into account should soften competition, is not correct in

the framework here.
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We write the objective function of the competition authority now as

∫
n1

nw

[
v (q (n)) + ζ (π (n)− γ) + ξ

q (n)

n

]
f (n) dn

where ζ ≥ 0 is the weight attached to producer surplus and ξ ≥ 0 is the weight

attached to employment. Note that we assume here that output in this industry

is produced with labor only and that the wage equals one. Hence employment

by a firm with efficiency n equals
q(n)
n

. Maximizing this objective function under

the budget constraint (7) and using λ as the Lagrange multiplier for this budget

constraint, we can write the equations determining q (n) , n
w
and λ as follows

v
′ (q (n)) = λMC (n)− ξ

1

n
− ζ

1− F (n)

n2f (n)
(18)

v (q (nw)) =

(
λMC (nw)− ξ

1

nw
− ζ

1−F (nw)

n2
w
f (nw)

)
q (nw) + λγ (19)

∫
n1

nw

MC (n) q (n) f (n) dn+ (1− F (nw)) γ = E (20)

With these equations we can derive the following results. We need upperbounds

on ζ and ξ to make sure that the system determined by (19) and (20) remains

stable.

Proposition 3 Assume that the density function f (.) satisfies the monotone-

hazard-rate condition. Then there exist ζ̄, ξ̄ > 0 such that a rise in ζ < ζ̄ makes

the optimal competition outcome less competitive and a rise in ξ < ξ̄ makes the

optimal competition outcome more competitive.

In other words, when a competition authority’s goal moves from consumer

welfare to total welfare (a rise in ζ) it softens competition in an industry. This

reduces output levels for high efficiency firms and hence allows less efficient

firms to enter the industry. The entry of these less efficient firms creates rents

for the more efficient firms. Thus total producer surplus rises. Note that this is a

comparative static exercise within optimal competition outcomes. As illustrated

in example 1 (for c ∈ 〈 2
7
, 1
2
〉), a more competitive market outcome can raise

industry profits. However, a more competitive ’optimal competition’ outcome
always features lower industry profits.

If a competition authority increases the weight on employment then it makes
competition more intense in an industry. This is contrary to common wisdom
where employment considerations are used to defend soft competition in an in-
dustry. The intuition for the result here is as follows. To maximize employment
subject to the budget constraint, the competition authority has to minimize
rents. That is, output should be produced by firms with low MC (n) and these
are high efficiency firms. Having low efficiency firms enter the industry and
produce output has as an advantage that these firms directly generate high em-
ployment for low output levels (as 1

n
is high for these firms), however the rent
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creation effect overturns this. Therefore employment increases with competi-
tion.

The result that employment increases with competition does depend on the
assumptions made here, in particular the one shot game nature of the model. If,
for instance, one would consider a dynamic model where firms experience cost
shocks from one period to the next and where the labor market is described by a
search and matching model as in Mortensen and Pissarides (1999) the following
effect works in the opposite direction. If competition intensifies, firms’ output
levels respond more strongly to cost shocks and therefore the inflow in and
outflow from unemployment increases. This effect tends to raise unemployment.

5.2 Related markets

In equation (1) we made the convenient assumption that consumers have Cobb
Douglas preferences over industries. This implies that expenditure in each in-
dustry is fixed and there are no interindustry effects. In this section we consider
a more general utility set up which does allow for such cross over effects. To
illustrate the main difference with the analysis above, we ask the question how
does deregulation in one market (modelled through a fall in entry cost in that
market) affect the optimal competition outcome in another market?

To analyze this point in the most simple set up, we assume that there are
two industries in the economy, denoted by 1 and 2. As in section 2, let Qi

(i = 1,2) denote the utility derived in sector i. Now instead of equation (1), we
assume that overall utility is given by

U (Q1, Q2)

where the function U (., .) is increasing and concave. From the analysis above
we know that, for given Ei, utility Qi equals

Qi = max
qi(.),nwi

∫
n1i

nwi

vi (qi (n)) fi (n) dn

−λi

[∫
n1i

nwi

MCi (n) qi (n) fi (n) + [1−Fi (nwi)]γi −Ei

]

where fi (.) (resp. Fi (.)) denotes the density (distribution) function of efficiency
in sector i with support [n0i, n1i], nwi is the least efficient firm to enter in sector
i, vi (.) is the per product utility function in sector i, λi denotes the Lagrange
mutiplier for the budget constraint in sector i, γ

i
the entry cost in this sector

and MCi (n) =
1

n

[
1 + 1−Fi(n)

fi(n)n

]
the industry marginal costs of firm n in sector

i. From proposition 1 we know that Qi is determined by the entry cost in sector
i and the expenditure in sector i. However, unlike the analysis above, Ei is an
endogenous variable now, since it is no longer exogenously fixed by Ei = αiY .
In particular, Ei is determined by the following optimization problem.

max
E1,E2

U (Q1 (E1, γ1) ,Q2 (E2, γ2)) subject to E1 +E2 = Y (21)
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The following result derives sufficient conditions under which deregulation in
sector 2 (in the sense that γ2 falls) leads to more intense optimal competition
in sector 1.

Proposition 4 If the following inequalities hold

∂
2
U (Q1, Q2)

∂Q1∂Q2

≥ 0 and

[1− F2 (nw2)]−
f2 (nw2) [γ2 + q2 (nw2)MC2 (nw2)]

q2 (nw2) [−MC ′

2
(nw2)]

≥ 0

then a fall in γ2 makes the optimal competition outcome in sector 1 more com-

petitive.

The intuition for this result is as follows. The first inequality implies that

the goods in sectors 1 and 2 are complementary. As the utility Q2 derived from

sector 2 goes up (as it does after a fall in γ2), the marginal utility derived from
sector 1 rises as well. This tends to raise the amount of money E1 spent in

sector 1. Lemma 5 implies that higher E1 intensifies competition in sector 1.
Next, using again lemma 5, the second inequality implies that the fall in γ

2

reduces the marginal value of expenditure, λ2, in sector 2. This tends to reduce
E2 and hence raises E1 = Y − E2 which, as above, intensifies competition in

sector 1. Hence under these conditions deregulation in sector 2 should lead to
a more competitive outcome in sector 1 as well.

5.3 Regulation vs liberalization

An important policy question is whether a certain industry should be regulated

or liberalized. For a discussion of the trade offs in this case, see for instance

Armstrong, Cowan and Vickers (1994). Comparing the regulated outcome with

the industry outcome after competition has been introduced, there is a clear

benchmark for the equilibrium under regulation but not for the market out-

come. For instance, Amstrong, Cowan and Vickers (1994) compare the optimal

regulation outcome with Cournot and Bertrand competition in the industry.

But this cannot give sufficient conditions for regulation to dominate liberal-

ization. To illustrate, if regulation leads to higher welfare than both Cournot

and Bertrand competition, there may still be another way of organizing the

liberalized market outcome that does better than regulation.

Here the optimal competition outcome defined above yields the desired

benchmark for the liberalized outcome. If one can show that the regulated

outcome yields higher welfare than the optimal competition outcome then this

is a sufficient condition for regulation to be optimal. Indeed no market outcome

in this case will generate higher welfare than the regulated outcome. The fol-

lowing example illustrates this by focusing on the trade off between the bigger

capacity for the regulated monopolist and the higher efficiency in the market

outcome.
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Example 4 This example works with different specifications of utility and cost

structures than the ones assumed above. The assumptions made here are closer

to the ones usually made in the optimal regulation literature. In particular, we

assume here that goods are homogenous, which seems appropriate when con-

sidering markets like electricity or water. The utility of consuming q ∈ �+

units equals v (q) = vq with the scalar v > 0. Further, the cost of spending an

amount E in this industry equals λE, where λ > 0 denotes the opportunity cost

of spending money in this industry (instead of on other goods in the economy).

We assume here that λ is exogenously given. Finally, in the case of the regulated

monopolist, the cost structure of the firm is

c (q) =
1

n
q +

1

2
φq

2

with φ > 0 common knowledge, but the efficiency level n cannot be observed

by the regulator. We assume that n is uniformly distributed on [0, n1]. The

regulator offers a menu of revenue and output combinations (R (n) , q (n)) and

the firm reports efficiency level ñ to maximize its profits

π (n) = max
ñ

[
R (ñ)−

1

n
q (ñ) −

1

2
φ (q (ñ))

2

]

Incentive Compatibility and Individual Rationality imply

π
′ (n) =

q (n)

n2

π (n) ≥ 0

We assume that the regulator maximizes consumer surplus and hence leaves no

rents for the least efficient type to participate. Therefore we have

π (n) =

∫
n

0

q (t)

t2
dt

Since expenditure on a type n firm can be written as

R (n) = π (n) +
1

n
q (n) +

1

2
φ (q (n))

2

consumer welfare under regulation equals

W
R = max

q(.)

∫
n1

0

[
vq (n)− λ

(
π (n) +

1

n
q (n) +

1

2
φ (q (n))

2

)]
1

n1
dn

Using integration by parts as in the proof of lemma 2, it is routine to derive that

q (n) =

{
0 for n < n

w

v

λφ
−

n1

φn2
for n ∈ [nw, n1]

where nw =
√

n1λ

v
. Substituting this into the expression for W

R
we find that

W
R =

v

2n1φ

[
vn1

λ
+2− 1

3

λ

vn1
− 8

3

√
n1v

λ

]
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In this example we take liberalization of the market to mean the following. The

monopolist is split up in smaller firms and other firms are allowed to enter the

market. The cost function of a firm now takes the form

c (q) =
1

n
q +

1

2
φ (1 + δ) q2

where the distribution of costs after liberalization is uniform on [0, n1 (1 + ρ)]
with δ, ρ > 0. This captures the following two effects of liberalization. On

the one hand, δ > 0 formalizes the idea that after liberalization the firms are

smaller and hence have smaller capacity than the regulated monopolist. On the

other hand, ρ > 0 implies that, after liberalization, increased competition and

entry by new firms lead to a gain in expected efficiency. It is routine to verify

that the optimal competition outcome after liberalization has welfare equal to

W
L =

v

2n1 (1 + ρ)φ (1 + δ)

[
vn1 (1 + ρ)

λ
+2− 1

3

λ

vn1 (1 + ρ)
− 8

3

√
n1 (1 + ρ) v

λ

]

Hence a sufficient condition for regulation to be preferable over any market

outcome is W
R
> W

L
, which can be written as

δ >

−2ρ− 1

3

λ

vn1

(
1

1+ρ
− (1 + ρ)

)
− 8

3

√
n1(1+ρ)v

λ

(
1−√1 + ρ

)
(1 + ρ)

[
vn1

λ
+2− 1

3

λ

vn1
− 8

3

√
n1v

λ

]

In words, the economy of scale advantage of the monopolist, δ, needs to be

sufficiently big for regulation to be optimal. One can check that the right hand

side of this inequality falls with ρ and
v

λ
. If ρ is small, there is hardly a gain in

efficiency due to liberalization and hence regulation is more likely to be optimal.

Similarly, if
v

λ
is big, this industry is important compared to the rest of the

economy. This implies that output will be high and hence the economies of scale

of the monopolist are important for welfare.

6 Conclusion

Instead of analyzing how a change in the number of firms in an industry or how

a change in firms’ conduct affects welfare, this paper asks ’How competitive

should an industry be?’. To answer this question we have set up a mechanism

design problem. The solution of this problem is called the optimal competition

outcome. Hence we do not compare the way in which output depends on firms’

efficiency under different equilibrium configurations (say, Cournot and Betrand

Nash equilibrium) but expand the domain to any incentive compatible output

function. Surprisingly, this domain expansion simplifies the analysis. The solu-

tion can be characterized in a simple two dimensional diagram determining the

optimal number of firms and the optimal conduct of firms in terms of aggres-

siveness of interaction. The main reason why this works is a new way to identify
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competition in a mechanism design problem. This gain in simplicity comes at

a cost. How should one interpret the optimal competition outcome since it is

not necessarily an equilibrium outcome of a game between firms? This section

summarizes the results of our paper keeping this caveat in mind.

First, we have shown that under some conditions Cournot competition can

be optimal competition. Hence in that case an equilibrium outcome is in fact

the best possible outcome. This turns out to be a knife edge result, and the

more interesting implication here is that the market outcome can be too com-

petitive compared to the optimal outcome. In such a case, a merger that makes

competition less intense in the industry is not necessarily bad.

Second, the optimal competition outcome gives an upperbound on what

any market outcome can achieve. This is useful when the market outcome is

compared to the possibility of regulating an industry. If the regulated outcome

leads to higher welfare than the optimal competition outcome, this is a sufficient

condition for regulation to dominate liberalization of an industry.

Third, although the optimal competition outcome may not be implementable

it still gives a competition authority an idea of the best possible outcome it can

achieve by intervening in an industry. If the gain in welfare from moving from

the current outcome to the optimal outcome in an industry is small, there is

little use for intervention in the industry. In that case, the scarce resources of

the competition authority can be used more productively in scrutinizing other

industries.

Finally, the framework introduced here allows us to do comparative static

exercises to see how entry costs, industry expenditure and the competition au-

thority’s objective function affect the optimal intensity of competition in an

industry. We showed, for instance, that for given conduct of firms there is more

need for intervention in industries where more money is spent by consumers.

Using the framework of optimal competition introduced here, we see the fol-

lowing areas for future research. First, optimal competition is derived under an

information constraint for the competition authority. We view this outcome as a

benchmark which is not necessarily implementable for a competition authority.

More restrictions can be added to the problem to derive an outcome which is im-

plementable by competition authorities. Second, above we have looked in a very

simple way at effect of R&D on optimal competition. This comes back to the

debate in the endogenous growth literature and recent empirical literature on

whether intense competition or monopoly power leads to more innovation. Us-

ing the framework here one could analyze which parameters of the R&D process

call for more (or less) intense competition to stimulate innovation. Other ques-

tions that one can analyze in this framework are the following. Should industries

where the majority of firms are run by professional managers (instead of owners)

be more competitive than industries with firms run by their owners? In other

words, under which conditions should competition be intensified to alleviate the

contractual problems of a principal agent relationship. Finally, if the demand

side of a market is very concentrated does this justify less intense competition

in the industry itself? This comes back to the idea that buyer power can be

used as a justification for a merger in the industry supplying these buyers to
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create countervailing power.
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7 Appendix: Proofs of results

Proof of Lemma 2

The maximization problem under the expenditure constraint can be written

as

max
q(.),π(.),nw

∫
n1

nw

{
v (q (n)) f (n) − λ

[
π (n) +

q (n)

n

]
f (n)

}
dn+ λE
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where λ is the Lagrange multiplier. Now substituting π (n) = γ+
∫
n

nw

q(t)
t2
dt into

this expression and using partial integration, in particular
∫
n1

n
w

(∫
n

n
w

q(t)
t2
dt

)
f (n) dn =∫

n1

nw

q(n)
n2

(1− F (n)) dn, this can be written as∫ n1

n
w

{v (q (n))− λq (n)MC (n)}f (n) dn− λ (1−F (nw)) γ + λE

when maximizing with respect to q (.) and nw the last term, λE, can be dropped
without loss of generality. Finally, λ is determined by the expenditure constraint

which can be written as∫ n1

nw

MC (n) q (n) f (n) dn+ (1− F (nw)) γ = E

Q.E.D.

Proof of Proposition 1

The Euler equation for q (.) can be written as

v
′ (q (n)) = λMC (n)

Differentiating
∫
n1

n
w

{v (q (n))− λq (n)MC (n)}f (n) dn − λ (1−F (nw)) γ with
respect to nw yields

v (q (nw)) = λ [q (nw)MC (nw) + γ]

Finally, as noted in the proof of lemma 2, λ is determined by the expenditure

constraint
∫ n1
nw

MC (n) q (n) f (n) dn+ (1−F (nw)) γ = E. Q.E.D.

Proof of Lemma 4

Using equation (3) for π (n) we can write

∂π (n)

∂λ
= −

q (nw)

n2
w

∂nw

∂λ
+

∫ n

nw

1

t2

∂q (t)

∂λ
dt

From equation (5) it follows that
∂q(t)
∂λ

< 0 and from equation (7) that
∂n
w

∂λ
< 0,

hence
∂π(n)
∂λ

> 0 for n close to nw.
The price cost margin for firm n can be written as

R (n) − q(n)
n

R (n)
=

π (n)

π (n) +
q(n)
n

=
1

1 +
q(n)
nπ(n)

Hence the price cost margin is increasing in λ if and only if

∂

(
nπ(n)
q(n)

)
∂λ

> 0

Using equation (3) for π (n), we can write this as

∂

(
n

q(n)

[
γ +

∫ n
nw

q(t)
t2

])
∂λ

= n




−γ

(q (n))2
∂q (n)

∂λ
+

∫ n

nw

∂

(
q(t)
q(n)

)
∂λ

1

t2
dt−

q (nw)

q (n)

1

n2
w

∂nw

∂λ




> 0
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From equation (5) it follows that
∂q(n)
∂λ

< 0. Further, the assumption that v
′(q1)
v′(q2)

is a function of
q1
q2

only, together with
v′(q(n))
v′(q(t)) =

MC(n)
MC(t) (from equation (5))

implies that
q(t)
q(n) is not affected by λ. Finally,

∂nw
∂λ

< 0 from equation (7).

Hence we have shown that sign



∂

(
R(n)−

q(n)

n

R(n)

)

∂λ


 = sign

[
∂(

n

q(n) [γ+
∫
n

nw

q(t)

t2
])

∂λ

]
>

0. Q.E.D.

Proof of Lemma 5

Linearizing equations (6) and (7) with respect to nw, λ,E and γ we get

(
q (nw)MC (nw) + γ λq (nw)MC

′
(nw)∫ n1

nw
MC (n) f (n)

dq(n)
dλ

dn −f (nw) [q (nw)MC (nw) + γ]

)(
dλ

dn
w

)

=

(
−λdγ

− (1− F (nw)) dγ + dE

)

Writing ∆ for the determinant of the matrix on the left hand side, we find that

∆ = (q (nw)MC (nw) + γ) f (nw) (− [q (nw)MC (nw) + γ])

−

(∫
n1

nw

MC (n) f (n)
dq (n)

dλ
dn

)
(λq (nw)MC ′ (nw))

< 0

because
dq(n)
dλ

< 0 and MC ′ (nw) ≤ 0.
Inverting the matrix, we can write this as

(
dλ

dnw

)
=

1

−∆

(
−f (nw) [q (nw)MC (nw) + γ] −λq (nw)MC′ (nw)

−

∫
n1

nw
MC (n) f (n) dq(n)

dλ
dn q (nw)MC (nw) + γ

)

×

(
λdγ

(1− F (nw)) dγ − dE

)

Hence we find that

dλ

dE
=
λq (nw)MC ′ (nw)

−∆
≤ 0

dnw

dE
= −

q (nw)MC (nw) + γ

−∆
< 0

dλ

dγ
= λ

−f (nw) [q (nw)MC (nw) + γ]− q (nw)MC′ (nw) (1−F (nw))

−∆

and thus

dλ

dγ
� 0 if and only if [1− F (nw)]−

f (nw) [γ + q (nw)MC (nw)]

q (nw) [−MC ′ (nw)]
� 0
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Finally, the effect of γ on nw is

dnw

dγ
=
−λ

∫ n1
nw

MC (n) f (n) dq(n)
dλ

dn+ [q (nw)MC (nw) + γ] (1−F (nw))

−∆
> 0

Q.E.D.

Proof of Corollary 1

Note that the assumtpions n0 > 0, v′′ (.) < 0 and limq↓0 v
′ (q) = +∞ together

with equations (5) and (6) imply that for γ = 0 we get the corner solution

nw = n0. To see this, first note that equation (5) implies that q (n) > 0
irrespective of the value of λ ∈ �+. Then dividing the equations (5) and (6),

we get for γ = 0 that

v′ (q (nw)) =
v (q (nw))

q (nw)

which contradicts the strict concavity of the utility function v (.). Hence it must
the case that equation (6) yields a corner solution, that is

v (q (n0)) > λ [q (n0)MC (n0)]

By continuity we find that nw = n0 for small values of γ > 0 as well. That is,
there exists γ

∗
> 0 such that ∂nw

∂γ
= 0 for γ ∈ [0, γ

∗
〉. The expression for

dλ

dγ
in

lemma 5 then implies that
dλ

dγ
> 0.

Now consider the case where γ becomes so big that nw approaches n1. Then

the expression [1−F (nw)] in the equation for
dλ

dγ
in lemma 5 approaches 0 and

hence we find
dλ

dγ
< 0 for γ big enough. Q.E.D.

Proof of Proposition 2

To prove this proposition, we have to be a bit more careful with corner

solutions for nw and nc. Therefore we restate the conditions for the optimal

case and the Cournot case taking corner solutions explicitly into account.

First, consider the optimal competition outcome. The solution for nw is

given by equation (11) and we find the corner solution nw = n0 if the right

hand side of this equation is smaller than 1. In that case the value of λ is given

by the budget constraint (9) (not by the first order condition for nw, that is

(10)). So we find the following two cases:

Case (O1): γ ≤ γ̃. Then we find that

nw = n0

λ
1

1−α =

(1 + φ)
−

α

1−α n

α

1−α

0
1

1−
α

1−α
φ

E − γ

q
o
(n) = n

1

1−α

1

1 + φ
n
−

α

1−α

0

(
1−

α

1− α
φ

)
(E − γ)

Case (O2): γ > γ̃. Then we find that nw, λ and q
o
(n) are determined by

equations (11)-(13).
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Next consider the Cournot outcome. Solving equations (16) and (17) for nc

we find that

nc

n0

=

(
γ

E

1

1− α−αφ

)φ

Clearly, γ ≤ γ̄ implies that nc equals the corner solution nc = n0. In this case

µ is determined by the budget constraint (17) (that is, not by the free entry

condition (16)). Thus we have the following two cases:

Case (C1): γ ≤ γ̄. Then we find that

nc = n0

µ
1

1−α =
1

E
α

α

1−αn

α

1−α

0

1

1− α

1−α
φ

q
c
(n) = αn

1

1−αEn
−

α

1−α

0

(
1−

α

1−α
φ

)

Case (C2): γ > γ̄. Then we find that

nc

n0

=

(
γ

E

1

1− α−αφ

)φ

µ
1

1−α =
1−α

γ
α

α

1−αn

α

1−α

0

(
γ

E

1

1− α− αφ

) αφ

1−α

q
c
(n) = αn

1

1−α

γ

1−α
n
−

α

1−α

0

(
(1− α− αφ)

E

γ

) αφ

1−α

Combining the four cases above, we get the following three cases (I)-(III) for γ:

(I) γ < γ̄(< γ̃): then we find that nw = nc = n0. Further, dividing the

expressions for qo (n) and qc (n) under (O1) and (C1) one gets

q
0
(n)

qc (n)
=
E − γ

E

1

α (1 + φ)

It is routine to verify that γ < γ̄ implies
q
0
(n)

qc(n)
> 1.

If γ = γ̄ then it follows that nw = nc = n0 and q
o
(n) = q

c
(n).

(II) γ̄ < γ ≤ γ̃: then we find that nw = n0 and nc > n0. Then the

expressions for output under (O1) and (C2) imply

q
o
(n)

qc (n)
=

1

α (1 + φ)

(1− α−αφ)

(
E

γ
− 1

)
(
(1− α− αφ)

E

γ

) αφ

1−α

We will now show that γ̄ < γ < γ̃ implies
q
o
(n)

qc(n)
< 1 for all n ≥ nc. Note that

q
o
(n)

qc(n)
< 1 can be written as

α (1 + φ)

(
(1−α− αφ)

E

γ

) αφ

1−α

− (1− α−αφ)
E

γ
+ (1− α−αφ) > 0
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To ease notation, define the variable x as x ≡ (1−α− αφ)
E

γ
, where the re-

strictions on γ (i.e. γ̄ < γ < γ̃) imply that 1− αφ < x < 1. Hence we need to

show that

g (x) > 0 for all x ∈ 〈1− αφ, 1〉

where

g (x) = α (1 + φ)x
αφ

1−α − x+ (1−α− αφ)

This follows from the following observations:

g (1− αφ) > 0

g (1) = 0

g
′

(1) < 0

g
′′

(x) < 0

where we have used the assumed inequality φ <
1−α

α
several times. For instance,

proving that g (1−αφ) > 0 boils down to showing that

(1 + φ) (1−αφ)
αφ

1−α > 1 (22)

This inequality can be seen as a function φ where φ lies in the interval 〈0, 1−α
α
〉.

Hence we need to show that

h (φ) > 0 for all φ ∈ 〈0,
1− α

α
〉

where

h (φ) = ln (1 + φ) +
αφ

1− α
ln (1− αφ)

This follows from the following observations

h (0) = 0

h

(
1−α

α

)
= 0

h
′

(0) > 0

h
′

(
1−α

α

)
< 0

h
′′

(φ) < 0

Coming back to the function g (.) above. We see that the function g (.)

crosses the x-axis at x = 1 and g (.) is decreasing at that point. Further, g (.) is

concave and strictly positive at x = 1 − αφ. This implies that g (x) is strictly

positive for all x ∈ 〈1−αφ,1〉.

(III) γ > γ̃: then we find that nw, nc > n0. In particular, using the expres-

sions for nw and nc under (O2) and (C2),

nw = n0

(
γ

E

1− αφ

1−α− αφ

)φ
< n0

(
γ

E

1

1− α−αφ

)φ
= nc
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Using the expressions for output under (O2) and (C2) we find that

q
o
(n)

qc (n)
=

1

1 + φ

(
1

1− αφ

) αφ

1−φ

< 1

where the inequality follows from equation (22) proved above. Q.E.D.

Proof of Proposition 3

Linearizing equations (19) and (20) with respect to nw, λ, ζ and ξ and writing

the result in matrix notation, we get
 (MC (nw) q (nw) + γ)

(
λMC

′

(nw) + ξ
1

n2
w

+ ζη (nw)
)
q (nw)∣∣∣∂V C(nw)

∂λ

∣∣∣ (MC (nw) q (nw) + γ) f (nw)



(

dλ

dnw

)

=

(
q(nw)
nw

dξ + 1−F (nw)
n2
w
f (nw)

q (nw) dζ
∂V C(nw)

∂ζ
dζ + ∂V C(nw)

∂ξ
dξ

)

where

η (nw) ≡ −

d
(
1−F (nw)
n2
w
f(nw)

)

dnw
> 0

∣∣∣∣
∂V C (nw)

∂λ

∣∣∣∣ ≡

∫
n1

nw

MC (n)

(
−
∂q (n)

∂λ

)
f (n) dn > 0

∂V C (nw)

∂ζ
≡

∫
n1

nw

MC (n)
∂q (n)

∂ζ
f (n) dn > 0

∂V C (nw)

∂ξ
≡

∫ n1

n
w

MC (n)
∂q (n)

∂ξ
f (n) dn > 0

The sign of η (nw) follows from the assumption of a monotone hazard rate, the

signs of

∣∣∣∂V C(nw)
∂λ

∣∣∣ , ∂V C(nw)
∂ζ

and
∂V C(nw)

∂ξ
follow from equation (18). Denoting

the determinant of the matrix above by ∆, we find that

∆ = (MC (nw) q (nw) + γ)
2
f (nw)−

∣∣∣∣
∂V C (nw)

∂λ

∣∣∣∣
(
λMC′ (nw) + ξ

1

n2w
+ ζη (nw) q (nw)

)
> 0

where the inequality follows for values of ξ, ζ > 0 that are close enough to 0. In
particular, since MC ′ (nw) < 0 there exist ξ̄, ζ̄ > 0 such that

λMC ′ (nw) + ξ
1

n2w
+ ζη (nw) q (nw) < 0 (23)

for ξ < ξ̄ and ζ < ζ̄ .

Hence we find that

(
dλ

dζ
dnw

dζ

)
=

1

∆




(
MC (nw) q (nw)

+γ

)
f (nw) −

(
λMC′ (nw) + ξ 1

n2
w

+ζη (nw)

)
q (nw)

−

∣∣∣∂VC(nw)
∂λ

∣∣∣ MC (nw) q (nw) + γ




×

(
1−F (nw)
n2
w
f (nw)

q (nw)
∂V C(nw)

∂ζ

)
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Using the inequalities derived above and the inequality assumed in (23), it is

straightforward to derive that

dλ

dζ
> 0

The sign of
dnw

dζ
turns out to be ambiguous, however we do not need the expres-

sion for
dn
w

dζ
as shown below.

Differentiating equation (18) with respect to ζ we get

v′′ (q (n))
dq (n)

dζ
=MC (n)

dλ

dζ
−

1−F (n)

n2f (n)

This can be written as

dq (n)

dζ
=

(
1− dλ

dζ

)
1−F (n)
nf(n) −

dλ

dζ

n (−v′′ (q (n)))

Since
dλ

dζ
> 0, we find that dq(n1)

dζ
< 0. The monotone hazard rate condition

implies that
1−F (n)
nf(n)

falls with n. Hence there are two possibilities. First, it is

possible that
dq(n)
dζ

> 0 for low n. Second, it is possible that
dq(n)
dζ

< 0 for all n.

Then the budget constraint (20) implies that
dn
w

dζ
< 0. In both cases definition

1 implies that a rise in ζ makes the outcome less competitive.

Now we turn to the effect of ξ. Solving the equations above in matrix

notation for
dλ

dξ
and

dnw

dξ
, one gets

(
dλ

dξ
dnw

dξ

)
=

1

∆




(
MC (nw) q (nw)

+γ

)
f (nw) −

(
λMC′ (nw) + ξ 1

n2
w

+ζη (nw)

)
q (nw)

−

∣∣∣∂VC(nw)
∂λ

∣∣∣ MC (nw) q (nw) + γ




×

(
q(nw)
n
w

∂VC(n
w
)

∂ξ

)

Hence
dλ

dξ
can be written as

dλ

dξ
= ω

q(nw)
nw

MC (nw) q (nw) + γ
+ (1− ω)

∂V C(nw)
∂ξ∣∣∣∂V C(nw)
∂λ

∣∣∣
(24)

where

ω =
(MC (nw) q (nw) + γ)2 f (nw)

(MC (nw) q (nw) + γ)
2
f (nw) −

∣∣∣∂VC(nw)
∂λ

∣∣∣
(
λMC′ (nw) + ξ 1

n2
w

+ ζη (nw) q (nw)
)

The inequality in equation (23) implies that ω ∈ 〈0, 1〉. Using this, we will

now argue that
dλ

dξ
∈ 〈0,1〉 by showing that dλ

dξ
in equation (24) can be seen
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as the weighted average of two terms which are each between 0 and 1. Using

the definition of marginal costsMC (n), it is clear that
q(nw)

nw

MC(nw)q(nw)+γ
∈ 〈0,1〉.

Next, consider the fraction

∂V C(nw)

∂ξ

|
∂V C(nw)

∂λ |
. Equation (18) implies that

∂q(n)
∂ξ∣∣∣∂q(n)
∂λ

∣∣∣
=

1
n

MC (n)
≤ 1 for all n ∈ [n0, n1]

Hence we find that

∂VC(nw)
∂ξ∣∣∣∂VC(nw)
∂λ

∣∣∣
=

∫ n1
nw

∂q(n)
∂ξ

MC (n) f (n) dn
∫
n1

nw

(
−
∂q(n)
∂λ

)
MC (n) f (n) dn

< 1

So indeed
dλ

dξ
is the weighted average (with weights ω and 1 − ω) of two terms

(

q(nw)

nw

MC(nw)q(nw)+γ
and

∂V C(nw)

∂ξ

|
∂V C(nw)

∂λ |
) in between 0 and 1. Therefore dλ

dξ
∈ 〈0, 1〉.

Differentiating equation (18) with respect to ξ we get

v′′ (q (n))
dq (n)

dξ
=MC (n)

dλ

dξ
−

1

n

This can be written as

dq (n)

dξ
=

(
1− dλ

dξ

)
−

1−F (n)
nf (n)

dλ

dξ

n (−v′′ (q (n)))

Hence it follows from
dλ

dξ
∈ 〈0, 1〉 that

dq (n1)

dξ
> 0

Now we have two possibilities (again using the fact that
1−F (n)
nf (n) is decreasing

in n by the monotone hazard rate property). First, it can be the case that
dq(n)
dξ

< 0 for low values of n. Second, it can be the case that
dq(n)
dξ

> 0 for

all n, but then the budget restriction (20) implies that dnw
dξ

> 0. In both cases
definition 1 implies that competition rises with ξ. Q.E.D.

Proof of proposition 4

Since we are interested in how outcomes vary with entry costs and expen-

diture in a sector, we write the optimal value of the following optimization

problem as a function of γ
i
and Ei

Qi (Ei, γi) = max
qi(.),nwi

∫ n1i

nwi

vi (qi (n)) fi (n) dn (25)

−λi

[∫
n1i

nwi

MCi (n) qi (n) fi (n) + [1−Fi (nwi)] γi −Ei

]
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Using the budget constraint of the sectoral allocation problem, E1 + E2 = Y ,

we can write the overall optimization problem as

max
E2

U (Q1 (Y −E2, γ1) ,Q2 (E2, γ2))

and hence the first order condition for E2 can be written as

−U ′

1

∂Q1

∂E1
+ U ′

2

∂Q2

∂E2
= 0

where U ′

i
= ∂U(Q1,Q2)

∂Qi

. The spillover effect of a fall in γ2 to sector 1 works via
the amount of money spent in sector 1, E1 = Y − E2. Hence we use the first

order condition for E2 to derive
dE2

dγ2
as follows


−

∂
[
−U ′

1
∂Q1

∂E1
+ U ′

2
∂Q2

∂E2

]

∂E2


 dE2

dγ2
= −U ′′

12

∂Q1

∂E1

∂Q2

∂γ2
+

U ′′

22

∂Q2

∂E2

∂Q2

∂γ2
+U ′

2

∂2Q2

∂γ2∂E2

where U ′′

ij =
∂
2
U(Q1,Q2)
∂Qi∂Qj

. Note that the bracketed expression on the left hand side

is positive because the second order condition for E2 implies that
∂

[
−U

′

1

∂Q1

∂E1
+U

′

2

∂Q2

∂E2

]

∂E2

<

0. Using the definition of Qi in equation (25), we can derive the following ex-

pressions

∂Q2 (E2, γ2)

∂γ2
= −λ2 (1− F2 (nw2))

∂Q2 (E2, γ2)

∂E2

= λ2

∂2Q2 (E2, γ2)

∂E2∂γ2
=

∂λ2

∂γ2

Therefore we find that

sign

(
dE2

dγ2

)
= sign

(
U
′′

12λ1λ2 (1−F (nw2)) −U
′′

22λ
2

2 (1−F (nw2)) +U
′

2

∂λ2

∂γ2

)

By the assumption that U ′′

12 ≥ 0 and the concavity of U (which implies

U ′′

22 < 0) we find that the first two terms on the right hand side are positive.

Finally, the other inequality assumed in the proposition implies (see lemma 5)

that
∂λ2

∂γ2
≥ 0. Hence we find that

dE2

dγ2
> 0. This implies that a fall in γ2 leads

to a fall in E2 and therefore a rise in E1 = Y −E2. Again using lemma 5, we

find that a rise in E1 makes the optimal competition outcome more competitive

in sector 1. Q.E.D.
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Figure c: industry closes down
n1

BCλ

nw

λ EC

BC

Figure b: corner solution for nw

BCλ

n0

Figure 1: Optimal competition outcomes
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Figure b: industry I is more competitive than II
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Figure c: industries I and II cannot be ranked

Figure 2: using definition 1 to compare the intensity of competition in
industries I and II
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