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Abstract

This paper demonstrates that cyclical and chaotic planning solutions are possible in the standard
“textbook model” of search and matching in labor markets. More specifically, it takes a discrete-
time adaptation of the continuous-time matching economy described in Pissarides (1990, 2001), and
computes the solution to the dynamic planning problem. The solution is shown to be completely
characterized by a first-order, non-linear map with a unique stationary solution. Additionally, the
existence of a large number of periodic and even aperiodic non-stationary solutions is shown. Even
when the well-known Li-Yorke and three-period cycle conditions for chaos are violated, we are able
to verify the new Mitra (2001) sufficient condition for topological chaos. The implication is that even
in a simple economy characterized by search and matching frictions, an omniscient social planner
may have to contend with a fairly robust and “bewildering” variety of possible dynamic paths.
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1 Introduction

This paper takes the planning solution to the standard “textbook model” of search and matching in labor

markets, and shows that chaotic behavior is possible in that framework. More specifically, it takes as a

starting point, Ljungqvist and Sargent’s (2000; Chapter 19) discrete-time adaptation of the continuous-

time matching economy described in Pissarides (1990, 2001) and computes the solution to the dynamic

planning problem. The solution is completely characterized by a first-order, non-linear scalar difference

equation. There is a unique stationary solution as was shown by Ljungqvist and Sargent (2000). The

main contribution of this paper is to show that, additionally, there are a large number of periodic and

even aperiodic dynamical solutions that may exist.

The implication is strong and clear: in an economy characterized by search and matching frictions,

even an omniscient social planner may have to contend with a “bewildering” (in the prose of Azariadis,

1993) variety of possible dynamic solutions. In a sense, this result is reminiscent of the characterization

of chaotic planning solutions to the Ramsey growth model as enunciated in Boldrin and Montruchhio

(1986), and more recently in Mitra, Majumdar, and Nishimura (2000), and further exposited in Mitra

and Nishimura (2001).1 There is however one main difference. In the standard aggregative optimal

growth model, the decentralized equilibrium is efficient; in the Pissarides model, the decentralized

equilibrium is generically not optimal.

Several papers in the literature have investigated the possibility of endogenous cycles in search models

of the labor market. The seminal papers in this area are Drazen (1988) and Diamond and Fudenberg

(1989); both build on Diamond (1982) and prove the existence of stable limit cycles in a model where

there are frictions in coordinating trade, and the matching technology is subject to increasing returns.

More recently, Mortensen (1999) revisits the standard textbook model of search and matching in the

labor market as described in Pissarides (1990) but introduces an increasing returns to scale production

technology to generate multiple long-run unemployment equilibria and stable limit cycles.2 Shimer

and Smith (2001) explore optimal matching policies in constant returns to scale search economies with

heterogenous agents and find the possibility of non-stationarity.

The current endeavour is different from the previous literature in three important ways. First, the

focus here (as in Shimer and Smith, 2001) is on the planning solution as opposed to the “decentralized”

1Here, as in the exposition of Mitra and Nishimura (2001), periodic and aperiodic behavior is not an outcome of agents’
expectations about the actual realization of a certain random variable. For a insightful treatment of such a expectations-
driven model of cycles, see Hommes and Sorger (1998), and the discussion in Dechert and Hommes (2000).

2Mortensen (1999) assumes that match productivity is an increasing function of the aggregate number of matches. This
generates the needed increasing returns in production.
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solution (the focus of the other aforementioned papers). In fact, typically in these papers, the market

solution is representable by a system of differential equations, rather than a single first-order non-linear

difference equation as is the case here. Second, neither the production nor the matching technologies

in our model exhibit any increasing returns. Finally, unlike the continuous-time framework used by

Mortensen (1999) and Shimer and Smith (2001), we use the discrete-time adaptation.3 In a sense, our

results suggest that merely delegating the job of coordinating labor market search activity to a planner

may not necessarily render an economy immune to endogenous fluctuations; in fact, a planner may

introduce fluctuations in an economy that was decentralized and otherwise possibly immune to cyclical

variations!

The plan for the rest of the paper is as follows. Section 2 outlines the Pissarides (1990) model of

search and matching in labor markets. Section 3 contains a detailed analysis of the main difference

equation alluded to earlier. It establishes both analytically and through examples, that following either

the Li-Yorke route or the three-period cycles route, or the Mitra condition route, it is possible to

demonstrate the existence of topological chaos. Section 4 concludes. Proofs of some central results are

to be found in the appendices.

2 The Model

The model (and the notation) is based entirely on Ljungqvist and Sargent’s (2000) discrete-time adapta-

tion of the continuous-time matching economy described in Pissarides (1990, 2001). Let t = 0, 1, 2, 3, ...

index time. There are two types of agents: workers and firms. There is a continuum of identical workers

of unit measure. These workers are all infinitely-lived, they discount the future at the rate β, and are

risk-neutral. Workers potentially get matched with a firm; the result of such a match is output y.4 Each

firm may employ at most one worker. A firm incurs a vacancy cost of c in each period when looking for

a worker. A match between a worker and a firm gets dissolved with an exogenously-specified probability

s. An unmatched worker is an unemployed worker; such a worker enjoys the current utility from leisure

of amount z.

Matches are brought together by a standard matching technology connecting only unemployed job

3The discrete-time version of the Pissarides (1990) search-and-matching story has also been employed by Merz (1995),
Andolfatto (1996), Shi and Quan (1999), Cooley and Quadrini (1999), Cole and Rogerson (1999), Yuan and Li (2000), and
Yashiv (2000), among others.

4 In the decentralized equilibria, the match surplus is divided between the worker and the firm according to some
bargaining protocol. Below we assume that the planner cares only about the match output y, and not the division of the
match surplus.

3



seekers with open vacancies. The number of successful matches in a period is given by M(ut, vt) where

ut is the total measure of unemployed workers looking for jobs, and vt is the number of vacancies or

firms looking for employees. The matching function is increasing in both arguments, concave, and

homogenous of degree one. Let θt ≡ vt/ut indicate the measure of labor market tightness, or the ratio

of vacancies to unemployed workers. Then define q (θt) ≡ M(ut, vt)/vt as the probability of a vacancy

being filled at date t. For all that we present below, we will assume a standard constant returns to scale

formulation,

M(ut, vt) = Auαt v
1−α
t A > 0, α ∈ (0, 1) (1)

where A is a scale parameter. The parameter α is the elasticity of the matching function with respect

to the measure of unemployed workers. It follows that q (θ) = Aθ−α. Finally, define nt+1 as the total

number of employed workers at the start of t+ 1. Then, it follows that

nt+1 = (1− s)nt + q (θt) · vt, where θt ≡ vt
ut
=

vt
1− nt

. (2)

The number of undissolved matches (which were formed at the start of t that survived onto the start

of t+1) is given by (1− s)nt. The term q
³

vt
1−nt

´
· vt measures the number of new matches formed at t

between the unemployed workers (1− nt), and the vacancies created at t.

A planner’s problem could then be outlined as follows. Assume that the planner chooses an allocation

that maximizes the discounted value of output and leisure net of vacancy costs. The principal tensions

are as follows. An extra vacancy adds a cost, makes it easier for unemployed workers to find jobs,

but makes it harder for firms to find workers. Employed workers “lose” leisure utility. More output

is produced if the extra vacancy creates more matches. The planner takes all this into account when

choosing the number of vacancies. Following Ljungqvist and Sargent (2000; p. 578), the planner chooses

vt and next period’s employment level, nt+1 by solving (P) where (P) is defined by

max
{vt,nt+1}∞t=0

∞X
t=0

βt [ynt + z (1− nt)− cvt] (P)

subject to (2), given a n0. The Lagrangian can be written as

£ =
∞X
t=0

½
βt [ynt + z (1− nt)− cvt] + λt

·
(1− s)nt + q

µ
vt

1− nt

¶
· vt − nt+1

¸¾
where λt is the Lagrange multiplier on (2). Then, the first-order conditions with respect to vt and nt+1

for an interior solution are given by

−βtc+ λt
£
q0 (θt) θt + q (θt)

¤
= 0 (3)
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and

−λt + βt+1 (y − z) + λt+1
£
(1− s) + q0 (θt+1) θ2t+1

¤
= 0 (4)

In Appendix A, we show that (3) and (4) reduce to the following first-order difference equation in θ :

aθαt+1 − bθt+1 = θαt − d (5)

where

a ≡ β (1− s) ∈ (0, 1) , (6)

b ≡ Aαβ > 0, (7)

and

d ≡ A(1− α)β (y − z)

c
> 0. (8)

Equation (5) is the law of motion for the index of labor market tightness in the economy under the

planner’s solution. For future reference, define

γ ≡ (y − z)

c
,

the ratio of per worker match output (net of lost leisure) to hiring and vacancy posting costs.

Given an initial n0, eq. (5) completely characterizes the trajectory of θ.5 In other words, the

backwards dynamics of this model can be characterized by the continuous four-parameter family of

maps g : [0, θmax]→ [0, gmax] , where

g (θ) = (aθα − bθ + d)
1
α , (α, a, b, d) ∈ (0, 1)× (0, 1)× (0,∞)× (0,∞) , (9)

and θmax =
¡
αa
b

¢ 1
1−α and gmax is implicitly defined as the lowest positive root of the following equation:

agαmax − bgmax + d = 0.

The first derivative of the map can be calculated as

g0 (θ) = (aθα − bθ + d)
1−α
α

µ
aθα−1 − b

α

¶
, θ ∈ [0, θmax] ,

which implies that g is unimodal with a unique maximum at θmax ≡
¡

b
aα

¢ 1
α−1 . Note however that

sufficiently high values of α make it impossible for g0(.) to ever become negative, the latter being a
5Ljungqvist and Sargent (2000; p. 578) assume that the planner knows n0. From the first order conditions to (P), it is

possible to compute v0. Since u0 = 1−n0 is known, then θ0 becomes known. Using eq. (5), the optimal solution sequence
for θ, and (2), the definition of the employment level at various dates, it is then possible to compute the optimal sequences
{vt}∞t=0 , {ut}∞t=1 , and {nt}∞t=1 .
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necessary condition for the map g to exhibit any periodic behavior.6 In addition, g has a unique fixed

point located to the right of θmax if g (θmax) > θmax. This last condition simplifies to the following

parametric restriction

d >
³αa
b

´ α
1−α

[1− a+ aα] . (10)

Henceforth we will maintain this as an assumption on the parameters.

The unique fixed point of g is implicitly given by

aθαss − bθss = θαss − d.

The fixed point is an attractor in the forward dynamics, if g0 (θss) < −1. Since it is not possible to obtain
a closed form expression for θss, this condition cannot be checked in general, but will have to be verified

for each set of parameters separately. As will be evident shortly, the fact that θss is implicitly defined,

makes it a non-trivial problem to check the standard sufficient conditions for complex dynamics.

3 Cycles and Complex Dynamics

3.1 Two Period Cycles

Before proceeding to establish the possibility of chaotic behavior for the map g, we undertake a quick

study of the existence of two period cycles. This is useful because an analysis of the underlying economic

intuition driving any kind of periodic behavior is best undertaken via a study of two-period cycles. For

future reference, let us formally define a two-period cycle. Let (X, g) be a dynamical system where X

is a subset of < and let g2(m) denote the second iterate of the point m. A two-period cycle is a periodic

point m of order 2 if g2(m) = m (and m is such that g(m) 6= m). We now present a numerical example

of a two period cycle, and use it to discuss the economic intuition behind the fluctuations in the various

variables.

Example 1 Suppose the set of parameters is given by 7
A α β s γ

2.40 0.348 0.99 0.0348 0.423
. Then,

the map g admits a stationary solution, θss = 0.743, and a two period cycle with θ1 = 0.724 and

θ2 = 0.761.

6The condition, g0 (θ) > 0 for all θ, is sufficient to rule out any kind of periodic behavior in our setup. See Azariadis
(1993; Chapter 8) for details. This condition may be thought of as the unidimensional, discrete-time analog, of Bendixson’s
criterion which is a sufficient condition to rule out cyclical behavior in two-dimensional continuous time systems. See Lorenz
(1993; Chapter 2) and Mortensen (1999).

7These correspond to a = 0.956, b = 0.827, and d = 0.654.
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The following set of figures (Figure 1) demonstrate the simultaneous movement of the central eco-

nomic variables in the two period cycle, compared with the steady state. Recall that the timing of the

model is such that, faced with the employment rate nt (or the unemployment rate ut = 1 − nt), the

planner selects how many vacancies vt to post. Since ut is already known, the number of vacancies

also directly determines the labor market tightness, θt and, together with the matching function, the

tightness determines the (un)employment rate next period.

Figure 1: The two-period cycle in Example 1

In the illustration of Example 1, the difference in the unemployment level between the high and the low

unemployment periods varies by about five percentage points. Since there is no variation in the size of

the working population, the movements in employment are exactly the opposite of the movements in

the unemployment rate. In periods with low unemployment, a low number of vacancies are posted, but

in spite of this, the overall labor market tightness is still above the level of labor market tightness in

high unemployment periods. This is driven by the low number of job seekers in the low unemployment

periods.

To understand the economic forces driving the two period cycle, recall that in periods when unem-

ployment is high, the marginal benefit of posting a vacancy is high, because there are more unemployed

workers to potentially match with the vacancy. The constant returns to scale matching function ensures

this. This high marginal benefit implies that it will be optimal for the planner to create a high number
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of vacancies. This action, however, will increase the number of matches, causing the unemployment

rate to be lower in the next period. This lower level of unemployment maps onto a reduced marginal

benefit of posting a vacancy, as there are fewer job seekers available to match with the vacancy. Since

the cost of creating vacancies is a constant, the implication of this lower marginal benefit to vacancy

posting is that the optimal number of new vacancies must be reduced. This will then bring down the

number of matches, causing higher unemployment in the following period.

3.2 Li-Yorke route

We now investigate the possibility for the time-map g to exhibit complex dynamics, i.e., periodic,

aperiodic, and chaotic behavior. The strategy will be to write down a set of conditions under which

the Li-Yorke “overshooting” inequalities hold. We start by restating the Li-Yorke theorem (as stated

in Benhabib and Day, 1981).

Theorem 1 Li-Yorke (1975) Let J be an interval in < and θt+1 = g(θt) be a difference equation in

which g is a continuous mapping of J → J. Suppose there exists a point θ ∈ J such that

g3(θ) ≤ θ < g(θ) < g2(θ). (11)

Then,

a) for every k = 1, 2, 3, .... there is a k− periodic solution of θt+1 = g(θt) in J ; and

b) there is an uncountable set S ∈ J, which contains no periodic points, such that for every initial

condition in S, the solution of θt+1 = g(θt) is aperiodic, and remains in S.

Below, we write down general conditions on parameters under which these Li-Yorke inequalities are

satisfied for our map g defined in (9). Recall θmax ≡
¡
αa
b

¢ 1
1−α .

Theorem 2 Suppose the following three parametric conditions hold:

d < θαmax, (12)

a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)
1
α + d < θαmax, (13)

and ¡
a3 − 1¢ θαmax − a2bθmax − ab (aθαmax − bθmax + d)

1
α + d

¡
1 + a+ a2

¢
< b

³
a2θαmax − abθmax + (1 + a) d− b (aθαmax − bθmax + d)

1
α

´ 1
α
. (14)

Then the condition (11) of the Li-Yorke Theorem is satisfied.
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The set of three conditions constitute merely a set of sufficient conditions. A quick look at condition

(11) of the Li-Yorke Theorem suggests that a natural choice for the first iterate of θ, i.e., g(θ) is θmax.

This is because it is known that if θ is defined such that g (θ) = θmax, then 0 < θ < g(θ) < g2(θ) will

always hold as long as (10) and (12) are satisfied. Then all that would remain would be to compare

g3 (θ) with θ. Assumption (13) corresponds to g2(θmax) < θmax, which for unimodal maps is a necessary

condition for chaos and hence is an assumption which always has to be made in some form whichever

route is chosen to prove the existence of chaos; see Mitra (2001) for further details. Assumption (13)

turns out to be especially useful for us because we have chosen θ such that g(θ) = θmax. In that case,

Assumption (13) simply states that g3 (θ) < g (θ) . This last condition is clearly necessary, but not

sufficient, to show that g3 (θ) < θ. In our case, even if it were straightforward to compute g3 (θ) , it

is not possible to directly compare it with θ, as the equation g(θ) = θmax does not have an explicit

solution. This is why condition (14) required. In Appendix B, we prove that this final condition ensures

that g3 (θ) < θ holds.

While these conditions appear somewhat complicated, they are simple to numerically verify for any

given set of parameters. We now provide slightly simpler conditions in the special case of θmax = 1.

This does greatly simplify the calculations, but the final conditions are still non-trivially daunting.

Corollary 1 Suppose the following three parametric conditions hold:

αa

b
= 1,

a (1− α) (a+ aγ + γ)− α (1− α)
1
α a1+

1
α (1 + γ)

1
α < 1,

and

a
³
a (1− α) (a+ aγ + γ)− α (1− α)

1
α a1+

1
α (1 + γ)

1
α

´ 1
α

−αa
³
a (1− α) (a+ aγ + γ)− α (1− α)

1
α a1+

1
α (1 + γ)

1
α

´
< 1− a (1− α) γ.

Then condition (11) of the Li-Yorke Theorem is satisfied.

We now proceed to provide an example of a set of parameters that satisfy the conditions of the

Li-Yorke inequalities as stated in (11).

Example 2 The set of parameters 8
A α β s γ

0.2536636 0.2251169 0.99 0.004390207 7.610282
are as-

sociated with θαmax = 1.487710 implying that condition (12) is satisfied, the left hand side of (13) is

8These correspond to a = 0.9856537, b = 0.05653293, and d = 1.480915.

9



0.001971010 < θαmax = 1.48771, implying that condition (13) is satisfied, and the left and right hand

sides of (14) are −0.004851456 and 0.431773 × 10−14 respectively, implying that the final condition of
Theorem (2), (14), is satisfied.

Remarks: A few remarks about the realism of these numbers is in order. To begin with, A is just

a scale variable; Blanchard and Diamond (1989) and many others, use A ≈ 0.4. The use of β = 0.99 is
standard in the literature and follows Garibaldi and Wasmer (2001) who report using s = 0.02, while

Fonseca and Muñoz (1999) and many others, depending on the frequency of the data used, use a smaller

number for s. Yashiv (2000) reports that the mean value of c lies between 12-22% of average match

output while our choice of γ is consistent with c near 13% of match output (net of leisure). Yashiv

(2000) suggests that, at least during 1975-79, estimates of α for the United States ranged between 0.2-

0.25, even though it was somewhat higher during other periods. Van Ours (1995) reports, using annual

Dutch data, that α is near 0.27. Mumford and Smith (1999) using Australian gross flows data report

estimates of α near 0.28 while Anderson and Burgess (2001) find it to be also near 0.3 using annual

(panel) U.S data. While some of the reported estimates of α in Petrongolo and Pissarides (2001) are

quite a bit higher than ours, there are some estimates, like the one using Israeli data which place α near

0.29, the one using English and Wales data that report an α near 0.3, and even one using Spanish data

that find α to be near 0.12. It is well-known that these estimates of α depend crucially on the frequency

of the data, whether search intensity is modeled, on the definitions of the terms “unemployed” and “job

seekers” among other factors (see Mumford and Smith (1999) for details).9

3.3 Three-Period Cycles

As is well-known, a sufficient condition for chaotic behavior is the existence of a three-period cycle, i.e.,

the existence of a point θ, different from the steady state, satisfying θ = g3(θ). This follows from the

fact that a three-period cycle satisfies (11) of the Li-Yorke Theorem with the first ” ≤ ” holding with
equality. One simple way of providing a graphical representation of three-period cycles is to graph g3.

The map g3 will naturally cross the 45-degree line at the steady state. In addition each three-period

cycle will generate three additional intersections, as each of the points in the three-period cycle, by

definition, is a fixed point of the function g3.10 Below, we present two examples of three-period cycles.

9Recall that sufficiently high values of α make the map g(.) a monotonic function of θ, thereby ruling out the possibility
of any kind of cyclical behavior. It is however possible to generate two-period cycles using a value of α ≈ 0.45. Specifically,
set a = 0.990, b = 0.656, d = 1.19, and α = 0.454. This corresponds to s = 0.000158, A = 1.46, β = 0.99, and γ = 1.52.
Then θ cycles between 1.82 and 1.79. Similar high even-period cycles are easy to generate with α > 0.4.
10See Devaney (1986, Fig 13.1) for additional information on this type of graphical depiction.
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Example 3 Let the set of parameters be defined by A = 7.629, α = 0.1241, s = 0.055, and γ = 0.06. The

g locus in this case has the shape illustrated in Figure 1. There is a unique steady state θss = 0.367, and

g0(θss) = −2.21, indicating that θss is locally unstable in the backward dynamics and stable in the normal
forward dynamics. There is a 3-cycle that starts from 0.0009965, goes to 0.1625529 to 0.9704193, and

returns to 0.0009963. 11

Figures 2 and 3 below provide graphical representations of this cycle.

0.2 0.4 0.6 0.8 1
θt +1

0.2

0.4

0.6

0.8

1

θt

Figure 2: The map g(.) for Example 3

11The deeper parameters correspond to a = 0.9348154, b = 0.9377004, and d = 0.4026384. Lorenz (1993, Appendix
A.4) discusses how the “standard floating-point arithmetic” on computers that considers only a finite number of digits
and truncates the rest is responsible for the divergence in the last (seventh) digit of the starting and ending point of the
three-cycle in Example 3.

11



 

0.2 0.4 0.6 0.8 1
θt+3

0.2

0.4

0.6

0.8

1

θt

a 

b 

c 

Figure 3: The map g3(.) in Example 3

Notice the intersections of the g3(.) locus with the 450 line; one of these corresponds to the stationary

solution θss = 0.367, while the other intersections (points a, b, and c) correspond to points on a three-

cycle outlined in Example 3 respectively.

0.2 0.4 0.6 0.8 1
θ

0.2

0.4

0.6

0.8

1

θt

Figure 4: The map of g(.) against θ for Example 3

We conclude this sub-section by presenting another example of a three-period cycle, one using a more

“realistic” value of α.
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Example 4 Let the set of parameters be defined by
A α β s γ

0.333 0.2430 0.99 0.013 6.623
. For this

configuration, there is a unique steady state θss = 20.02, and g0(θss) = −2.21, indicating that θss is
locally unstable in the backward dynamics and stable in the normal forward dynamics. There is a

3-cycle in θ that starts from 0.00000015, goes to 8.509655 to 52.20478 and returns to 0.00000015.

3.4 When three-period cycles are ruled out

It is possible that depending on the choice of parameters, the map g may not admit a three-period

cycle. Is it still possible to show the existence of chaotic planning solutions in this case? Mitra (2001)

offers a sufficient condition for chaos in unimodal maps (like g) which do not admit three-period cycles.

In this section we will verify that this model may display topological chaos, even for combinations of

parameters which rule out three-period cycles.

Mitra (2001) focuses solely on dynamical systems (X, g), where the state space X is an interval on

the non-negative part of the real line. The map, g, is required to be a continuous function from X to

X, unimodal with a maximum at θmax with g(θmax) > θmax, and the unique steady state (θss) must

satisfy θss > θmax. For such maps, Mitra (2001) states the following theorem (his Proposition 2.3, p.

142) which we restate for the sake of completeness.

Theorem 3 (Mitra, 2001) Let (X, g) be a dynamical system. If g satisfies g2 (θmax) < θmax and

g3 (θmax) < θss, then (X, g) exhibits topological chaos.

It is well-known that g2 (θmax) < θmax (corresponding to our condition (13)) is necessary for chaos

(see Mitra, 2001). Below we present a parametric specification for which the dynamical system g does

not admit any three-period cycles, and yet, the Mitra condition is satisfied.

Example 5 Let the set of parameters be defined by
A α β s γ

0.484 0.2414 0.99 0.004 3.445
. As is ev-

ident from Figure 5 [a plot of g3(.)], the map g does not admit three-period cycles. It is easy to check

that θss = 10.6, θmax = 2.58, g2 (θmax) = 0.28 and g3 (θmax) = 8.26 implying that the Mitra condition

for topological chaos is satisfied.
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θt + 3

5
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15

20

25

30

35
θt

Figure 5: The map g3(.) for Example 5

Remarks: Using the new Mitra condition, we have thus verified that even for ranges of parameters

where the Li-Yorke and three-period cycles routes to chaos cannot be taken, our map g may still exhibit

topological chaos. In passing, it is useful to point out that neither the Mitra condition nor the Li-Yorke

“overshooting” condition are necessary for the existence of topological chaos. In other words, for the

map g, there may exist ranges of parameters for which we are not able to determine whether chaos is a

possibility.

4 Concluding remarks

This paper takes the planning solution to the standard Pissarides (1990, 2001) “textbook model” of

search and matching in labor markets, and shows that chaotic behavior may emerge in that frame-

work. We show that the planning solution is completely characterized by a first-order, non-linear scalar

difference equation. There is a unique stationary solution. Additionally, there are a large number of

periodic and even aperiodic dynamical solutions that may exist. Unlike assumptions made in some

recent work in this literature investigating the market solution, we do not require the production nor

the matching technologies to exhibit any increasing returns. We go on to check the robustness of our

claim of topological chaos by verifying the new sufficient condition due to Mitra (2001) in addition to

the more standard Li-Yorke three-period cycle condition.

14



Appendix

A Derivation of Equation (5)

From (3), we obtain the following expression for λt :

λt =
βtc

q0 (θt) θt + q (θt)
(A1)

Using (A1) for period t and period t+ 1, we can insert this expression into (4):

− βtc

q0 (θt) θt + q (θt)
+ βt+1 (y − z) +

βt+1c

q0 (θt+1) θt+1 + q (θt+1)

£
(1− s) + q0 (θt+1) θ2t+1

¤
= 0

Inserting the expressions for q (θ) and q0 (θ) (recall that q (θ) = Aθ−α) and re-arranging, we get:

β (y − z) +
βc

−αAθ−αt+1 +Aθ−αt+1

£
(1− s)− αAθ−α+1t+1

¤
=

c

−αAθ−αt +Aθ−αt
(A2)

From here, straightforward manipulation yields

(1− s)βθαt+1 − αAβθt+1 = θαt −
(1− α)Aβ (y − z)

c
,

which immediately provides the desired expression in (5).¥

B Proof of Theorem 2

To prove the theorem, we need to verify that there exists a point where the “overshooting” inequality
of the Li-Yorke Theorem, equation (11), is satisfied. Specifically, we need to show that there exists a
set of four points θ1, θ2, θ3, and θ4, where the variables are defined as θ2 ≡ g (θ1) , θ3 ≡ g (θ2) , and
θ4 ≡ g (θ3) , and where the four points satisfy θ4 ≤ θ1 < θ2 < θ3. We intend to do this by showing that

equation (11) holds for the four points chosen such that θ2 = θmax =
¡
αa
b

¢ 1
1−α . Specifically, we will show

that if conditions (12), (13), and (14) hold, then the Li-Yorke conditions are satisfied for the points
where θ1 is implicitly defined by the equation g (θ1) = θmax, θ2 is chosen to be θmax, θ3 = g (θmax) and
θ4 = g2 (θmax). To ensure that the steady state is to the right of the maximum, we have already made
the assumption that g (θmax) > θmax, which is equivalent to assuming θ2 < θ3. Similarly it is obvious
that since g (θ2) lies above the 45-degree line and g is unimodal, then if θ1 is well-defined, it must be less
than θ2. To complete the proof we thus need to ensure that the equation g (θ1) = θmax has a solution
with θ1 > 0 and we need to verify that θ4 ≤ θ1.

First we will check that g (θ1) = θmax does indeed have a solution. The equation can be conveniently
formulated as

axα1 − bx1 =
³αa
b

´ α
1−α − d (15)

Note that the left-hand side of (15) is a function of θ1, while the right-hand side is a constant. Define
f (x) = axα − bx. To ensure that this equation has a solution, and provides a value θ1 > 0, let us
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examine the properties of f . It is simple to establish that f obtains it maximum at θmax. First calculate
the first derivative and set it equal to 0:

f 0 (x) = αaxα−1 − b = 0⇔ x =

µ
b

aα

¶ 1
α−1

=
³αa
b

´ 1
1−α

Checking the second derivative f 00 (x) = αa (α− 1)xα−2 < 0 verifies that the left-hand side of (15) is a
concave function with a unique maximum at θmax = θ2. Thus, to ensure that the equation indeed has
a solution, it is necessary and sufficient that f (θmax) >

¡
αa
b

¢ α
1−α − d. Rewriting this condition, simple

algebra provides us with the following expression:

d >
³αa
b

´ α
1−α

[1− a+ aα] .

This exactly corresponds to (10) which was made to ensure that the steady state occurred to the right
of the maximum.

Now that the existence of θ1 is verified, we need to check that θ1 is positive. Note that f (0) = 0,
so θ1 will be positive as long as the constant on the right hand side of (15) is greater than 0. Thus, to
ensure that θ1 > 0, we require that

d <
³αa
b

´ α
1−α

.

This condition corresponds exactly to (12) and θ1 > 0 is ensured. Note that since α, a < 1, the upper
bound on d imposed by (12) is indeed greater than the lower bound provided by (10). We have thus
satisfied ourselves that θ1 is well-defined and greater than zero, and we can move on to the last part of
the proof.

All that remains now is to show that θ4 ≤ θ1. To this end, define Γ (x) ≡ g (x)α = axα − bx+ d −¡
αa
b

¢ α
1−α , such that θ1 is implicitly defined by the equation Γ (θ1) = 0. Note that Γ is strictly concave

and attains its maximum at θ2. This implies that Γ (x) is strictly increasing for x < θ2. Therefore we
know that if θ4 is less than θ2, a necessary and sufficient condition for θ4 < θ1 is Γ (θ4) ≤ Γ (θ1) = 0.
Before proceeding it is worth noting that θ4 ≤ θ2 is a necessary but not sufficient condition for θ4 ≤ θ1,
since we have already established that θ1 < θ2. The rest of the proof will therefore proceed in two steps,
the first is to verify that θ4 < θ2, and the second is to show that Γ (θ4) ≤ 0.

To verify that θ4 < θ2, we will need to find the precise expression for θ4. Recall that by definition,
θ4 = g2 (θmax) = g (θ3) . Now since θ3 = g (θmax) , we can calculate θ3 directly as

θ3 = g (θ2) = (aθ
α
max − bθmax + d)

1
α .

We can then proceed to calculate the expression for θ4 :

θ4 =
³
a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)

1
α + d

´ 1
α
. (16)

The necessary condition θ4 < θ2 = θmax can then be written as³
a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)

1
α + d

´ 1
α
= θmax ⇔

a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)
1
α + d < θαmax.

This corresponds exactly to the condition (13) in the theorem, and we have therefore established that
θ4 < θ2. Recall that when θ4 < θ2, Γ (θ4) ≤ 0 is a necessary and sufficient condition for θ4 ≤ θ1, so all
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that remains to be shown now is that Γ (θ4) ≤ 0. By the definition of Γ, this inequality can be written
as

axα4 − bx4 + d−
³αa
b

´ α
1−α ≤ 0.

Inserting the expression of θ4 from (16), this becomes,

a
³
a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)

1
α + d

´
−b
³
a (aθαmax − bθmax + d)− b (aθαmax − bθmax + d)

1
α + d

´ 1
α
+ d−

³αa
b

´ α
1−α ≤ 0

Finally, using the definition of θmax and re-arranging, provides the following expression.¡
a3 − 1¢ θαmax − a2bθmax − ab (aθαmax − bθmax + d)

1
α + d

¡
1 + a+ a2

¢
< b

³
a2θαmax − abθmax + (1 + a) d− b (aθαmax − bθmax + d)

1
α

´ 1
α
,

which exactly corresponds to the condition (14) in the theorem. We have thus established that θ4 ≤ θ1
and the proof is complete.¥
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