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Abstract

The class of maximin actions in general decision problems is characterized.
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1 Introduction

Choosing between alternatives according to the maximin criterion essentially
involves associating with each alternative the worst possible consequence and
then choosing the alternative(s) for which this worst-case scenario offers the
best possible result. Different ways of modeling these actions, consequences
(or states), and preferences/utilities over them yield an abundance of applica-
tions of this decision principle and its sibling, minimax behavior, in the social
sciences:
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• Game theory: The minimax theorem of von Neumann (cf. [11]) is one
of the corner stones of game theory. It establishes maximin behavior as an
equilibrating device that assigns to every mixed extension of a finite two
person zero-sum (or purely antagonistic) game a well-defined value.

• Experimental economics: [14] and [15] show that maximin behavior is
the outcome of a natural and simple dynamic process of strategy adjustment
and provides a good prediction of human behavior in several experimental
settings.

• Statistical decision theory: Next to the Bayesian paradigm, the ma-
ximin approach is standard in statistical decision theory (cf. [3], [6]).

• Social choice and welfare: Rawlsian welfare aims for the maximiza-
tion of the utility of the least “happy” member of a society; see [10] for a
textbook treatment.

• Operations research: Problems like the optimal location of warehou-
ses often involve the minimization of suitable distance functions. Among
these distance functions, the Chebychev/supremum norm is a common one,
transforming the problem in one of the minimax type (cf. [8]).

• Constrained optimization: The Lagrangean dual of a constrained mi-
nimization problem is of the maximin type (cf. [2, Ch. 6]).

Given the ubiquity of the maximin principle, it is hardly surprising that also
its fundaments have been the subject of study. These studies tend to focus
on one of two aspects: (a) characterizing the order induced by the maximin
criterion, like in the classical study [9] and in [1], or (b) characterizing the
maximin value associated with zero-sum games, like [17] and [16], or, more
recently, [4] and [13] 1 .

To our knowledge, the current note is the first to characterize a third aspect,
namely the solution that assigns to each decision problem its set of maxi-
min actions. The purpose of our next section is to formally define decision
problems, list the properties used in our characterization, and state the cha-
racterization theorem. The proof of our characterization is contained in the
final section.

2 A characterization of the set of maximin actions

A decision problem is a tuple (A, Ω, u), where A is a nonempty set of actions,
Ω is a nonempty set of states, and u : A × Ω → R is a bounded function
which represents the decision-maker’s payoff/utility function. The set of all

1 These authors take payoffs/utilities in the game as given. The authors of [7], go
one step further by first deriving utilities from a number of properties on players’
preferences and then making the step to evaluations using the value function.
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decision problems is denoted by D. A solution on D is a correspondence ϕ
that assigns to every (A, Ω, u) ∈ D a set ϕ(A, Ω, u) ⊂ A of actions. Our
aim is to characterize the solution M that assigns to every decision problem
(A, Ω, u) ∈ D its set of maximin actions

M(A, Ω, u) :=

{
a ∈ A : inf

ω∈Ω
u(a, ω) = sup

a′∈A

inf
ω∈Ω

u(a′, ω)

}
.

Since only the order of the payoffs matters, order-preserving transformations
do not affect the solution and the assumption that our payoffs are bounded
entails no loss of generality:

M(A, Ω, u) = M(A, Ω, arctan u).

In our general setting, some properties of simpler, finite problems no longer
hold: (all) maximin actions can be strictly dominated (Example 1) and the set
of maximin actions may be empty (Example 2). Recall that an action a ∈ A
in a decision problem D = (A, Ω, u) ∈ D is strictly dominated if there is an
action a′ ∈ A with u(a′, ω) > u(a, ω) for all ω ∈ Ω.

Example 1 Consider a decision problem (A, Ω, u) with A = Ω = Z and
u(a, ω) = arctan(a−ω) for all (a, ω) ∈ Z×Z. Then infω∈Z

u(a, ω) = −π/2 for
all a ∈ Z: every a ∈ Z is maximin, yet also strictly dominated, for instance
by a + 1.

Example 2 Consider a decision problem (A, Ω, u) with A = Ω = N and
u(a, ω) = a/(a + 1) for all (a, ω) ∈ A×Ω. Then infω∈Ω u(a, ω) = a/(a + 1), a
function which does not achieve a maximum: M(A, Ω, u) = ∅.

We introduce some properties for a solution ϕ on D. They are standard and are
mostly taken from earlier publications, particularly [9,1]. Anonymity requires
that the solution does not depend on the way actions and states are labeled.

Anonymity (ANO). Let (A, Ω, u), (A′, Ω′, u′) ∈ D. If there are bijections
f : A → A′ and g : Ω → Ω′ such that u(a, ω) = u′(f(a), g(ω)) for all
(a, ω) ∈ A × Ω, then ϕ(A′, Ω′, u′) = f(ϕ(A, Ω, u)).

Independence of irrelevant actions states that if the action set of a decision
problem is reduced, but some elements in the solution of the large problem
remain feasible, then the solution of the small problem consists of the feasible
elements in the solution of the original problem.

Independence of irrelevant actions (IIA). Let (A, Ω, u), (A′, Ω, u′) ∈
D be such that A ( A′ and u′

|A×Ω = u. If ϕ(A′, Ω, u′) ∩ A 6= ∅, then
ϕ(A′, Ω, u′) ∩ A = ϕ(A, Ω, u).

3



Inheritance of nonemptiness states that adding finitely many actions to a
decision problem with a nonempty solution yields a new decision problem
whose solution is also nonempty.

Inheritance of nonemptiness (INH-NEM). Let (A, Ω, u), (A′, Ω, u′) ∈
D be such that A ( A′ and u′

|A×Ω = u. If ϕ(A, Ω, u) 6= ∅ and A′ \ A is a
finite set, then ϕ(A′, Ω, u′) 6= ∅.

In a decision problem (A, Ω, u) ∈ D, action a′ ∈ A weakly dominates action
a ∈ A if u(a′, ω) ≥ u(a, ω) for all ω ∈ Ω, with strict inequality for some ω ∈ Ω.
The weak-domination property states that if an action weakly dominates an
action in the solution of the problem, then also the weakly dominating action
belongs to the solution.

Weak domination (WDOM). Let (A, Ω, u) ∈ D and a∗, a′ ∈ A. If a∗ ∈
ϕ(A, Ω, u) and a′ weakly dominates a∗, then a′ ∈ ϕ(A, Ω, u).

The next property requires that duplicating states does not affect the solution.

Duplication of states (DOS). Let (A, Ω, u), (A, Ω′, u′) ∈ D with Ω ( Ω′.
If there is a surjection g : Ω′ → Ω such that u′(a, ω′) = u(a, g(ω′)) for all
(a, ω′) ∈ A × Ω′, then (A, Ω′, u′) ∈ D and ϕ(A, Ω′, u′) = ϕ(A, Ω, u).

Continuity states that if an action is always contained in the solution of a
sequence of decision problems in D with fixed action and state spaces and
pointwise convergent utility functions, then this action is also contained in
the solution of the limiting problem.

Continuity (CONT). Let (A, Ω, u) ∈ D and let {(A, Ω, uk)}k∈N
be a se-

quence in D such that limk→∞ uk(a, ω) = u(a, ω) for all (a, ω) ∈ A × Ω. If
there is an a∗ ∈ A with a∗ ∈ ϕ(A, Ω, uk) for all k ∈ N, then a∗ ∈ ϕ(A, Ω, u).

Restricted nonemptiness states that, for a given decision problem, if there
exists some maximin action, then there also exists some element of the solu-
tion. This is not a new property in the literature, it is used in both cooperative
games (cf. [18]) and noncooperative games (cf. [5], [12], [19]). In our context,
it is related with the possibility of nonemptiness of the set of maximin actions.

Restricted Nonemptiness (r-NEM). Let (A, Ω, u) ∈ D. If M(A, Ω, u)
is nonempty, then ϕ(A, Ω, u) is also nonempty.

Convexity states that if two actions belong to the solution of a decision pro-
blem and an action is added whose payoff is the (1

2
, 1

2
)-convex combination of

the above actions’ payoffs, then the new action belongs to the solution of the
new problem. This is a standard risk neutrality property already present in
[9]: if two actions belong to the problem’s solution, the decision-maker does

4



not mind tossing a coin to decide between them.

Convexity (CONV). Let (A, Ω, u), (A′, Ω, u′) ∈ D be such that A′ =
A∪{a′} for some a′ /∈ A and u′

|A×Ω = u. If there are a∗, ã ∈ ϕ(A, Ω, u) such
that

u′(a′, ω) =
1

2
u(a∗, ω) +

1

2
u(ã, ω)

for all ω ∈ Ω, then a′ ∈ ϕ(A′, Ω, u′).

Finally, if there is only one state, then the solution chooses the actions that
maximize the payoff.

One state rationality (OSR). Take (A, Ω, u) ∈ D with |Ω| = 1; then,
writing Ω = {ω}: ϕ(A, Ω, u) = arg maxa∈A u(a, ω).

The former properties characterize the solution M on D which assigns to each
decision problem its set of maximin actions:

Theorem 3 The maximin solution M is the unique solution on D satisfying
ANO, IIA, INH-NEM, WDOM, DOS, CONT, r-NEM, CONV, and OSR.

Its proof is given in the next section.

3 Proof of characterization theorem

The purpose of this section is to prove our characterization theorem. The proof
is based on a series of lemmas.

The properties ANO and IIA of a solution guarantee that if an action has the
same payoff function as an element of the solution of the problem — up to
relabeling of the states — then also the former action is part of the solution.
We only use a simple version:

Lemma 4 Let ϕ be a solution on D satisfying ANO and IIA, and let D =
(A, Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A is such that, for some ω1, ω2 ∈ Ω,

(i) u(a′, ω1) = u(a∗, ω2) and u(a′, ω2) = u(a∗, ω1),
(ii) u(a′, ω) = u(a∗, ω) for all ω ∈ Ω \ {ω1, ω2},

then a′ ∈ ϕ(D).

PROOF. Assume that u(a∗, ω1) 6= u(a∗, ω2) (otherwise ANO concludes the
result). The utility functions for actions a∗ and a′ are represented in the table
below, where 2 and × represent two different values:
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H
H

H
H

H
H

H

Actions
States · · · ω1 · · · ω2 · · ·

a∗
�

�

�

�
· · · 2

�

�

�

�
· · · ×

�

�

�

�
· · ·

‖ ‖ ‖

a′
�

�

�

�
· · · ×

�

�

�

�
· · · 2

�

�

�

�
· · ·

Consider decision problems

D1 = ({a∗, a′} , Ω, u|{a∗,a′}×Ω), D2 = ({a∗, a′} , Ω, v),

where the utility for a∗ and a′ is interchanged, i.e.

v(a∗, ω1) = v(a′, ω2) := u(a∗, ω2),

v(a∗, ω2) = v(a′, ω1) := u(a∗, ω1),

and v(b, ω) := u(b, ω) for all other (b, ω) ∈ {a∗, a′}× (Ω \ {ω1, ω2}). By (i) and
(ii), D2 is isomorphic to D1, either via switching the labels of a∗ and a′ or via
switching the labels of ω1 and ω2.

Note that D can be obtained from D1 by adding actions and, moreover,
a∗ ∈ ϕ(D) ∩ {a∗, a′}. Therefore, by IIA:

ϕ(D1) = ϕ(D) ∩ {a∗, a′} , (1)

so that a∗ ∈ ϕ(D1). It is shown that also a′ ∈ ϕ(D1). Consider the bijection
f : {a∗, a′} → {a∗, a′} with f(a∗) = a′, f(a′) = a∗ and let g : Ω → Ω be the
identity function. Since u(a, ω) = v(f(a), g(ω)) for all (a, ω) ∈ {a∗, a′} × Ω,
ANO implies that ϕ(D2) = f(ϕ(D1)), so a′ = f(a∗) ∈ ϕ(D2). Next, con-
sider the bijection ḡ : Ω → Ω with ḡ(ω1) = ω2, ḡ(ω2) = ω1, keeping ot-
her states unchanged, and let f̄ : {a∗, a′} → {a∗, a′} be the identity function.
Since v(a, ω) = u(f̄(a), ḡ(ω)) for all (a, ω) ∈ {a∗, a′} × Ω, ANO implies that
ϕ(D1) = f̄(ϕ(D2)) = ϕ(D2). Remember that a′ ∈ ϕ(D2), so a′ ∈ ϕ(D1). This
shows that {a∗, a′} = ϕ(D1).

Finally, by (1), a′ ∈ ϕ(D). 2

With the INH-NEM property and Lemma 4 one can establish the following
consequence. If we add an action to a decision problem with the same utility
as an action in the solution of the original problem, except in two states where
the utilities are interchanged, then both actions belong to the solution of the
new problem:

Lemma 5 Let ϕ be a solution on D satisfying ANO, IIA, and INH-NEM, and
let D = (A, Ω, u) ∈ D. Take D′ = (A′, Ω, u′) ∈ D satisfying that A′ = A∪{a′}
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for some a′ /∈ A and u′
|A×Ω = u. Suppose that there exist a∗ ∈ ϕ(A, Ω, u) and

ω1, ω2 ∈ Ω such that

(i) u′(a′, ω1) = u′(a∗, ω2) and u′(a′, ω2) = u′(a∗, ω1),
(ii) u′(a′, ω) = u′(a∗, ω) for all ω ∈ Ω \ {ω1, ω2}.

Then {a∗, a′} ⊆ ϕ(D′).

PROOF. Note that D′ is well-defined. Suppose that a′ /∈ ϕ(D′). Since ϕ
satisfies INH-NEM, A′ \A = {a′} is a finite set, and ϕ(D) 6= ∅: ϕ(D′) 6= ∅. So
ϕ(D′)∩A 6= ∅ and IIA implies that ϕ(D′)∩A = ϕ(D). Therefore a∗ ∈ ϕ(D′).
By Lemma 4, also a′ ∈ ϕ(D′), a contradiction. Hence, a′ ∈ ϕ(D′) and using
Lemma 4 again it follows that a∗ ∈ ϕ(D′). So {a∗, a′} ⊂ ϕ(D′). 2

Consider the following modification of weak dominance. In a decision problem
(A, Ω, u) ∈ D, action a′ ∈ A quasi-dominates action a ∈ A if there exist
ω1, ω2 ∈ Ω such that:

(i) u(a′, ω) ≥ u(a, ω) for all ω ∈ Ω \ {ω1}, and
(ii) u(a′, ω2) ≥ u(a, ω1) > u(a′, ω1) ≥ u(a, ω2).

Intuitively, a′ quasi-dominates a if it is at least as good as a in all states except
some ω1, and the loss from choosing a′ in state ω1 is compensated for by a
utility gain in another state ω2.

The next Lemma shows that a solution satisfying ANO, IIA, INH-NEM, and
WDOM, satisfies the following property: if an action quasi-dominates an ac-
tion in the solution, then the former action also belongs to the solution.

Lemma 6 Let ϕ be a solution on D satisfying ANO, IIA, INH-NEM, and
WDOM, and let D = (A, Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A quasi-dominates
a∗, then a′ ∈ ϕ(D).

PROOF. Let ω1, ω2 ∈ Ω be as in the definition of quasi-dominance. De-
fine the decision problem D′ = (A ∪ {α} , Ω, u′) ∈ D with α /∈ A, u′

|A×Ω =
u, u′(α, ω) = u(a∗, ω) for all ω ∈ Ω \ {ω1, ω2}, u′(α, ω1) = u(a∗, ω2), and
u′(α, ω2) = u(a∗, ω1). By Lemma 5: {a∗, α} ⊂ ϕ(D′). Now a′ weakly domina-
tes α unless u(a′, ω) = u(α, ω) for all ω ∈ Ω (in which case a′ ∈ ϕ(D′) by
ANO). So, by WDOM, a′ ∈ ϕ(D′).

Hence, {a∗, α, a′} ⊂ ϕ(D′). Now ϕ(D) = ϕ(D′) ∩ A by IIA, so a′ ∈ ϕ(D). 2

If a solution satisfies ANO, IIA, INH-NEM, WDOM, DOS, and CONT, then
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whether or not an action belongs to the solution of a decision problem depends
exclusively on the infimum and supremum of its payoffs.

Lemma 7 Let ϕ be a solution on D satisfying ANO, IIA, INH-NEM, WDOM,
DOS, and CONT, and let D = (A, Ω, u) ∈ D. If a∗ ∈ ϕ(D) and a′ ∈ A is such
that

inf
ω∈Ω

u(a′, ω) = inf
ω∈Ω

u(a∗, ω) = m and sup
ω∈Ω

u(a′, ω) = sup
ω∈Ω

u(a∗, ω) = M,

then a′ ∈ ϕ(D).

PROOF. If m = M , then a∗ and a′ yield the same, constant payoff, regardless
of ω, so ANO and a∗ ∈ ϕ(D) imply that a′ ∈ ϕ(D). So henceforth assume
that m < M . This means that Ω has at least two elements. Let ω1 ∈ Ω. Define
for each (ε, δ) ∈ R2

+ the decision problem Dε,δ = (A ∪ {α, β} , Ω, uε,δ) with
α, β /∈ A as follows. For all (ã, ω) ∈ (A ∪ {α, β}) × Ω,

uε,δ(ã, ω) =





u(a′, ω) + δ if ã = a′,

m + ε if (ã, ω) = (α, ω1),

m if ã = β and ω 6= ω1,

M if (ã, ω) = (β, ω1) or (ã = α and ω 6= ω1),

u(ã, ω) otherwise.

The table below summarizes the definition of Dε,δ.

H
H

H
H

H
H

H

Actions
States ω1 ω ∈ Ω \ {ω1}

a∗ u(a∗, ω1) u(a∗, ω)

a′ u(a′, ω1) + δ u(a′, ω) + δ

α m + ε M

β M m

all other a u(a, ω1) u(a, ω)

Let D′ = (A \ {a′} , Ω, u|(A\{a′})×Ω) ∈ D. Since a∗ ∈ ϕ(D) ∩ (A \ {a′}), IIA
implies that ϕ(D′) = ϕ(D) ∩ (A \ {a′}) 6= ∅. For all (ε, δ) ∈ R2

+, Dε,δ is
obtained from D′ by adding finitely many actions, so INH-NEM implies that
ϕ(Dε,δ) 6= ∅.

Step 1: Let {εk}k∈N
be a sequence of strictly positive real numbers with
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limk→∞ εk = 0. We show that α ∈ ϕ(Dεk,0) for all k ∈ N. By CONT, we then
have α ∈ ϕ(D0,0).

Let k ∈ N and suppose, to the contrary, that α 6∈ ϕ(Dεk,0). Since ϕ(Dεk,0) 6= ∅,
we have two cases:

• β ∈ ϕ(Dεk,0). This is not possible, because α quasi-dominates β and appl-
ying Lemma 6 one obtains that α ∈ ϕ(Dεk,0).

• β 6∈ ϕ(Dεk,0). Since ϕ(Dεk,0) 6= ∅ and α, β 6∈ ϕ(Dεk,0) there is an a ∈
ϕ(Dεk,0) ∩ A. By IIA: ϕ(Dεk,0) ∩ A = ϕ(D), so a∗ ∈ ϕ(Dεk,0).
· If u(a∗, ω1) ≤ m + εk, then α weakly dominates a∗: u(a∗, ω) ≤ u(α, ω) for

all ω ∈ Ω, and there is an ω0 ∈ Ω such that u(a∗, ω0) < u(α, ω0), because
otherwise u(a∗, ω) = u(α, ω) for all ω ∈ Ω, so that m = infω∈Ω u(a∗, ω) =
infω∈Ω u(α, ω) = min {m + εk,M} > m, a contradiction. Using WDOM,
it follows that α ∈ ϕ(Dεk,0).

· If u(a∗, ω1) > m+εk, then α quasi-dominates a∗: u(α, ω) ≥ u(a∗, ω) for all
ω ∈ Ω \ {ω1} and by definition of m = infω∈Ω u(a∗, ω), there is an ω2 ∈ Ω,
different from ω1 (since u(a∗, ω1) > m + εk) with u(a∗, ω2) ≤ m + εk. This
implies that M = u(α, ω2) ≥ u(a∗, ω1) > m + εk ≥ u(a∗, ω2). By Lemma
6, α ∈ ϕ(Dεk,0).

In both subcases, we established that α ∈ ϕ(Dεk,0), in contradiction with
our assumption. Conclude that α ∈ ϕ(Dεk,0).

Step 2: We show that β ∈ ϕ(D0,0).

Let ω2 ∈ Ω, ω2 6= ω1, and consider the decision problems

D1 =
(
{α, β} , {ω1, ω2} , u0,0|{α,β}×{ω1,ω2}

)
and D2 =

(
{α, β} , Ω, u0,0|{α,β}×Ω

)
.

D2 can be obtained from D0,0 by deleting actions. By step 1, ϕ(D0,0)∩{α, β} 6=
∅. So IIA implies that

ϕ(D0,0) ∩ {α, β} = ϕ(D2). (2)

Therefore, α ∈ ϕ(D2). By DOS, ϕ(D1) = ϕ(D2), so α ∈ ϕ(D1). Now Lemma
4 implies that β ∈ ϕ(D1). Since ϕ(D1) = ϕ(D2), equation (2) gives that
β ∈ ϕ(D0,0).

Step 3: Let {δk}k∈N
be a sequence of strictly positive real numbers with

limk→∞ δk = 0. We show that a′ ∈ ϕ(D0,δk
) for all k ∈ N. By CONT, we then

have a′ ∈ ϕ(D0,0).

Consider the decision problem

D3 =
(
A3, Ω, u0,0|A3×Ω

)

where A3 = (A ∪ {α, β})\{a′} for some α, β /∈ A. By steps 1 and 2, ϕ(D0,0)∩
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A3 6= ∅, so IIA implies that ϕ(D0,0) ∩ A3 = ϕ(D3). Hence, from step 2,
β ∈ ϕ(D3).

Let δk > 0 and suppose that a′ 6∈ ϕ(D0,δk
). Since ϕ(D0,δk

) 6= ∅ one obtains that
ϕ(D0,δk

) ∩ A3 6= ∅ and then IIA implies that β ∈ ϕ(D0,δk
). So, reasoning as

in step 1: if u(a′, ω1) + δk ≥ M , then a′ weakly dominates β and, by WDOM,
a′ ∈ ϕ(Dδk,0); otherwise, a′ quasi-dominates β and by Lemma 6: a′ ∈ ϕ(Dδk,0).
In both cases we reach a contradiction. Conclude that a′ ∈ ϕ(Dδk,0).

Step 4: Finally, we show that a′ ∈ ϕ(D).

By step 3 a′ ∈ ϕ(D0,0) ∩ A. Hence, IIA implies ϕ(D0,0) ∩ A = ϕ(D), and so
a′ ∈ ϕ(D). 2

These results will help us prove Theorem 3:

Proof of Thm. 3 It is easy to verify that the solution M satisfies all the
properties.

Let ϕ be a solution on D satisfying all the properties and let D = (A, Ω, u) ∈
D. If ϕ(D) = ∅, then by r-NEM: M(D) = ∅. So, assume that ϕ(D) 6= ∅.

Under the assumption that whether or not an action belongs to ϕ(D) depends
exclusively on the infimum of its payoffs, it is true that ϕ(D) = M(D). Namely,
consider the decision problem D̂ = (A, Ω̂, û) where |Ω̂| = 1 and û(a, ω̂) =
infω∈Ω u(a, ω) for all (a, ω̂) ∈ A × Ω̂. We show that

ϕ(D) = ϕ(D̂) (3)

Consider the decision problem D̃ = (Ã, Ω, ũ) ∈ D obtained from D by adding
to the action space a replica r(a) of every action a ∈ A, i.e., Ã = {a, r(a)}a∈A

and with payoffs ũ|A×Ω = u and ũ(r(a), ω) = infω∈Ω u(a, ω) for all a ∈ A and
ω ∈ Ω.

By the assumption: a ∈ ϕ(D) if and only if {a, r(a)} ⊆ ϕ(D̃). Since ϕ(D) 6= ∅,
deletion of all non-replica actions and IIA imply that

a ∈ ϕ(D) ⇔ r(a) ∈ ϕ(({r(a)}a∈A , Ω, ũ{r(a)}
a∈A

×Ω)). (4)

ANO and DOS imply that

r(a) ∈ ϕ(({r(a)}a∈A , Ω, ũ{r(a)}
a∈A

×Ω)) ⇔ a ∈ ϕ(D̂). (5)

The equality (3) now follows from (4) and (5).
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Write Ω̂ = {ω̂}. By OSR we know that ϕ(D̂) = M(D̂) = arg maxa∈A û(a, ω̂).
Finally, since M satisfies all the properties we also have that M(D̂) = M(D).
Therefore ϕ(D) = M(D).

Now it remains to prove that whether or not an action belongs to ϕ(D) de-
pends exclusively on the infimum of its payoffs.

Let a∗ ∈ ϕ(D) and let m = infω∈Ω u(a∗, ω) and M = supω∈Ω u(a∗, ω). If m =
M , then u(a∗, ω) = m for all ω ∈ Ω. Let a ∈ A be such that infω∈Ω u(a, ω) =
m. If supω∈Ω u(a, ω) = m, then u(a, ω) = u(a∗, ω) for all ω ∈ Ω and, by
ANO, a ∈ ϕ(D); otherwise, a weakly dominates a∗, so, by WDOM, a ∈ ϕ(D).
Therefore, if m = M , then whether or not an action belongs to ϕ(D) depends
exclusively on the infimum of its payoffs.

So henceforth assume that m < M . This implies in particular that Ω contains
at least two elements. Choose ω1, ω2 ∈ Ω, ω1 6= ω2.

Take D′ = (A, Ω′, u′) ∈ D where Ω′ = {ω1, ω2, ω3} with ω3 /∈ Ω and, for all
a ∈ A:

u′(a, ω′) =





sup
ω∈Ω

u(a, ω) if ω′ = ω1

inf
ω∈Ω

u(a, ω) otherwise

The table below summarizes the definition of D′.

H
H

H
H

H
H

H

Actions
States ω1 ω2 ω3

...
...

a∗ M m m

a sup
ω∈Ω

u(a, ω) inf
ω∈Ω

u(a, ω) inf
ω∈Ω

u(a, ω)

...
...

Similar to the proof of (3), using Lemma 7 instead of the assumption, it follows
that ϕ(D) = ϕ(D′).

Define the sequence of decision problems {Dk}k∈N
= {(A ∪ {α, β, γ} , Ω′, uk)}k∈N

where α, β, γ /∈ A, uk |A×Ω′ = u′ and, for all (a, ω) ∈ {α, β, γ} × Ω′,

uk(a, ω) =





m +
1

2k−1
(M − m) if (a, ω) ∈ {(α, ω1), (β, ω2)}

m +
1

2k
(M − m) if (a, ω) ∈ {(γ, ω1), (γ, ω2)}

m otherwise.
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The table below summarizes the definition of Dk.

H
H

H
H

H
H

H

Actions
States ω1 ω2 ω3

...
...

...
...

a∗ M m m

...
...

...
...

α m +
1

2k−1
(M − m) m m

β m m +
1

2k−1
(M − m) m

γ m +
1

2k
(M − m) m +

1

2k
(M − m) m

...
...

...
...

For all k ∈ N, Dk can be obtained from D′ by adding three actions. So,
ϕ(D′) 6= ∅ and INH-NEM imply that ϕ(Dk) 6= ∅. We show by induction that
γ ∈ ϕ(Dk) for all k ∈ N.

Step 1: γ ∈ ϕ(D1).
D1 can be obtained from D′ by adding actions α, β, and γ in two steps:

First, add α and β to obtain the decision problem D′
1 = (A∪{α, β} , Ω′, u′

1)
with u′

1 = u1|(A∪{α,β})×Ω′ . Lemma 7 implies that α ∈ ϕ(D′
1) if and only if

β ∈ ϕ(D′
1). Suppose that α, β /∈ ϕ(D′

1). INH-NEM and ϕ(D′) 6= ∅ imply
that ϕ(D′

1) 6= ∅, so there is an a ∈ ϕ(D′
1) ∩ A. Then, by IIA, ϕ(D′

1) ∩ A =
ϕ(D′). Hence, a∗ ∈ ϕ(D′

1). Lemma 7 then implies that α, β ∈ ϕ(D′
1), which

is a contradiction. Thus α, β ∈ ϕ(D′
1).

Second, add action γ, whose utility is the (1
2
, 1

2
)-convex combination of

the utility of the actions α and β, and by CONV: γ ∈ ϕ(D1).

Step 2: Let k ∈ N and assume that γ ∈ ϕ(Dn) for all n ∈ N, n ≤ k. We
show that γ ∈ ϕ(Dk+1).
The decision problem Dk+1 can be obtained from Dk in two steps:

First, delete actions α and β from Dk to obtain a new decision problem.
By IIA and the assumption that γ ∈ ϕ(Dk), its solution contains γ. Next,
introduce actions α and β again, but now with their utility functions equal
to those in the problem Dk+1. Since α and β have the same infimum and
supremum, α belongs to the solution if and only if β belongs to the solution
of this new problem. Suppose that α and β do not belong to the solution.
By INH-NEM and IIA, γ belongs to the solution. But then Lemma 7 implies
that α and β should belong to the solution, which is a contradiction. Thus
α and β belong to the solution.

Second, delete γ from this new problem to obtain the decision problem
D′

k+1 = (A ∪ {α, β} , Ω′, u′
k+1) with u′

k+1 = uk+1|(A∪{α,β})×Ω′ . By IIA α, β ∈

12



ϕ(D′
k+1). Next, introduce action γ again, but now with utility function

equal to the (1
2
, 1

2
)-convex combination of the payoffs of actions α and β

in D′
k+1, so the decision problem Dk+1 is obtained. By CONV it follows

that γ ∈ ϕ(Dk+1).

Conclude, by induction, that γ ∈ ϕ(Dk) for all k ∈ N.

Let D∞ = (A ∪ {α, β, γ} , Ω′, u∞) be the limiting decision problem of the
sequence {Dk}k∈N

. Notice that u∞|A×Ω′ = u′ and u∞(α, ω) = u∞(β, ω) =
u∞(γ, ω) = m for all ω ∈ Ω′. Since γ ∈ ϕ(Dk) for all k ∈ N, CONT implies
that γ ∈ ϕ(D∞).

Take a ∈ A such that infω∈Ω′ u′(a, ω) = m. If supω∈Ω′ u′(a, ω) = m, then
u∞(a, ω) = u′(a, ω) = m = u∞(γ, ω) for all ω ∈ Ω, so that a ∈ ϕ(D∞) by
ANO. Otherwise, a weakly dominates γ and, by WDOM, a ∈ ϕ(D∞). Hence
a ∈ ϕ(D∞) ∩ A, and using IIA it follows that ϕ(D∞) ∩ A = ϕ(D′) = ϕ(D).

Hence, a ∈ ϕ(D) for all a ∈ A with infω∈Ω u(a, ω) = infω∈Ω u(a∗, ω) = m. 2
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