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Abstract

This article illustrates simulation optimization through an (s, S) inventory manage-
ment system. In this system, the goal function to be minimized is the expected value
of speci�c inventory costs. Moreover, speci�c constraints must be satis�ed for some
random simulation responses, namely the service or �ll rate, and for some determin-
istic simulation inputs, namely the constraint s < S. Results are reported for three
optimization methods, including the popular OptQuest method. The optimality of
the resulting solutions is tested through the so-called Karesh-Kuhn-Tucker (KKT)
conditions.
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1 Introduction

In this article, we apply the methodology called simulation optimization to the
area of inventory simulation. Simulation optimization is an important problem
in simulation methodology, because optimization is often desired in the design
of systems. Inventory simulation is an important application area in man-
agement, economics, and industry. Inventory simulation is also an important
topic in the simulation literature; see, for example, the best-selling textbook
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by Law and Kelton [12]. A well-known building block for inventory Discrete
Event Dynamic Systems (DEDS) simulation is the following model.

An ( s, S) model (with s < S) is a model of an inventory management (or
control) system in which the inventory (say) I is replenished whenever it
decreases to a value smaller than or equal to the reorder level s; the order
quantity Q is such that the inventory is raised to the order-up-to level S:

Q =

8><>:S � I if I � s0 if I > s.
(1)

There are several variations on this model. For example, review of the inven-
tory (I in Eq. 1) may be either continuous (in real time) or periodic. The lead
time of the order may be either a nonnegative constant or a nonnegative ran-
dom variable. Random demand (say) D that exceeds the inventory at hand
(D > I) may be either lost or backlogged. Costs may consist of inventory,
ordering, and out-of-stock costs. These cost components are speci�c mathe-
matical functions; for example, inventory carrying (or holding) cost may be a
constant per item unit, per time unit. In practice, however, out-of-stock costs
are hard to quantify so a service (or �ll rate) constraint may be speci�ed in-
stead; for example, the expected fraction of total demand satis�ed from stock
on hand should be at least 90%. We focus on the following variant that is
also studied by Bashyam and Fu in their 1998 article [5]; we shall abbreviate
Bashyam and Fu to B & F.

B & F try to optimize an (s, S) inventory systems with random demand,
random lead times, and a service level constraint. The randomness of these
lead times implies that orders may cross in time; i.e., orders are not neces-
sarily received in the order in which they are placed� which complicates the
mathematical analysis so simulation is used. Estimating the optimal control
limits s and S turns out to be very di¢ cult, as the vast literature on inventory
management shows.

Programming this type of inventory systems is relatively hard; for a thorough
discussion we refer to simulation textbooks; see again [12], pp. 60-61. In this
article, we shall use the popular Arena software; see [10].

Estimating the optimal s and S may use brute force methods; i.e., a grid for
s and S may be used to search for this optimum. Indeed, several authors have
used such a method; see [2], [5], and [16]. Unfortunately, they report di¤er-
ent (s, S) values as being optimal! Moreover, brute force cannot be applied
to realistic problems; for example, in practice the inventory systems control
thousands of Stock Keeping Units (SKUs), so the optimal control levels must
be estimated for all these SKUs: the curse of dimensionality. Furthermore,
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the inventory system may be only a subsystem of a multi-echelon inventory
system (including central warehouses), a production-inventory system (some
SKUs are not purchased but are manufactured by the same company), a sup-
ply chain, etc. Therefore our results are meant to illustrate how in practice
optimization of realistic inventory systems may be done.

To estimate the optimal control levels, we apply OptQuest (provided by Opt-
Tek System Inc.); we compare our results with the results in Angün et al. ([2])
and B & F ([5]). The former publication ([2]) uses a modi�ed Response Surface
Methodology (RSM); the latter publication ([5]) uses Perturbation Analysis
(PA) combined with the Feasible Directions (FD) method (from mathematical
programming). Our comparison checks wether the estimated optimal control
levels are close to the true optimal values (s�; S�) estimated through brute
force. Besides the e¤ectiveness, we discuss the e¢ ciency of OptQuest.

Note that input variables are also called control or decision variables or factors.
A combination of speci�c input values is often called a scenario.

Our main results are as follows (details are given in subsequent sections).
OptQuest gives the best estimate of the true optimum input (s�; S�). B & F�s
estimate is also close to the true optimum, but not as close as OptQuest�s
estimate. Angün et al.�s solution is relatively far away from the true optimum.
Furthermore, the statistical performance of the KKT test with large sample
sizes is better than that with small sample sizes� as is to be expected.

The remainder of this article is organized as follows. Section 2 details the (s, S)
inventory simulation with a service constraint, programmed in Arena. Section
3 summarizes the o¤-the-shelf software product called OptQuest, using classic
simulation and statistics terminology (instead of commercial terminology).
Section 4 summarizes the KKT conditions for random simulation with multiple
responses (multivariate output). Section 5 presents a set of experiments by
three research teams (including our own team), including tests for the KKT
conditions. Section 6 gives conclusions. A list with 16 references enables the
readers to further study the problem addressed in this article.

2 The (s, S) inventory simulation with a service constraint

We assume real-valued Independently and Identically Distributed (IID) de-
mand, integer-valued IID lead time, full backlogging, and continuous review.
System performance is measured through steady-state (non-terminating) ex-
pected values. Details on this simulation model and its Arena code are given
in [16]; also see [5].
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To verify the correctness of our code, we perform several what if experiments.
For example, if we increase s and S respectively, then the costs and the service
rate increase too. Furthermore, we use Arena�s trace facility to check the
history of events during a speci�c simulation run. We also use this trace to
check that order crossing indeed occurs in some runs. Moreover, we manually
check some computer results (using Arena�s �Output Analyzer�).

3 OptQuest

All practical simulation optimization methods are iterative heuristics. Op-
tQuest treats the simulation model as a black box ; i.e., it observes only the
Input/Output (I/O) of the simulation model. In the ( s, S) simulation model
the input consists of the values of s and S; the output consists of the inventory
costs excluding out-of-stock costs (the sum of holding and ordering costs is to
be minimized) and the service percentage (which should satisfy a minimum
value, such as 90%).

Note that PA treats the simulation model as a �white box�; i.e., it uses the
explicit formulas that are inside the simulation model; for example, it uses (1).

OptQuest combines the metaheuristics of Tabu Search, Neural Networks, and
Scatter Search into a single search heuristic; also see the recent publications
[1], [4], [8], and [14]. OptQuest is provided (free of charge) with the student
version of the Arena software; see [10]. Unfortunately, the exact heuristic is
unknown; i.e., OptQuest is a black box itself.

More precisely, if in OptQuest a candidate solution does not �t the constraints,
then that solution is eliminated and OptQuest explores candidates that are
more likely to be better. OptQuest allows the simulation analysts to explicitly
de�ne integer and linear constraints on the deterministic simulation inputs. We
specify the single constraint S� s � 0. OptQuest also allows the speci�cation
of boundaries on the random simulation outputs. We require that the expected
service percentage should exceed 0.90; also see below.

OptQuest requires the speci�cation of lower, suggested, and upper values for
the variables that are to be optimized. The suggested values determine the
starting point (combination); this choice a¤ects the e¢ ciency and e¤ectiveness
of the search. In practice, the simulation analysts may base their choice on
(for example) the current solution if the inventory system has already been
used in practice.

Moreover, OptQuest requires the selection of the (random) simulation output
that is the goal or objective variable to be minimized, and the outputs that
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should satisfy given requirements (conditions). In our problem, we select the
average total relevant costs as objective, and disservice  (complement of
service percentage) as requirement; i.e., we select  = 0:10 (following B & F
in [5]).

Finally, OptQuest enables the users to control the search as follows.

� OptQuest allows di¤erent precision criteria for both the objective and the
constrained simulation outputs:
(i) The simplest option is to specify a �xed number of replicates (or

�replications�), say, m; for example, m = 10.
(ii) A more advanced option selects the number of replicates between �xed

lower and upper bounds, stopping the replication if any inferior solution is
found. More precisely, OptQuest uses the classic Student statistic to test
the null-hypothesis that the current solution is worse than the best solution
found so far (this test is also explained in classic simulation textbooks such
as [12]).We specify 10 � m � 100.

� OptQuest also allows to select a relative precision; i.e., OptQuest selects the
number of replicates such that the halfwidth of the 95% con�dence interval
for the average output is within a user-selected percentage of the true mean.
We select 5%. (This approach is also explained in [12]; it is used in [15].)

� OptQuest allows di¤erent stopping criteria; for example, we specify that the
search stops either after 300 minutes (�ve hours) or after 500 �nonimproving
solutions�. (We shall present an alternative stopping rule in the next section).

4 Karesh-Kuhn-Tucker (KKT) conditions

An alternative stopping criterion uses the KKT conditions (instead of rather
arbitrary criteria such as the ones that OptQuest uses; see the last bullet in
the preceding section). The KKT conditions use gradients (as we shall see). By
de�nition, the gradient (say) r(w) of a function w(x1; : : : ; xk) is the vector
with the �rst-order partial derivatives: r(w) = (@w=x1; : : : ; @w=@xk)

0. In a
service-constrained (s, S) inventory system, the following two gradients are
relevant:

r(c) = (@c
@s
;
@c

@S
)0 (2)

and

r(f) = (@f
@s
;
@f

@S
)0 (3)

where c denotes the expected value of the total relevant costs, and f denotes
the expected disservice rate (remember that we also de�ned the required� not
the expected� disservice rate ).

PA estimates gradients (from a single simulation run) and RSM also estimates
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gradients (from a local simulation experiment, using classic Design Of Exper-
iments, DOE; see below).OptQuest, however, does not estimate gradients.
Nevertheless, when the analysts apply OptQuest, they may still perform a lo-
cal experiment to estimate the gradients at the OptQuest estimated optimum
and use these gradients as a stopping criterion!

The true optimum control levels s and S are unknown (as we saw above).
The brute force method and the search heuristics applied by di¤erent authors
give di¤erent estimates (as we shall see). Therefore we test the KKT �rst-
order optimality conditions for these di¤erent solutions. These conditions were
originally derived in deterministic nonlinear mathematical programming (see,
for example, [7]):

�0;�0 = BJ ;�0� (4)

where

�0;�0 denotes the k-dimensional vector with the (deterministic) gradient of the
goal function (in our inventory problem, �0;�0 = (@c=s; @c=@S)

0; see equation
2; the subscript �0 will be explained in equation 8);

BJ ;�0 denotes the k � J matrix with the gradients �h;�0 (h = 1; : : : J) of the
J binding constraints (in our problem, BJ ;�0 = (@f=s; @f=@S)0 in equation 3
so this matrix has only one column, which consists of the two components of
the gradient of the disservice f� provided the service constraint is binding for
a speci�c solution (s; S));

� denotes the J-dimensional vector with the non-negative Lagrange multipli-
ers for the binding constraints.

In other words, (4) implies that at the optimum combination (s�; S�) the
gradients are vectors that point in the same direction (but may have di¤erent
length).

In 2004, [9] tested the KKT conditions for a single unconstrained random sim-
ulation output. Only in 2006 , [3] and [6] derived statistical tests for the KKT
conditions for random simulation models with constraints on the determinis-
tic inputs and the random outputs� as is the case in our inventory problem.
The former publication ([3]) assumes a large number of simulation replicates
(m = 20 in Section 5), whereas the latter publication ([6]) allows a minimum
number of replicates (m = 3 in that same section).

Note that simulation models implicitly de�ne nonlinear transformations (func-
tions) of the deterministic (simulation) inputs into the (mean simulation) out-
puts.
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Testing the KKT conditions in random simulation implies testing the follow-
ing three null-hypotheses, denoted by the superscripts (1) through (3) in the
following three equations:

(1) The current slack is zero; i.e., the current solution is feasible and at least
one constraint is binding. In our problem this implies

H
(1)
0 : E( bf) = 0:10 (5)

where bf is an unbiased estimator of f ; this f was de�ned below (3).
(2) The expected value of the estimated local gradient equals the expected

value of the product of the estimated gradients of the simulation outputs
in the binding constraints and the Lagrange multipliers; see (4):

H
(2)
0 : E(b�0;�0) = E( bBJ ;�0 b�): (6)

(3) The Lagrange multipliers in (6) are non-negative:

H
(3)
0 : E(b�) � 0: (7)

Because these hypotheses require multiple tests, the well-known Bonferroni
inequality is applied. Moreover, these three hypotheses are tested sequentially
(stagewise), as follows.

(1) To test whether the constraints are binding (see equation 5), the classic
Student t test may be used. If the estimate bf is signi�cantly big, then the
combination tested is not feasible. If the estimate cf is signi�cantly small,
then the optimum has not yet been reached� assuming the optimum does
not lie in the interior of the feasible area (otherwise, classic RSM would
apply). The mean E( bf) = f is estimated at the center of the local area
being simulated; the standard deviation �( bf) is estimated from the m
replicates at that center; see the next step.

(2) To estimate the goal gradient (see equation 6), the following second-order
polynomial is �tted locally:

by = b�0 + b�1s+ b�2S + b�3sS + b�4s2 + b�5S2 (8)

so the gradient is estimated through

[r(c) = (b�1 + b�3S + 2b�4s; b�2 + b�3s+ 2b�5S)0 (9)

Note that b�0 in (8) is irrelevant; the gradient of the goal function is
therefore denoted by b�0;�0. Another second-order polynomial is �tted
locally for the �ll rate observations, to get [r(f) analogous to (9).
To compute these gradient estimates, we use the Ordinary Least Squares

(OLS) criterion. These estimates require that �enough�simulation obser-
vations be obtained locally. A so-called Central Composite Design (CCD)
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is popular in RSM; in our problem this design is the 22 design augmented
with the central point and four axial points obtained by increasing and
decreasing each input one at a time (so this CCD implies 9 points, which
su¢ ces to estimate the 6 parameters in equation 8). This central point
is replicated m times. To avoid singular covariance matrices, m must be
greater than the number of simulation responses; in our problem m > 2.
To test whether the resulting polynomial �ts well, the classic F lack-of-�t
test is used; see classic RSM textbooks such as [13] and [11].

(3) Finally, these estimated gradients are used to test the two hypotheses in
(6) and (7). Because these tests are rather complicated, we refer to [3]
and [6] for details. We use the computer codes that are based on these
two publications; see the Acknowledgment.

5 Experiments

The following assumptions are used in the set of experiments conducted by
several research teams; these assumptions were originally selected by B & F
(see [5]).

� Demands are exponentially distributed with mean 100.
� Lead times are Poisson distributed with mean 6 (so the probability of order
crossing is relatively high).

� The maximum disservice level  is 0.10.
� The holding cost is 1, the variable ordering cost is 1, and the �xed ordering
cost is 36.

5.1 Searching for the optimum: results

We now summarize the results of the brute-force grid search and the three
search heuristics; also see Table 1.

Bashyam and Fu ([5]) �s brute-force search initially uses a grid with s and
S incremented in steps of size 5. Next, in the neighborhood of the optimum
resulting from this coarse grid, they decrease the step size to 1 (instead of 5).
They estimate that the true optimum has minimum costs of 703 and disservice
rate of 0:11. Unfortunately, they do not report the corresponding optimal input
combination, (s�; S�). Note that they simulate each grid point (combination)
for 30; 000 periods, to reach steady state, and take 10 replicates (each of 30; 000
periods).

Next they estimate the optimum through PA combined with the FD search.
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They again use 10 replicates, each of 30,000 periods. Now they estimate that
the true optimum has minimum costs of 708 (so these costs are less than 1%
higher than the brute force solution) and a disservice rate of 0:11. In private
communication, they report the corresponding (s�; S�) as (1040, 1065) (also
see [6]).

Angün et al. (see [2]) also use brute force to estimate the true optimum. They,
however, �nd better results than B & F, namely the minimum costs are 647
with a standard error of 8.6 and a disservice rate of 0.11 with a standard error
of 0.01. They report that the optimal combination is (s�; S�) =(1160; 1212).

Next they use their modi�ed RSM to estimate the optimum. They estimate
that the minimum costs are 671 and that the disservice rate does not di¤er
signi�cantly from the target of 0:10. They report (s�; S�) = (1185; 1231).

Finally, we ourselves search for the optimum. First, we use brute force. Ini-
tially, we use a grid with stepsize 100, in the search area de�ned by 0 �
s � 3000 and 0 � S � 3000, and s � S; i.e., we simulate 325 combinations.
We �nd that the truly optimum combination lies inside the subarea de�ned by
900 � s � 1250 and 1050 � S � 1250. Next we decrease the stepsize to 10 (in-
stead of 100), while s � S; i.e. we simulate 546 combinations. We �nd that the
true optimum lies inside the subarea 1010 � s � 1030 and 1070 � S � 1090.
In that area, we next simulate each integer combination; i.e., we simulate 441
(= 21�21) combinations; we also increase the number of replicates from 10 to
50. Our conclusion is that (s�; S�) = (1020, 1075) with minimum costs of 624
(and standard error 2.4) and disservice rate 0.10 (with standard error 0.004).
However, many more combinations close to this combination give costs and
service rates that do not di¤er much; see [16].

Next we use OptQuest. Initially, we specify 0 � s � 3000 and a suggested value
of 1000, and 0 � S � 3000 and a suggested value of 1000. Furthermore, we
specify 10 replicates. OptQuest �nds (s�; S�) = (996, 1116), after three hours
of computer time on our PC (Intel Pentium 4, 3.2 GHz, 0.99 GB of RAM).
Next, we restart OptQuest with the result of the initial search (996, 1116) as
the suggested values and the more restricted search area 800 � s � 1200 and
800 � S � 1200. OptQuest now �nds (s�; S�) = (1021, 1077), after two and a
half hours of computer time. The corresponding costs are 625 (standard error
3.8) and disservice rate 0.10 (standard error 0.005). So our OptQuest results
are very close to our brute-force results.

In Table 1, we summarize the results of both the brute-force grid search and
the search algorithms reported by the three research teams. Obviously, Angün
et al.�s solution di¤ers much from the solutions reported by the other two
teams. The symbols A through D are explained in the next subsection.
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Team Method Symbol s�; S� costs (SE) disservice (SE)

Kleijnen & Wan Brute force A 1020, 1075 624 (2.4). 0.10 (0.004)

OptQuest B 1021, 1077 625 (3.8) 0.10 (0.005)

Bashyam & Fu Brute force N/A 703 (N/A) 0.11 (N/A)

PA & FD C 1040,1065 708 (N/A) 0.11 (N/A)

Angün et al. Brute force D 1160, 1212 647 (8.6) 0.11 (0.010)

Modi�ed RSM 1185, 1231 671 (N/A) N/A (N/A)
Table 1
Optima estimated through three di¤erent research teams (SE: standard error; N/A:
not available)

5.2 KKT tests: results

We test whether the KKT conditions hold at the four points that are denoted
by the symbols A through D in Table 1. Moreover, we add a point� denoted
by E� that is obviously not optimal, namely (s�; S�) = (985; 1188); we found
this point E during our OptQuest search for the true optimum.

To estimate the local gradients, we experiment with three local area sizes
in which we simulate the CCD combinations that determine (s; S) (as we
explained in the discussion of equation 8; for details see [16]):

� a �small�local area of 4� 4 units
� an �intermediate�local area of 10� 10
� a �large�local area of 20� 20.

Moreover, we experiment with two noise levels:

� relatively small noise resulting from simulation runs of 30,000 periods (as
above)

� relatively big noise resulting from simulation runs of only 3,000 periods.

We use a type-I error rate of � = 0:10 per test (we cannot control the overall,
�experimentwise� error rate in our sequential procedure; neither can any of
the search procedures discussed above). To reduce the e¤ect of the Pseudo-
Random Numbers (PRN) when estimating the performance of the KKT test
procedure, we use 500 macro-replicates; i.e., we repeat our experiments with
500 di¤erent non-overlapping PRN streams.

In Table 2, we present results only for the small local area and the small noise
level (1 of the 3 � 2 = 6 combinations; [16] gives all results). We give the
following comments on this table:
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Point Constraint Lack of �t KKT: linear KKT: Lagrange

A 37=500 = 0:07 33=463 = 0:07 11=430 = 0:03 44=430 = 0:10

B 40=500 = 0:08 29=460 = 0:06 6=431 = 0:01 47=431 = 0:11

C 33/500 = 0.07 35/457 = 0.08 21/432 = 0.05 48/432 = 0.11

D 500/500 = 1.00 N/A N/A N/A

E 92/500 = 0.18 20/408 = 0.05 3/388 = 0.01 68/388 = 0.18
Table 2
KKT test of estimated optimal solutions A through D, and suboptimal solution E

� The symbols A through D in the �rst column refer back to Table 1.
� �Constraint�means that the slack ( bf�) is signi�cantly di¤erent from zero.
For example, at point A only 37 of the 500 macro-replicates are signi�cant.

� �Lack of �t�means that the second-order polynomial in (8) is rejected by
the F test. For example, point A results in signi�cant lack-of-�t for 33
macro-replicates of the 463 replicates remaining after the preceding slack
test (namely, 500 - 37).

� �KKT: linear�means that the goal gradient is not adequately expressed as
a linear function (�rst-order polynomial) of the constraint gradient; see (6).
This �t is tested through the bootstrap test for small number of replicates in
[6]. For example, for the A combination 11 of the 463�33 = 430 polynomials
that were accepted after the F test now give signi�cant lack-of-�t.

� �KKT: Lagrange�means that the linear KKT model in (6) �ts well, but at
least one Lagrange multiplier is negative; see (7). For example, 44 of the
same 430 estimated gradients give signi�cantly negative Lagrange multipli-
ers.

� Points B and C give results that are similar to A.
� Point D gives signi�cant slacks for all 500 macro-replicates.
� Point E results in 18% (= 68/388) of the Lagrange multipliers being neg-
ative; i.e., the two estimated gradients point in di¤erent directions, so this
point is suboptimal.

Results for all six combinations of local area size and noise level are presented
in [16]. These results are similar to the results that we present in Table
2. Results for the asymptotic test derived in [3] are presented in [16], using
m = 20 (instead of m = 3) replicates, a �rst-order polynomial (instead of the
second-order polynomial in equation 8), and only 100 (instead of 500) macro-
replicates. Now the probability of rejecting the points B through E (not A)
is much higher: increasing the number of replicates increases the power of the
test!
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6 Conclusions

We simulated a well-known inventory management system, in Arena. Next we
searched for its optimal control levels, using OptQuest. The resulting optimum
was compared with optima estimated by two other research teams. We tested
the optimality of all these solutions� and a clearly suboptimal point� through
a KKT test procedure. Some solutions passed the KKT test; some did not.
The KKT test assuming larger samples performed better, as expected.

The e¢ ciency of OptQuest depends on both the size of the search area and
the choice of the �suggested�solution at the start of the search. In our simple
problem the search still lasted several hours.
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