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Abstract

In this paper, we begin the determination of all primitive strongly regular graphs with

chromatic number equal to 5. Using eigenvalue techniques, we show that there are at most 43

possible parameter sets for such a graph. For each parameter set, we must decide which strongly

regular graphs, if any, possessing the set are 5-chromatic. In this way, we deal completely with

34 of these parameter sets using eigenvalue techniques and computer enumerations.

1 Introduction

Almost 25 years ago, the second author determined all strongly regular graphs with chromatic

number at most 4 [20]. At that time, it was far out of reach to determine the 5-chromatic strongly

regular graphs. However, in recent years for several parameter sets, all non-isomorphic strongly

regular graphs have been determined, mostly by computer. Many of these sets are candidates for

being 5-chromatic. Thus, it became worthwhile to investigate the 5-chromatic strongly regular

graphs. This was initiated by the first author in the second chapter of his Ph. D. thesis [14], and

the present paper is an updated version of that chapter. We determine all 5-chromatic strongly

regular graphs on less than 85 vertices. And for the remaining cases, we show that there are only

nine possible parameter sets.

Before we begin, we must establish some terminology and notation. All graphs considered are

finite, undirected, and simple (no loops or parallel edges). The vertex set of a graph G will be

denoted by V (G). The complement of G will be denoted by G. Given x ∈ V (G), a vertex adjacent

to x is called a neighbor of x. The set of all neighbors of x is called the neighborhood of x and will

be denoted by N(x). If |N(x)| = k for all x ∈ V (G), then G will be called k-regular. Given distinct

x, y ∈ V (G), the set N(x) ∩N(y) is called the set of common neighbors of x and y.

A set of pairwise non-adjacent vertices in a graph G is called a coclique of G. A maximum

coclique in G is a coclique of maximum size in G. The size of a maximum coclique in G is called

the coclique number of G and will be denoted by α(G). A proper vertex coloring, or just a coloring,

C of a graph G is a function C : V (G)→ {1, . . . , l} such that C(x) �= C(y) whenever x and y are

adjacent in G. Such a coloring will be called an l-coloring of G. Thus, an l-coloring of G is just

a partition of V (G) into l cocliques, which we will call color classes. If there exists an l-coloring

of G, then G is called l-colorable. The smallest l such that G is l-colorable is called the chromatic

number of G and will be denoted by χ(G). If χ(G) = l, then G will be called l-chromatic.
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2 Strongly regular graphs

A strongly regular graph with parameters v, k (1 ≤ k ≤ v − 2), λ, and µ, or an srg(v, k, λ, µ), is

a k-regular graph on v vertices such that every pair of adjacent vertices has exactly λ common

neighbors and every pair of distinct non-adjacent vertices has exactly µ common neighbors. For

a good introduction to the theory of these graphs, see [11], [18], or [29]. For a survey of strongly

regular graphs, see [2], [6], [10], or [37]. We shall need some properties of strongly regular graphs.

Most material can be found in mentioned references. The first two results are proved by simple

counting.

Proposition 2.1 A graph is an srg(v, k, λ, µ) if and only if its complement is an srg(v, v − k −

1, v − 2k + µ− 2, v − 2k + λ).

Proposition 2.2 If an srg(v, k, λ, µ) exists, then k(k − λ− 1) = (v − k − 1)µ.

The next result is a well-known characterization of connected strongly regular graphs as the

connected regular graphs with exactly three distinct eigenvalues.

Theorem 2.3 A connected regular graph G is an srg(v, k, λ, µ) if and only if it has exactly three

distinct eigenvalues. One of these eigenvalues is k and the other two r and s (r > s) are related to

the parameters by

k + rs = µ and r + s = λ− µ .

The multiplicity of eigenvalue k is equal to 1. The multiplicities f and g of r and s can be computed

from

f + g + 1 = v and fr + gs+ k = 0 .

Additionally, r and s are integers, unless v ≡ 1 (mod 4), k = (v− 1)/2, r, s = −
1

2
±

1

2

√
v, and v is

not an integral square.

A strongly regular graph that is connected with connected complement is called primitive. A

strongly regular graph that is not primitive is called imprimitive. The imprimitive strongly regular

graphs are precisely the disjoint unions of complete graphs of the same size and the complete multi-

partite graphs with all color classes of equal size. So their chromatic numbers are trivial. It is

straightforward to see that the parameters and eigenvalues of a primitive strongly regular graph

satisfy 0 < µ < k, 0 < r < k, and −k < s < −1.

Next, we will describe some families of strongly regular graphs that will arise in the forthcoming

sections. Given a prime power q with q ≡ 1 (mod 4), the Paley graph P (q) is the graph with

V (P (q)) = GF (q), with two vertices being adjacent if their difference is a nonzero square in GF (q).

It follows that P (q) is an srg(q, (q − 1)/2, (q − 5)/4, (q − 1)/4). It is easily seen that P (q) has

an automorphism group, which is transitive on vertices, edges, and non-edges. Moreover, P (q) is

isomorphic to its complement.

Given an integer n ≥ 4, the triangular graph T (n) is the line graph of the complete graph Kn.

It follows that T (n) is an srg(n(n− 1)/2, 2(n− 2), n− 2, 4). T (n) is known to be characterized by

its parameters if n �= 8. When n = 8, there are precisely three additional strongly regular graphs

with the same parameters as T (8). These are known as the Chang graphs.

Given an integer n ≥ 2, the lattice graph L2(n) is the line graph of the complete bipartite

graph Kn,n. L2(n) is an srg(n2, 2(n − 1), n − 2, 2), and is characterized by its parameters except

when n = 4. When n = 4, there is precisely one additional strongly regular graph with the same

parameters as L2(4). This graph is known as the Shrikhande graph.

A system of n linked symmetric (v, k, λ) designs [9] is a collection {X0, . . . , Xn} of disjoint finite

sets together with incidence relations Ii,j , i, j = 0, . . . , n, i �= j, between each pair of distinct sets

such that (i) for all i, j = 0, . . . , n, i �= j, the incidence structure (Xi, Xj , Ii,j) is a symmetric
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(v, k, λ) design, and (ii) for any three distinct sets Xi, Xj , and Xl, and any two points p ∈ Xj and

q ∈ Xl, the number of points r ∈ Xi such that r is incident with both p and q is x if p and q are

incident and is y otherwise. It follows that we must have (x− y)2 = k − λ and y(k + x− y) = kλ.

The incidence graph of such a system has the elements of ∪n

i=0
Xi as its vertices, with two vertices

being adjacent when the corresponding points are incident. This incidence graph is strongly regular

if and only if nλ = y(n− 1), in which case it is an srg(v(n+ 1), kn, y(n− 1), λn); see [24].

3 Matrix-theoretic tools

In this section, we will present some matrix-theoretic results that we will need in the forthcoming

sections and that are of general use in algebraic graph theory.

Given a real symmetric v × v matrix A, we will denote the eigenvalues of A (which must be

real) by λ1(A) ≥ . . . ≥ λv(A). If A is the (0, 1)-adjacency matrix of a graph G, then we sometimes

write λi(G) instead of λi(A), i = 1, . . . , v. If B is a v1 × v1 matrix with v1 ≤ v, then we say

that the eigenvalues of B interlace the eigenvalues of A if B has only real eigenvalues and if

λi(A) ≥ λi(B) ≥ λv−v1+i for i = 1, . . . , v1. We say that the interlacing is tight if there exists

an integer l, 0 ≤ l ≤ v1, such that λi(A) = λi(B) for i = 1, . . . , l and λv−v1+i(A) = λi(B) for

i = l + 1, . . . , v1.

The first two matrix results we will need give examples of eigenvalue interlacing. The first of

these is sometimes referred to as the Cauchy inequalities [30].

Theorem 3.1 Let A be a real symmetric v × v matrix partitioned as follows:

A =

(
A1,1 A1,2

A�

1,2 A2,2

)
,

where A1,1 is square. Then the eigenvalues of A1,1 interlace the eigenvalues of A.

Theorem 3.2 [20], [22] Let A be a real symmetric v × v matrix partitioned as follows:

A =




A1,1 . . . A1,v1

.

.

.
. . .

.

.

.

A�

1,v1
. . . Av1,v1


 ,

where Ai,i is square for i = 1, . . . , v1. Let bi,j be the average row sum of Ai,j for i, j = 1, . . . , v1.

Let B = (bi,j). Then the eigenvalues of B interlace the eigenvalues of A, and if the interlacing is

tight, then Ai,j has constant row and column sums for i, j = 1, . . . , v1.

The matrix B is often called the quotient matrix of A with respect to the given partition. If

all blocks of the partition have constant row and column sums, the partition is called equitable (or

regular). Thus, the above theorem states that if the interlacing is tight, the partition is equitable.

If v1 = 1, we have the well-known property that the average row sum of a symmetric matrix lies

between the smallest and the largest eigenvalue. For eigenvalue manipulations we shall frequently

use the following property [30].

Proposition 3.3 Let A and B be real symmetric matrices and suppose that A and B commute

(that is, AB = BA). Then A and B have a common basis of eigenvectors.

This result implies that the eigenvalues of A + B can be obtained by adding corresponding

eigenvalues of A and B. For example, if A has constant row sums and B = Jv (Jv denotes the v×v

all-ones matrix). Since Jv has all but one eigenvalue equal to 0, all but one eigenvalue of A + Jv

are also eigenvalues of A. The remaining eigenvalue is the row sum of A+ Jv. If A and Jv do not

commute, we can use the fact that Jv is positive semi-definite, which gives the following inequality.
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Proposition 3.4 Let A be a real symmetric v × v matrix and let c ≥ 0. Then

λi(A+ cJv) ≥ λi(A) for i = 1 . . . v.

The last matrix result we shall need concerns real symmetric matrices with just two distinct

eigenvalues.

Theorem 3.5 [20] Let A be a real symmetric v × v matrix partitioned as follows:

A =

(
A1,1 A1,2

A�

1,2 A2,2

)
,

where A1,1 is v1× v1. Suppose that A has eigenvalues r and s, r > s, of multiplicities f and v− f ,

respectively. Then

λi(A2,2) =




r if 1 ≤ i ≤ f − v1,

s if f + 1 ≤ i ≤ v − v1,

r + s− λf−i+1(A1,1) otherwise.

4 Eigenvalues and chromatic number

We start with some eigenvalue inequalities for the chromatic number. The first result is due to

Hoffman [27], see also [20].

Theorem 4.1 If G is a graph on v vertices, then

−

χ(G)−2∑
i=0

λv−i(G) ≥ λ1(G).

As a direct consequence of this theorem we have −λv(G)(χ(G) − 1) ≥ λ1(G), which gives

Hoffman’s famous lower bound for the chromatic number:

Corollary 4.2 If G is a non-empty graph on v vertices, then χ(G) ≥ 1−
λ1(G)

λv(G)
.

The next inequality is less well-known [20], [22].

Theorem 4.3 Suppose G is a graph on v vertices and let g be the multiplicity of λv(G), If λ2(G) �=

0, then χ(G) ≥ min{g + 1, 1−
λv(G)

λ2(G)
}.

The latter result is useful for strongly regular graphs, since these graphs have large g. In fact

the pentagon is the only primitive strongly regular graph for which g + 1 < 1 −
λv(G)

λ2(G)
, see [20].

Hence,

Theorem 4.4 [20] If G is a primitive strongly regular graph with eigenvalues k, r, and s (k > r >

s), which is not the pentagon, then

χ(G) ≥ 1−
k

s
and χ(G) ≥ 1−

s

r
.

By use of this theorem it is easy to prove that for a given value of χ there are only finitely many

primitive strongly regular graphs with chromatic number χ. In [20], all primitive strongly regular

graphs with chromatic number at most 4 are determined. No primitive strongly regular graph has

chromatic number less than 3. Three such graphs have chromatic number 3 and 18 such graphs

have chromatic number 4. The result is as follows.
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Theorem 4.5 If G is a 3-chromatic primitive strongly regular graph, then G is one of the fol-

lowing graphs: the pentagon P (5) (the unique srg(5, 2, 0, 1)), the Petersen graph T (5) (the unique

srg(10, 3, 0, 1)), or L2(3) (the unique srg(9, 4, 1, 2)).

If G is a 4-chromatic primitive strongly regular graph, then G is one of the following graphs:

T (6) (the unique srg(15, 6, 1, 3)), L2(4) (one of the two srg(16, 6, 2, 2)), L2(4) (one of the two

srg(16, 9, 4, 6)), the Shrikhande graph (the exceptional srg(16, 6, 2, 2)), the Clebsch graph (the unique

srg(16, 5, 0, 2) [36]), the Hoffman-Singleton graph (the unique srg(50, 7, 0, 1) [28]), the Gewirtz graph

(the unique srg(56, 10, 0, 2) [4], [16]), or one of the eleven incidence graphs of a system of three linked

symmetric (16, 6, 2) designs [31].

The next results will be very useful for obtaining contradictions to the existence of 5-chromatic

strongly regular graphs with various parameter sets.

Theorem 4.6 Let G be a graph on v vertices and let g denote the multiplicity of the smallest

eigenvalue λv(G). Suppose G is colored with χ = �1 −
λv(G)

λ2(G)
� colors. Let C be the smallest color

class. Then |C| ≥ g − χ+ 2.

Proof. Consider the graph G′ induced by V (G) \ C. Clearly χ(G′) = χ− 1. Assume that |C| ≤

g−χ+1. Then by Theorem 3.1, G′ has eigenvalue λv(G) with multiplicity at least g−|C| = χ(G′).

Now Theorem 4.3 applied to G′ gives χ(G′) ≥ 1−
λv(G)

λ2(G)
, a contradiction. �

The next two results give upper bounds on the size of a coclique. The first is an unpublished

result of Hoffman. The second one is due to Cvetković [12].

Theorem 4.7 [20], [22] Let G be a k-regular graph with v vertices. Let C be a coclique in G. Then

|C| ≤ vλv(G)/(λv(G)− k) with equality if and only if each vertex outside C is adjacent to exactly

−λv(G) vertices in C.

Theorem 4.8 [12] Let G be a graph with g non-positive eigenvalues. Then α(G) ≤ g.

A coclique that meets Hoffman’s bound will be called a Hoffman coclique and a coloring of

a graph for which Hoffman’s chromatic number bound (Corollary 4.2) is tight will be called a

Hoffman coloring. Note that for a regular graph, the color classes in a Hoffman coloring are Hoffman

cocliques. So, by Theorem 4.7, a Hoffman coloring in a regular graph gives an equitable partition

of the adjacency matrix. Strongly regular graphs with a Hoffman coloring have been studied by

Haemers and Tonchev [24]. They give a characterization in case both bounds of Theorem 4.4 are

tight.

Theorem 4.9 [24], [13] Let G be a primitive strongly regular graph with eigenvalues k, r, and s

(k > r > s). Suppose that G has a Hoffman coloring. Then

kr ≥ s
2

with equality if and only if G is the incidence graph of a system of linked symmetric designs.

5 Parameters of 5-chromatic strongly regular graphs

In this section, we find all possible parameter sets for 5-chromatic primitive strongly regular graphs.

The computer program Mathematica [43] was used to generate the list below.

Theorem 5.1 A 5-colorable primitive strongly regular graph must have one of the following 43 sets

of eigenvalues (r, s) and parameters (v, k, λ, µ):

5



1. (
1
2
± 1

2

√
5) (5, 2, 0, 1) 16. (2,−7) (76, 21, 2, 7) 31. (3,−12) (225, 48, 3, 12)

2. (
1
2
± 1

2

√
13) (13, 6, 2, 3) 17. (2,−6) (77, 16, 0, 4) 32. (3,−10) (196, 39, 2, 9)

3. (
1
2
± 1

2

√
17) (17, 8, 3, 4) 18. (2,−6) (64, 18, 2, 6) 33. (3,−9) (210, 33, 0, 6)

4. (1,−4) (21, 10, 3, 6) 19. (2,−5) (57, 14, 1, 4) 34. (3,−9) (165, 36, 3, 9)

5. (1,−4) (25, 16, 9, 12) 20. (2,−5) (49, 16, 3, 6) 35. (3,−7) (176, 25, 0, 4)

6. (1,−3) (16, 5, 0, 2) 21. (2,−4) (56, 10, 0, 2) 36. (3,−7) (125, 28, 3, 7)

7. (1,−3) (15, 6, 1, 3) 22. (2,−4) (40, 12, 2, 4) 37. (3,−6) (162, 21, 0, 3)

8. (1,−3) (16, 9, 4, 6) 23. (2,−4) (36, 14, 4, 6) 38. (3,−5) (115, 18, 1, 3)

9. (1,−2) (10, 3, 0, 1) 24. (2,−4) (35, 16, 6, 8) 39. (3,−5) (96, 19, 2, 4)

10. (1,−2) (9, 4, 1, 2) 25. (2,−3) (50, 7, 0, 1) 40. (3,−5) (85, 20, 3, 5)

11. (1,−2) (10, 6, 3, 4) 26. (2,−3) (26, 10, 3, 4) 41. (3,−4) (99, 14, 1, 2)

12. (2,−8) (100, 22, 0, 6) 27. (2,−3) (25, 12, 5, 6) 42. (3,−3) (45, 12, 3, 3)

13. (2,−8) (76, 30, 8, 14) 28. (2,−2) (16, 6, 2, 2) 43. (3,−2) (25, 8, 3, 2)

14. (2,−8) (75, 32, 10, 16) 29. (2,−2) (15, 8, 4, 4)

15. (2,−7) (81, 20, 1, 6) 30. (3,−12) (266, 45, 0, 9)

Proof. Let G be a 5-colorable primitive srg(v, k, λ, µ) with eigenvalues k, r, and s (r > s), with

multiplicities 1, f , and g, respectively. If G has a non-integral eigenvalue, then k = (v − 1)/2,

s = (−1−√
v)/2, v ≡ 1 (mod 4), and v is not an integral square. Now, by Corollary 4.2, we have

χ(G) ≥ √
v, and so v ≤ 25. Thus, we must have v = 5, 13, or 17. The only strongly regular graphs

on 5, 13, or 17 vertices have parameter sets 1, 2, and 3 in the list above.

Next, suppose r and s are both integers. The primitivity of G gives s ≤ −2, r ≥ 1, and µ > 0.

Also, k + rs = µ implies k > −rs, so k ≥ 3, and by Corollary 4.2, 5 ≥ 1− k/s > 1 + r, so r = 1, 2,

or 3. Theorem 4.4 gives

−s ≤ 4r , and k ≤ 4s .

This leads to a list of 442 feasible triples (r, s, k). For each triple we computed the other parameters

and the multiplicities of the eigenvalues. We checked that λ ≥ 0, µ ≥ 1, and that f and g are both

integers. Then we obtain the parameter sets 4 through 43 in the list above. �

6 The known cases

In this section, we will deal with the parameter sets for which existence or non-existence of a

5-chromatic strongly regular graph is known.

The graphs with parameter sets 1, 6, 7, 9, 10, 21, and 25 are unique, and 4-colorable by Theorem

4.5. There are two graphs with parameter set 28, L2(4) and the Shrikhande graph. Both are 4-

colorable by Theorem 4.5. Parameter set 8 is the complement of 28. L2(4) is 4-chromatic by

Theorem 4.5, but the complement of the Shrikhande graph has coclique number 3, and hence it

has chromatic number at least �16/3� = 6, and hence equal to 6 by Brooks’ theorem.

There is only one graph for each of the parameter sets 4, 11, and 29, namely T (7), T (5), and

T (6), respectively (see Section 2). Both T (5) and T (6) are 5-chromatic since K5 and K6 both have

edge chromatic number 5. T (7) is also 5-chromatic since T (6) is 4-chromatic by Theorem 4.5.

There is a unique graph for each of the parameter sets 2 and 3, namely the Paley graphs P (13)

and P (17). By Theorem 4.5, P (13) is not 4-colorable. Clearly, {0, 2, 7} ∪ {1, 6, 8} ∪ {3, 5, 11} ∪
{4, 9}∪{10, 12} is a partition of the vertices into five cocliques. So, P (13) is 5-chromatic. In P (17),

0 and 1 are adjacent vertices with three common neighbors, namely 2, 9 and 16. These three vertices

are mutually non-adjacent, so the edge {0, 1} is not contained in a 4-clique. The automorphism

group of a Paley graph is edge transitive, so P (17) has no 4-clique. The Paley graph is isomorphic

to its complement. Hence, P (17) has no 4-cocliques and therefore P (17) is not 5-chromatic. In

fact, the vertices of P (17) can be covered with six translates of {0, 1, 2}, which implies that P (17)

is 6-chromatic.
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There is also a unique graph for each of the parameter sets 5 and 43, namely L2(5) and L2(5),

respectively. Both are 5-chromatic. For L2(5) this is trivial, and a 5-coloring of L2(5) is given by

the symbols of an arbitrary latin square of order 5.

There are exactly 3854 srg(35, 16, 6, 8) [32], [41]. However, none of them are 5-chromatic.

Suppose G is such a graph. The eigenvalues of G are k = 16, r = 2, and s = −4. Since 1−k/s = 5,

a 5-coloring is a Hoffman coloring. In [24] it is proved that G has no Hoffman coloring. Therefore,

there does not exist a 5-chromatic srg(35, 16, 6, 8).

Similarly, an srg(75, 32, 10, 16) has eigenvalues k = 32, r = 2, and s = −8. Since 1 − k/s =

5, a 5-coloring of such a graph would be a Hoffman coloring. By Theorem 4.9, a 5-colorable

srg(75, 32, 10, 16) would have to be the incidence graph of a system of four linked symmetric designs.

However, this is not possible since it would have a non-integral intersection parameter y = 10/3.

Therefore, there exists no 5-chromatic srg(75, 32, 10, 16). This fact was observed in [24].

Brouwer [1] proved that there is a unique srg(77, 16, 0, 4). This graph G is the complement of

the block graph of the unique quasi-symmetric 3-(22, 6, 1) design (the extension of the projective

plane of order 4; see for example [19]). In [20] it was already observed that this graph is 5-colorable.

Indeed, it is well-known (and easy to see) that G has a coclique of size 21 and that the graph

induced by the remaining 56 vertices is the Gewirtz graph (the unique srg(56, 10, 0, 2)), which is

4-chromatic. So, the srg(77, 16, 0, 4) is 5-chromatic.

There does not exist a strongly regular graph with parameter set 16, 19, or 20 [21], [42], [7].

7 Some theoretic non-existence results

Here we prove that for the parameter sets 13, 15, 30, 32, and 34, no 5-chromatic strongly regular

graph exists. We treat them in order of difficulty and start with the easy cases.

Theorem 7.1 There exists no 5-chromatic srg(81, 20, 1, 6).

Proof. Let G be such a strongly regular graph with chromatic number 5. The eigenvalues of G

are k = 20, r = 2, and s = −7 with multiplicities 1, f = 60, and g = 20, respectively. We apply

Theorem 4.6. Since 5 = �1−s/r�, we find that the smallest color class C has size |C| ≥ g−5+2 = 17,

but the average size is 81/5, a contradiction. �

In fact, there is a unique srg(81, 20, 1, 6) [3]. By use of GRAPE, it was found that the maximum

size of a coclique is 15, which confirms the above result.

Theorem 7.2 There exists no 5-chromatic srg(196, 39, 2, 9).

Proof. Let G be such a strongly regular graph with chromatic number 5. The eigenvalues of G

are k = 90, r = 3, and s = −10 with multiplicities 1, f = 147, and g = 48, respectively. Again we

apply Theorem 4.6. Since 5 = �1− s/r�, the smallest color class C has size |C| ≥ g − 5 + 2 = 45,

but the average size is 196/5, a contradiction. �

7.1 The parameter set (266, 45, 0, 9)

According to [2], it is not known whether or not an srg(266, 45, 0, 9) exists. However, in this section

we will show that no such graph can be 5-chromatic.

Theorem 7.3 There does not exist a 5-chromatic srg(266, 45, 0, 9).

Proof. Let G be an srg(266, 45, 0, 9) with adjacency matrix A. Then G has eigenvalues k = 45,

r = 3, and s = −12 with multiplicities 1, f = 209, and g = 56, respectively. Suppose that G is

colored with five colors. By Theorem 4.6, the size of the smallest color class is at least g−5+2 = 53.

This implies that there are four color classes of size 53 and one of size 54. Let C be the color class

of size 54. Let G′ be the subgraph of G induced by V (G) \ C and let A′ be the adjacency matrix
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of G′. Clearly, G′ is 4-chromatic. Consider the matrix Ã = A − 3

19
J266. Then Ã has just two

distinct eigenvalues, namely 3 with multiplicity 210 and −12 with multiplicity 56. Now we apply

Theorem 3.4 to Ã and find thatA′− 3

19
J212 has eigenvalues 3, −9/19, −9, and−12 with multiplicities

156, 1, 53, and 2, respectively. Hence, λ211(G
′) ≥ λ212(G

′) ≥ −12 and λ210(G
′) ≥ −9. Moreover,

A′ has average row sum 45− (45 · 54)/212 > 33, hence λ1(G
′) > 33. Now Theorem 4.1 gives

12 + 12 + 9 ≥ −λ212(G′
)− λ211(G

′
)− λ210(G

′
) ≥ λ1(G

′
) > 33,

a contradiction. �

7.2 The parameter set (165, 36, 3, 9)

It is not known whether such a graph exists. But we can say the following.

Theorem 7.4 There does not exist a 5-chromatic srg(165, 36, 3, 9).

Proof. Let G be an srg(165, 36, 3, 9). Then G has eigenvalues k = 36, r = 3, and s = −9 with

multiplicities 1, f = 120, and g = 44, respectively. Then a 5-coloring of G must be a Hoffman

coloring consisting of five cocliques of size 33. Let G be 5-colored and let C1 and C2 be two of the

color classes. Partition V (G) into C1, C2, and V (G) \ (C1 ∪C2). Let A be an adjacency matrix for

G. Then we can assume that A is in the following form:

A =




0 A1,2 A1,3

A�

1,2 0 A2,3

A�

1,3 A�

2,3 A3,3


 ,

where the two 0’s on the diagonal are each 33× 33 and A1,2, A
�

1,2, A
�

1,3, and A�

2,3 all have constant

row sums of −s = 9 by Theorem 4.7. Define

A1 =

(
0 A1,2

A�

1,2 0

)

and let G1 be the induced subgraph of G with adjacency matrix A1. Then G1 is a 9-regular

bipartite graph on 66 vertices and so λ1(G1) = 9 and λ66(G1) = −9. By Theorem 3.1, we also

have λ2(A) = 3 ≥ λ2(A1), and so G1 has eigenvalue 9 with multiplicity 1 and so is connected.

Now, A − 1

5
J165 has just two distinct eigenvalues, namely r = 3 and s = −9 with multiplicities

f + 1 = 121 and g = 44, respectively. Therefore, by Theorem 3.5 with i = 98, 99, we have

λ98(A3,3 − 1

5
J99) = −6− λ24(A1 − 1

5
J66) and λ99(A3,3 − 1

5
J99) = −6− λ23(A1 − 1

5
J66).

Now, by Proposition 3.4 with i = 98, 99, we have (we often write J instead of Jv)

λ98(A3,3 − 1

5
J) ≤ λ98(A3,3) and λ99(A3,3 − 1

5
J) ≤ λ99(A3,3).

In fact, since A3,3 and J commute, we actually have equality for both cases. Let G3 be the induced

subgraph of G with adjacency matrix A3,3. Then G3 is 3-chromatic and the average row sum of

A3,3 is 18, and so by Theorems 4.1 and 3.2 we must have

λ23(A1 − 1

5
J) + λ24(A1 − 1

5
J) + 12 ≥ −λ99(G3)− λ98(G3) ≥ λ1(G3) ≥ 18.

This implies that

λ23(A1 − 1

5
J) + λ24(A1 − 1

5
J) ≥ 6.
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Now, A1 and A1 − 1

5
J have the same eigenvalues except for the eigenvalue 9 of A1 which becomes

−21/5 for A1− 1

5
J . Therefore, λ23(A1− 1

5
J), λ24(A1− 1

5
J) ≤ 3, which implies that λ23(A1− 1

5
J) =

λ24(A1− 1

5
J) = 3. Thus, G1 has eigenvalue 3 with multiplicity at least 24. Since G1 is bipartite, it

also has eigenvalue −3 with multiplicity at least 24. Now, the sum of the squares of the eigenvalues

of G1 is equal to 66 · 9 = 594. Also, 1 · 92 + 24 · 32 + 24 · (−3)2 + 1 · (−9)2 = 594. Therefore, the 16

remaining eigenvalues of G1 must all be 0, and thus we find the following minimal polynomial for

A1.

(A1 − 9I)(A1 − 3I)A1(A1 + 3I)(A1 + 9I) = 0

Since G1 is 9-regular and connected, the kernel of (A1 − 9I) is the span of the all-ones vector j.

This implies that

(A1 − 3I)A1(A1 + 3I)(A1 + 9I) = cJ

for some constant c (in fact c = 6 ·9 ·12 ·18/66, but we won’t use it). The above polynomial is called

the Hoffman polynomial of G1, see [26]. Next observe that the following matrices have constant

diagonal: J , I, A1, A
2

1
(because G1 is regular), and A3

1
(because G1 is bipartite). Therefore A

4

1
also

has a constant diagonal, hence trace(A4

1
) is divisible by 66. But,

trace(A
4

1
) =

66∑
i=1

λi(A1)
4
= 48 · 34 + 2 · 94 = 2 · 35 · 5 · 7.

Contradiction. �

7.3 The parameter set (76, 30, 8, 14)

Again, it is not known whether such a graph exists, but if it does, it will have chromatic number

at least 6.

Theorem 7.5 There does not exist a 5-chromatic srg(76, 30, 8, 14).

Proof. Let G be an srg(76, 30, 8, 14) with adjacency matrix A. Then A has eigenvalues k = 30,

r = 2, and s = −8 with multiplicities 1, f = 57, and g = 18, respectively. Suppose that G is

5-chromatic. By Theorem 4.6, each color class has size at least 18 − 5 + 2 = 15. Therefore, G

has one color class C of size 16 and four of size 15. By Theorem 4.7, the subgraph G′ induced by

V (G) \ C is regular of degree 22. Let A′ be the adjacency matrix of G′. The matrix A − 1

2
J has

just two eigenvalues: 2 with multiplicity 57 and −8 with multiplicity 19. So, Theorem 3.5 gives

the eigenvalues of A′ − 1

2
J . They are 2, −6, and −8 with multiplicities 42, 15, and 3, respectively.

Since G′ is regular, A′ and J commute and we find that G′ has eigenvalues 22, 2, −6, and −8 with

multiplicities 1, 42, 15, and 2, respectively. Clearly, G′ is colorable with four classes of size 15.

Next, consider the partition of A′ corresponding to the color classes of G′. Let B′ be the quotient

matrix consisting of the average row sums of the blocks of this partition. Clearly, B′ has zero

entries on the diagonal and row sum 22, hence λ1(B
′) = 22. Eigenvalue interlacing (Theorem 3.2)

gives that λ4(B
′) ≥ −8, λ3(B′) ≥ −8, and λ2(B

′) ≥ −6. But, trace(B′) = 0 =
∑

4

i=1 λi(B
′), so

the eigenvalues of B′ are −8, −8, −6, and 22. The interlacing is tight, hence the color partition

is equitable and the entries of B′ are integers. Let b be an off-diagonal entry of B′. Then
(
0

b
b
0

)
is

a principal submatrix of B′ with eigenvalues ±b, hence by Theorem 3.1, −b ≥ −8, so b ≤ 8. This

leads to two possible rows of B′: (0, 7, 7, 8) and (0, 6, 8, 8), and just two possibilities for B′:

B
′
=




0 7 7 8

7 0 8 7

7 8 0 7

8 7 7 0


 or B

′
=




0 6 8 8

6 0 8 8

8 8 0 6

8 8 6 0


 .
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However, the second possibility is impossible since it has eigenvalues −10, −6, −6, and 22. Thus, A′

admits an equitable partition with quotient matrix B′ given on the left above. Next, we partition

V (G) into three sets: C, C1 consisting of the first two color classes of G′ (ordered according to the

given B′), and C2 formed by the last two color classes of G′. The quotient matrix of the average

row sums of this partition is clearly

B =




0 15 15

8 7 15

8 15 7




with eigenvalues −8, −8, and 30. Again the interlacing is tight, so this partition is also equitable.

Next, define

K =




1

16
J16 0 0

0
1

30
J30 0

0 0
1

30
J30


 .

Then K has eigenvalues 1 and 0 with multiplicities 3 and 73, respectively. Moreover, K commutes

with A since the corresponding partition of A is equitable. Now A, J76, and K have a common

basis of eigenvectors. Three eigenvectors for eigenvalue 1 of K are j76 (that is, the all-ones vector of

dimension 76), (−15j�
16

4j�
60
)�, and (0 j

�

30
− j�

30
)�. They are also eigenvectors of A for eigenvalues

30, −8, and −8, respectively. Define

Ã = A+ 10K − 2I − 1

2
J76.

Then Ã has eigenvalues 0 and −10 with respective multiplicities 60 and 16. Thus, rank Ã = 16.

Take a triangle (x, y, z) in G with x ∈ C, y ∈ C1, and z ∈ C2 (since adjacent x and y have at

most 7 common neighbors in C ∪C1, there is at least one common neighbor z in C2). Consider the

subgraph of G induced by (C \ {x}) ∪ {y} ∪ {z} and let Ã1 be the corresponding submatrix of Ã.

Then

Ã1 =




1

8
J15 − 2I v w

v
� −13

6

1

2

w
� 1

2
−13

6


 ,

where v and w are vectors with 15 entries, of which seven are
1

2
and eight are −1

2
. So, without loss

of generality, there are just eight possibilities for Ã1, and it turns out that in all cases rank Ã1 = 17,

which is impossible since rank Ã = 16. �

Remark 7.6 The parameter sets (76, 30, 8, 4) and (75, 32, 10, 16) are related by Seidel switching

(see for example [37]). Adding an isolated vertex to a 5-chromatic srg(75, 32, 10, 16) and switching

with respect to two color classes gives a 5-chromatic srg(76, 30, 8, 4). Thus, the above theorem

confirms the non-existence of a 5-chromatic srg(75, 32, 10, 16).

8 Computer results

In this section, we use the computer algebra system GAP [15] and the share package GRAPE [38]

for computing with graphs to determine the 5-chromatic strongly regular graphs with parameter

sets 12, 18, 22, 23, 26, 27, and 42.

The philosophy behind GRAPE is that a graph G comes equipped with a user-specified group of

automorphisms Γ ≤ Aut(G) which is used to make GRAPE’s graph-theoretic algorithms run more

efficiently. GRAPE possesses a function that will return a set of representatives of the set of complete

subgraphs of G of size n, where n is specified by the user. This function will return at least one

complete subgraph from each orbit of the set of Kn subgraphs under the action of Γ. Thus, if Γ is
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the trivial group, this function will return all complete subgraphs of a given size of G. However, we

do lose the increased efficiency that a large group of automorphisms would provide. GRAPE also

possesses a function to compute the complement of a given graph. Since a complete subgraph of

G is a coclique of G, we can use these two functions to find all cocliques of a given size in G. This

allows us to determine with certainty if a given graph has a coloring with a particular combination

of color class sizes, and hence if it has a given chromatic number. This can be time-consuming, but

the graphs that we consider in this section are all small enough to make this approach feasible.

8.1 The parameter set (25, 12, 5, 6)

There are exactly 15 srg(25, 12, 5, 6). These were found by Paulus [33] and shown to be all such

graphs by Rozenfel′d [35]. Adjacency matrices of these graphs are available at [41] and in what

follows we will denote these graphs by G25,i, i = 1, . . . , 15, where the ordering is the same as on

[41]. Now, an srg(25, 12, 5, 6) has smallest eigenvalue s = −3, so if such a graph were 5-colorable, it

would have a Hoffman coloring consisting of five pairwise disjoint cocliques of size 5. Using GRAPE,

it was shown that the only graphs with such a coloring are G25,11 and G25,15. Hence, there are

exactly two 5-chromatic srg(25, 12, 5, 6). Now, there is exactly one latin square of order 5 with an

orthogonal mate and so one of the two 5-chromatic srg(25, 12, 5, 6) is the graph arising from this

latin square, where the symbols of the orthogonal mate give the color classes; see [24].

Theorem 8.1 There are exactly two 5-chromatic srg(25, 12, 5, 6).

Remark 8.2 The remaining 13 srg(25, 12, 5, 6) that are not 5-colorable all have six pairwise disjoint

cocliques of sizes 5, 4, 4, 4, 4, and 4. Therefore, these 13 graphs are all 6-chromatic.

8.2 The parameter set (26, 10, 3, 4)

There are exactly 10 srg(26, 10, 3, 4). These were found by Paulus [33] and shown to be all such

graphs by Rozenfel′d [35]. Adjacency matrices of these graphs are available at [41] and in what

follows we will denote these graphs by G26,i, i = 1, . . . , 10. Now, an srg(26, 10, 3, 4) has smallest

eigenvalue s = −3, and so it has cocliques of size no greater than 26(−3)/(−3−10) = 6 by Theorem

4.7. Using GRAPE, it was shown that the only graph with a pair of disjoint cocliques of size 6 is

G26,8. Thus, a 5-coloring of any of these graphs except G26,8 must consist of one color class of size

6 and four color classes of size 5. Using GRAPE, it was shown that of these graphs, only G26,1 and

G26,2 possess such a coloring. It was also shown that G26,8 has such a coloring as well. Thus, there

are exactly three 5-chromatic srg(26, 10, 3, 4).

Theorem 8.3 There are exactly three 5-chromatic srg(26, 10, 3, 4).

Remark 8.4 The remaining seven srg(26, 10, 3, 4) that are not 5-colorable all have six pairwise

disjoint cocliques of sizes 6, 4, 4, 4, 4, and 4. Therefore, these seven graphs are all 6-chromatic.

8.3 The parameter set (36, 14, 4, 6)

McKay and Spence [32] have done a complete enumeration of strongly regular graphs with param-

eters (36, 14, 4, 6). They found there to be exactly 180 such graphs. Adjacency matrices of these

graphs are available at [41] and in what follows we will denote these graphs by G36,i, i = 1, . . . , 180.

Now, if such a graph is 5-colorable, it must possess a coclique of size �36/5� = 8. However, using

GRAPE, it was shown that only the graphs G36,48 and G36,77 have a coclique of size 8. What is

more, they are both 5-chromatic. Thus, there are exactly two 5-chromatic srg(36, 14, 4, 6). We also

obtain the following characterization of the 5-chromatic srg(36, 14, 4, 6).

Theorem 8.5 There are exactly two 5-chromatic srg(36, 14, 4, 6). An srg(36, 14, 4, 6) has chro-

matic number 5 if and only if it has a coclique of size 8.
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8.4 The parameter set (40, 12, 2, 4)

Spence [39] has done a complete enumeration of strongly regular graphs with parameters (40, 12, 2, 4).

He found there to be exactly 28 such graphs. Adjacency matrices of these graphs are available at

[41] and in what follows we will denote these graphs by G40,i, i = 1, . . . , 28. Now, a 5-colorable

srg(40, 12, 2, 4) must have a coclique of size 40/5 = 8. Using GRAPE, it was shown that the only

graphs possessing a coclique of size 8 are the 11 graphs G40,i, i = 1, . . . , 11. We then used GRAPE

and found that each of these 11 graphs possesses a set of five pairwise disjoint cocliques of sizes

9, 9, 8, 8, and 6. Hence, there are exactly 11 srg(40, 12, 2, 4) with chromatic number 5. We also

obtain the following characterization of the 5-chromatic srg(40, 12, 2, 4).

Theorem 8.6 There are exactly 11 srg(40, 12, 2, 4) with chromatic number 5. An srg(40, 12, 2, 4)

has chromatic number 5 if and only if it has a coclique of size 8.

8.5 The parameter set (45, 12, 3, 3)

Spence [40] has done a complete enumeration of strongly regular graphs with parameters (45, 12, 3, 3).

He found there to be exactly 78 such graphs. Adjacency matrices of these graphs are available at

[41] and in what follows we will denote these graphs by G45,i, i = 1, . . . , 78. Now, an srg(45, 12, 3, 3)

has smallest eigenvalue s = −3, so if such a graph were 5-colorable, it would have a Hoffman col-

oring consisting of five pairwise disjoint cocliques of size 9. Using GRAPE, we showed that all of

these graphs except G45,24, G45,48, and G45,71 have such a 5-coloring. Hence, there are exactly 75

srg(45, 12, 3, 3) with chromatic number 5. One of these is the collinearity graph of the unique gen-

eralized quadrangle of order (4, 2) [34]. Indeed, this generalized quadrangle has a fan (a partition

into ovoids), giving a Hoffman coloring in the collinearity graph; see [24].

Theorem 8.7 There are exactly 75 srg(45, 12, 3, 3) with chromatic number 5.

Remark 8.8 The remaining three srg(45, 12, 3, 3) that are not 5-colorable each have six pairwise

disjoint cocliques of sizes 9, 9, 8, 8, 8, and 3. Therefore, these three graphs are each 6-chromatic.

8.6 The parameter set (64, 18, 2, 6)

Haemers and Spence [23] have done a complete enumeration of strongly regular graphs with param-

eters (64, 18, 2, 6). They found there to be exactly 167 such graphs. Adjacency matrices of these

graphs are available at [41] and in what follows we will denote these graphs by G64,i, i = 1, . . . , 167.

Using the adjacency matrices on [41], these 167 graphs were constructed in GRAPE. Now, a 5-

colorable srg(64, 18, 2, 6) must have a coclique of size �64/5� = 13. It was found that the 16 graphs

G64,i, i = 5, 6, 7, 10, 16, 32, 36, 47, 48, 50, 59, 79, 83, 85, 86, 128, do not have a coclique of size 13

and are therefore not 5-colorable. It was also found that only the 11 graphs G64,i, i = 1, 2, 3, 4,

8, 9, 13, 14, 18, 19, 20, have a coclique of size 16. Since there are exactly 11 srg(64, 18, 2, 6) with

chromatic number 4 by Theorem 4.5, these graphs must all be 4-chromatic. Additionally, the two

graphs G64,27 and G64,54 both have 5-colorings with four color classes of size 13 and one color class

of size 12, the 45 graphs G64,i, i = 15, 17, 21, 22, 23, 28, 29, 30, 31, 34, 35, 39, 40, 41, 42, 43, 44,

45, 46, 60, 62, 64, 65, 66, 68, 70, 71, 74, 75, 76, 78, 90, 94, 95, 96, 97, 100, 109, 117, 118, 119, 132,

133, 139, 158, all have 5-colorings with four color classes of size 14 and one color class of size 8, and

the 13 graphs G64,i, i = 25, 38, 56, 57, 61, 63, 69, 84, 91, 108, 110, 130, 137, all have 5-colorings

with four color classes of size 15 and one color class of size 4. By trying all possible combinations of

color class sizes, it can be shown that the remaining 80 graphs are not 5-colorable. Thus, there are

exactly 60 srg(64, 18, 2, 6) with chromatic number 5. We also obtain the following characterization

of the 4-chromatic srg(64, 18, 2, 6).

Theorem 8.9 There are exactly 60 srg(64, 18, 2, 6) with chromatic number 5. An srg(64, 18, 2, 6)

has chromatic number 4 if and only if it has a coclique of size 16.
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8.7 The parameter set (100, 22, 0, 6)

There is a unique strongly regular graph with parameter set 12 [17]. This graph is known as the

Higman-Sims graph and can be constructed from the Higman-Sims group, a primitive rank 3 simple

group [25].

By Theorem 2.3, the multiplicity of the smallest eigenvalue of this graph is g = 22. Therefore,

by Theorem 4.8, this graph has cocliques of size no greater than 22. Using the library of primitive

groups that is available in GAP, the Higman-Sims graph was constructed within GRAPE as an

orbital graph of the Higman-Sims group. It was found that this graph has exactly 100 cocliques of

size 22. Clearly, these cocliques are the 100 neighborhoods of a vertex, hence two cocliques of size

22 intersect in exactly 0 or 6 vertices. Therefore, by deleting two vertices in all possible ways from

the 100 cocliques of size 22, we see that this graph has at least 22 · 21 · 100/2 = 23100 cocliques of

size 20. However, using GRAPE it was shown that this graph has exactly 23100 cocliques of size 20.

Therefore, any coclique of size at least 20 is contained in the neighborhood of a vertex. Assume

that the Higman-Sims graph is 5-colorable. Then there is at least one color class C of size |C| ≥ 20

and the subgraph G′ induced by the remaining vertices is 4-colorable. Since C is a subset of the

neighborhood of some vertex x, G′ contains the graph induced by the non-neighbors of x, which is

the unique srg(77, 16, 0, 4) (see [6], [19], or [25]). This graph is 5-chromatic (see Section 6), so G′

is not 4-colorable and the Higman-Sims graph is not 5-colorable.

Theorem 8.10 There does not exist a 5-colorable srg(100, 22, 0, 6).

Remark 8.11 Since the graph on the non-neighbors of a vertex x is 5-colorable, the Higman-Sims

graph can be colored with six colors by giving x one of these five colors, and the neighbors of x the

new color.

9 The remaining parameter sets

The parameter sets that remain to be dealt with are numbers 31, 33, 35, 36, 37, 38, 39, 40, and 41.

Below we make some observations about these sets.

According to [2], it is not even known if a single strongly regular graph with parameter set 31,

33, 35, 37, 38, or 41 exists.

By Theorems 4.7 and 4.9, a 5-chromatic strongly regular graph with parameter set 31 must be

the incidence graph of a system of four linked symmetric (45, 12, 3) designs. Unfortunately, these

are large and have not been enumerated like the systems of three linked symmetric (16, 6, 2) designs

were in [31].

Parameter sets 33, 35, and 37 are the three smallest triangle-free sets for which existence is in

question, the fourth smallest set being (266, 45, 0, 9), which we have seen is not 5-colorable. There

are only seven triangle-free primitive strongly regular graphs known to exist, and there seems to be

nothing known about parameter sets 33, 35, and 37. There also seems to be nothing known about

sets 38, and 41.

There are at least three strongly regular graph with parameter set 39, see [5]. Sven Reichard

and Misha Klin (private communication) have checked by computer that none of the three has a

20-coclique, and hence none is 5-chromatic.

A 5-coloring of a strongly regular graph with parameter set 36 or 40 would have to be a Hoffman

coloring. Set 40 is on Haemers’s and Tonchev’s list [24] of small strongly regular graphs that are

feasible for a Hoffman coloring. It is currently the fourth smallest set for which existence of such a

coloring is unknown (the set (36, 15, 6, 6) was settled in the negative in [8]). Perhaps the techniques

of [8] could be used to enumerate all strongly regular graphs with parameter sets 36 and 40 that

possess a Hoffman coloring. However, these graphs are much larger and so this might not be feasible.

Parameter set 40 also belongs to the collinearity graph of the unique generalized quadrangle of

order 4; see [34]. This graph is called geometric. However, there probably exist non-geometric

graphs with the same parameter set. A Hoffman coloring of the geometric srg(85, 20, 3, 5) would
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correspond to a partition of the points of the generalized quadrangle into ovoids (a fan). However,

the generalized quadrangle does not have a fan [34]. Similarly, set 36 belongs to the collinearity

graph of a generalized quadrangle of order (4, 6), of which there is one example known [34]. This

known example has no fan, so the collinearity graph is not 5-colorable. The generalized quadrangle

may be unique. However, there may exist many such graphs besides the geometric one(s).

10 Conclusion

In this final section, we summarize our results.

Theorem 10.1 Let G be a 5-chromatic primitive strongly regular graph. Then G is isomorphic to

one of the graphs on the following list:

(1) T (5) (the unique srg(10, 6, 3, 4)),

(2) P (13) (the unique srg(13, 6, 2, 3)),

(3) T (6) (the unique srg(15, 8, 4, 4)),

(4) T (7) (the unique srg(21, 10, 3, 6)),

(5) L2(5) (the unique srg(25, 8, 3, 2)),

(6) one of the two srg(25, 12, 5, 6) G25,i (i = 11, 15),

(7) L2(5) (the unique srg(25, 16, 9, 12)),

(8) one of the three srg(26, 10, 3, 4) G26,i (i = 1, 2, 8),

(9) one of the two srg(36, 14, 4, 6) G36,i (i = 48, 77) with coclique number 8,

(10) one of the 11 srg(40, 12, 2, 4) G40,i (i = 1, . . . , 11) with a coclique of size 8,

(11) one of the 75 srg(45, 12, 3, 3) G45,i (i �= 24, 48, 71),

(12) one of the 60 srg(64, 18, 2, 6) G64,i (i = 15, 17, 21, 22, 23, 25, 27, 28, 29, 30, 31, 34, 35, 38,

39, 40, 41, 42, 43, 44, 45, 46, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 74, 75,

76, 78, 84, 90, 91, 94, 95, 96, 97, 100, 108, 109, 110, 117, 118, 119, 130, 132, 133, 137, 139,

158) with coclique number less than 16,

(13) the unique srg(77, 16, 0, 4),

or G is possibly the incidence graph of a system of four linked symmetric (45, 12, 3) designs (an

srg(225, 48, 3, 12)), or G has one of the parameter sets (85, 20, 3, 5) (non-geometric), (96, 19, 2, 4),

(99, 14, 1, 2), (115, 18, 1, 3), (125, 28, 3, 7), (162, 21, 0, 3), (176, 25, 0, 4), or (210, 33, 0, 6).
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