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Abstract: In this paper we provide a numerical algorithm to calculate all soft-constrained Nash
equilibria in a regular scalar indefinite linear-quadratic game. The algorithm is based on the calcula-
tion of the eigenstructure of a certain matrix. The analysis follows the lines of the approach taken by
Engwerda in [7] to calculate the solutions of a set of scalar coupled feedback Nash algebraic Riccati
equations.
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1 Introduction

Dynamic game theory brings together three features that are key to many situations in economy,
ecology, and elsewhere: optimizing behavior, presence of multiple agents, and enduring consequences
of decisions. Usually, the dynamic model is supposed to be an exact representation of the environment
in which the players act; optimization takes place with no regard of possible deviations. It can safely
be assumed, however, that agents in reality follow a different strategy. If an accurate model can
be formed at all, it would in general be complicated and difficult to handle. Moreover it may be
unwise to optimize on the basis of a too detailed model, in view of possible changes in dynamics
that may take place in the course of time and that may be hard to predict. It makes more sense for
agents to work on the basis of a relatively simple model and to look for strategies that are robust
with respect to deviations between the model and reality. In an economic context, the importance
of incorporating aversion to specification uncertainty has been stressed for instance by Hansen et al.
[9].

In control theory, an extensive theory of robust design is already in place; see Başar [2] for a
recent survey. In van den Broek et al. [5] this background is used to arrive at suitable ways of
describing aversion to model risk in a dynamic game context in a linear quadratic control setting.
Such a setting is reasonable for situations of dynamic quasi-equilibrium, where no large excursions of
the state vector are to be expected. One of the approaches taken in [5] is to introduce a malevolent
disturbance input to model aversion to specification uncertainty. That is, it is assumed that the
dynamics of the system are corrupted by a deterministic noise component, and that each player has
his own expectation about this noise. This is modeled by adapting for each player his cost function
accordingly. The players cope with this uncertainty by considering a worst-case scenario. As a
consequence the equilibria of the game, in general, depend on the worst-case scenario expectations
about the noise of the players.

More specifically, our dynamic model reads as follows:

ẋ(t) = Ax(t) +
N∑

i=1

Biui(t) + Ew(t), x(0) = x0. (1)

Here w ∈ Lq
2(0,∞) is a q-dimensional disturbance vector affecting the system and E is a constant

matrix.
We have to specify the strategy space and the information structure available to players in this

setting. We assume in this deterministic approach that all players observe the state of the system,
and that they use stabilizing constant linear feedback strategies. That is, we shall only consider

1



controls ui of the type ui = Fix, with Fi ∈ IRmi×n, and where (F1, · · · , FN) belongs to the set

F := {F = (F1, · · · , FN) | A+
∑N

i=1BiFi is stable}.

The stabilization constraint is imposed to ensure the finiteness of the infinite-horizon cost integrals
that we will consider; also, the assumption helps to justify our basic supposition that the state vector
remains close to the origin. The constraint is a bit unwieldy since it introduces dependence between
the strategy spaces of the players. However, we will focus below on equilibria in which the inequalities
that ensure the stability property are inactive constraints. It will be a standing assumption that the
set F is non-empty; a necessary and sufficient condition for this to hold is that the matrix pair
(A, [B1 · · ·BN ]) is stabilizable. Given that we work below with an infinite horizon, restraining the
players to constant feedback strategies seems reasonable; to prescribe linearity may also seem natural
in the linear-quadratic context that we assume, although there is no way to exclude a priori equilibria
in nonlinear feedback strategies. Questions regarding the existence of such equilibria are outside the
scope of this paper.
For some results dealing with an open-loop information structure see e.g. [3] and [11].

We now come to the formulation of the objective functions of the players. Our starting point is
the usual quadratic criterion which assigns to player i the cost function

Ji :=

∫ ∞

0

{x(t)TQix(t) +
N∑

j=1

uj(t)
TRijuj(t)}dt. (2)

Here, Qi is symmetric and Rii is positive definite for all i = 1, . . . , N . Under our assumption that
the players use constant linear feedbacks, the criterion in (2) may be rewritten as

Ji :=

∫ ∞

0

{xT (Qi +
N∑

j=1

F T
j RijFj)x}dt (3)

where Fi is the feedback chosen by player i. Written in the above form, the criterion may be looked
at as a function of the initial condition x0 and the state feedbacks Fi.

The description of the players’ objectives given above needs to be modified in order to express a
desire for robustness. To that end, we modify the criterion (3) to

J̄SC
i (F1, · · · , FN , x0) := sup

w∈Lq
2(0,∞)

Ji(F1, · · · , FN , w, x0) (4)

where

Ji(F1, · · · , FN , w, x0) :=

∫ ∞

0

{xT (Qi +
N∑

j=1

F T
j RijFj)x− wTViw}dt. (5)

The weighting matrix Vi is symmetric and positive definite for all i = 1, . . . , N . Because it occurs
with a minus sign in (5), this matrix constrains the disturbance vector w in an indirect way so
that it can be used to describe the aversion to model risk of player i. Specifically, if the quantity
wTViw is large for a vector w ∈ R

q, this means that player i does not expect large deviations of
the nominal dynamics in the direction of Ew. In line with the nomenclature used in control theory
literature we will call this the “soft-constrained” formulation. Note that since we do not assume
positive definiteness of the state weighting matrix, this development extends even in the one-player
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case the standard results that may be found for instance in [8], [3], [12, Section 20.2], [13], [4, Section
6.6] and [2]).

The equilibrium concept that will be used throughout this chapter is based on the adjusted cost
functions (4). A formal definition is given below.

Definition 1.1 An N -tuple F = (F 1, . . . , FN) ∈ F is called a soft-constrained Nash equilibrium if
for each i = 1, . . . , N the following inequality holds:

J
SC

i (F , x0) ≤ JSC

i (F−i(F ), x0) (6)

for all x0 ∈ IRn and for all F ∈ IRmi×n that satisfy F−i(F ) ∈ F . �

The remainder of this paper is organized as follows. In the next section we will discuss the two-player
case. Then in section three we present the numerical algorithm to calculate the equilibria in case
the system is scalar. The algorithm is illustrated in some examples and used to deal with some
theoretical questions. The paper ends with some concluding remarks.

2 The two-player case

In this section we recall for the general multivariable case the two-player result. For didactical reasons
the general N -player result is deferred to the Appendix. That is, we consider

ẋ(t) = (A+B1F1 +B2F2)x(t) + Ew(t), x(0) = x0, (7)

with (A, [B1, B2]) stabilizable, (F1, F2) ∈ F and

Ji(F1, F2, w, x0) =

∫ ∞

0

{xT (t)(Qi + F T
1 Ri1F1 + F T

2 Ri2F2)x(t) − wT (t)Viw(t)}dt. (8)

Here the matrices Qi, Rij and Vi are symmetric, Rii > 0, Vi > 0, and

F := {(F1, F2)|A+B1F1 +B2F2 is stable}.

For this game we want to determine all soft-constrained Nash equilibria. That is, we like to find all
(F̄1, F̄2) ∈ F such that

sup
w∈Lq

2(0,∞)

J1(F̄1, F̄2, w, x0) ≤ sup
w∈Lq

2(0,∞)

J1(F1, F̄2, w, x0), for all (F1, F̄2) ∈ F (9)

and
sup

w∈Lq
2(0,∞)

J2(F̄1, F̄2, w, x0) ≤ sup
w∈Lq

2(0,∞)

J2(F̄1, F2, w, x0), for all (F̄1, F2) ∈ F , (10)

for all x0 ∈ IRm.
Using the shorthand notation

Si := BiR
−1
ii B

T
i , Sij := BiR

−1
ii RjiR

−1
ii B

T
i , i �= j, and Mi := EiV

−1
i ET

i ,

we have the next result from van den Broek et al. [5].
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Theorem 2.1 Consider the differential game defined by (7) and (9–10). Assume there exist real
symmetric n× n matrices Xi, i = 1, 2, and real symmetric n× n matrices Yi, i = 1, 2, such that

− (A− S2X2)
TX1 −X1(A− S2X2) +X1S1X1 −Q1 −X2S21X2 −X1M1X1 = 0, (11)

− (A− S1X1)
TX2 −X2(A− S1X1) +X2S2X2 −Q2 −X1S12X1 −X2M2X2 = 0, (12)

A− S1X1 − S2X2 +M1X1 and A− S1X1 − S2X2 +M2X2 are stable, (13)

A− S1X1 − S2X2 is stable (14)

− (A− S2X2)
TY1 − Y1(A− S2X2) + Y1S1Y1 −Q1 −X2S21X2 ≤ 0, (15)

− (A− S1X1)
TY2 − Y2(A− S1X1) + Y2S2Y2 −Q2 −X1S12X1 ≤ 0. (16)

Define F = (F 1, F 2) by
F i := −R−1

ii B
T
i Xi, i = 1, 2. (17)

Then F ∈ F , and F is a soft-constrained Nash equilibrium. Furthermore

J
SC

i (F 1, F 2, x0) = xT
0Xix0, i = 1, 2. (18)

Conversely, if (F̄1, F̄2) is a soft-constrained Nash equilibrium, the equations (11–14) have a set of
real symmetric solutions (X1, X2).

Remark 2.2 Notice that if Qi ≥ 0, i = 1, 2 and Sij ≥ 0, i, j = 1, 2, the matrix inequalities (15–16)
are trivially satisfied with Yi = 0, i = 1, 2. So, under these conditions the differential game defined
by (7) and (9–10) has a soft-constrained Nash equilibrium if and only if the equations (11–14) have
a set of real symmetric n× n matrices Xi, i = 1, 2. �

3 A scalar numerical algorithm

From Theorem 2.1 we have that the equations (11–14) play a crucial role in the question whether
the game (7–8) will have a soft-constrained Nash equilibrium. As is shown in this theorem any
soft-constrained Nash equilibrium has to satisfy these equations. So, the question arises under which
conditions (11–14) will have one or more solutions and, if possible, to calculate this (these) solution(s).
This is a difficult open question. Fortunately, for the scalar case, one can devise an algorithm to
calculate all soft-constrained Nash equilibria. This algorithm will be discussed in this section.

We will consider the general scalar N -player case under the simplifying assumptions that bi �= 0
and players have no direct interest in eachothers control actions (i.e. Sij = 0, i �= j). We will use
throughout lower case notation to stress the fact that we are dealing with the scalar case. The set
of equations (11–14) become (see Appendix)

−2(a−
N∑

j �=i

sjxj)xi + (si −mi)x
2
i − qi = 0, i = 1, · · · , N, (19)

a−
N∑

j=1

sjxj < 0, and (20)

a−
N∑

j=1

sjxj +mixi < 0, i = 1, · · · , N. (21)
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Some elementary calculation shows that (19) can be rewritten as

2(a−
N∑

j=1

sjxj)xi + (si +mi)x
2
i + qi = 0, i = 1, · · · , N. (22)

For notational convenience next introduce, for i = 1, · · · , N and Ω some index set of the numbers
{1, · · · , N}1, the variables

τi := (si +mi)qi, τmax := max
i
τi, ρi :=

si
si +mi

, γi := −1 + 2ρi =
si −mi

si +mi

, (23)

γΩ := −1 + 2
∑
i∈Ω

ρi, yi := (si +mi)xi, and yN+1 := −acl := −(a−
N∑

i=1

sixi).

Moreover, assume (without loss of generality) that τ1 ≥ · · · ≥ τN . Multiplication of (22) by si +mi

shows then that (19–21) has a solution if and only if

y2
i − 2yN+1yi + τi = 0, i = 1, · · · , N, (24)

yN+1 = −a+
N∑

i=1

ρiyi, (25)

yN+1 +
mi

mi + si
yi < 0, i = 1, · · · , N, (26)

(27)

has a set of real solutions yi, i = 1, · · · , N, and yN+1 > 0. Following the analysis of [6] we conclude

Lemma 3.1
The set of equations (24,25) has a solution such that yN+1 > 0 if and only if there exist ti ∈
{−1, 1}, i = 1, · · · , N , such that the equation

(−1 +
N∑

i=1

ρi)yN+1 + t1ρi

√
y2

N+1 − τ1 + · · · + tNρN

√
y2

N+1 − τN = a (28)

has a solution yN+1 > 0. In fact all solutions of (24,25) are obtained by considering all possible
sequences (t1, · · · , tN) in (28).
Obviously, a necessary condition for (28) to have a solution is that y2

N+1 ≥ τ1. �

Following [6] we next define recursively for n = 1, · · · , N − 1 the functions:

fn+1
i (x) := fn

i (x) + ρnx− ρn

√
x2 − τn+1, i = 1, · · · , 2n, (29)

fn+1
i+2n(x) := fn

i (x) + ρnx+ ρn

√
x2 − σn+1, i = 1, · · · , 2n, (30)

with
f 1

1 (x) := (−1 + ρ1)x− ρ1

√
x2 − τ1 and f 1

2 (x) := (−1 + ρ1)x+ ρ1

√
x2 − τ1. (31)

1So, for N = 2, Ω is either {1}, {2} or {1, 2}.
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Figure 1: Curves f 2
i in Example 3.4.

Each function fN
i , i = 1, · · · , 2N − 1, corresponds to a function obtained from the left-hand side

of (28) by making a specific choice of tj, j = 1, · · · , N , and substituting x for yN+1. From Lemma
3.1 it is obvious then that (24,25) has a solution if and only if fN

i (x) = a has a solution for some
i ∈ {1, · · · , 2N}. Or, stated differently, (24,25) has a solution if and only if the next function has a
root

Π2N

i=1(f
N
i (x) − a) = 0. (32)

Denoting the function on the left-hand side of this equation, Π2N

i=1(f
N
i (x) − a), by f(x) we obtain,

using the same analysis as in [6], the next theorem.

Theorem 3.2 yi is a solution of (24,25) if and only if yN+1 is a zero of f(x) and there exist

ti ∈ {−1, 1}, such that yi = yN+1 + tiρi

√
y2

N+1 − τi. Moreover, f(x) is a polynomial of degree

2N . �

An immediate consequence of this theorem is

Corollary 3.3 The N -player scalar game has at most 2N soft-constrained Nash equilibria. �

In [6], Theorem 6, it was shown that the N -player scalar (undisturbed) linear quadratic differential
game always has at most 2N − 1 feedback Nash equilibria. The next example shows that we can not
draw a similar conclusion here, solely based on (24,25).

Example 3.4 Consider the two-player scalar game with a = −2, si = 1, mi = 9, i = 1, 2, q1 = 0.1
and q2 = 0.05. For this case we plotted the four curves f 2

i in Figure 1. From this graph we see that
all curves are monotonically decreasing and they all have an intersection point with -2 for a value
y3 > 1. Consequently, the set of equations (24,25) has four solutions. �

Next, we develop a numerical algorithm to find all solutions of (24,25) similar to the algorithm
presented in [7] to obtain all solutions of the undisturbed game. For didactical reasons again, we
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first consider the two-player case. Let p1, p2 be a (possibly complex) solution of (24,25). Denote the
negative of the resulting closed-loop system parameter by

λ := −a+ ρ1p1 + ρ2p2. (33)

Then,
p2

1 − 2λp1 + τ1 = 0, (34)

and
p2

2 − 2λp2 + τ2 = 0. (35)

Consequently using the definition of λ and (34), respectively, we have that

p1λ = −p1a+ ρ1p
2
1 + ρ2p1p2

= −p1a+ ρ1(2λp1 − τ1) + ρ2p1p2.

From this we deduce that
s1 −m1

s1 +m1

p1λ = ρ1τ1 + ap1 − ρ2p1p2. (36)

In a similar way we have using the definition of λ and (35), respectively, that

p2λ = −p2a+ ρ1p1p2 + ρ2p
2
2

= −p2a+ ρ1p1p2 + ρ2(2λp2 − τ2).
Which gives rise to

s2 −m2

s2 +m2

p2λ = ρ2τ2 + ap2 − ρ1p1p2. (37)

Finally, using the definition of λ and both (34) and (35), respectively, we obtain

p1p2λ = −p1p2a+ ρ1p
2
1p2 + ρ2p1p

2
2

= −p1p2a+ 2(ρ1 + ρ2)λp1p2 − ρ1τ1p2 − ρ2τ2p1.

Which yields
(2(ρ1 + ρ2) − 1)p1p2λ = ρ2τ2p1 + ρ1τ1p2 + ap1p2. (38)

So, using the notation (23), with

M̃ :=




−a ρ1 ρ2 0
ρ1τ1
γ1

a
γ1

0 −ρ2

γ1
ρ2τ2
γ2

0 a
γ2

−ρ1

γ2

0 ρ2τ2
γ12

ρ1τ1
γ12

a
γ12


 (39)

we conclude from (33,36,37,38) that, provided γi �= 0 i = 1, 2, 3, every solution p1, p2 of (24,25)
satisfies the equation

M̃




1
p1

p2

p1p2


 = λ




1
p1

p2

p1p2


 . (40)

Using the fact that pi = (si + mi)xi an analogous reasoning as in [7], Theorem 7, gives the next
lemma.
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Lemma 3.5
1) Assume that (x1, x2) solves (19,20) and γi �= 0, i = 1, 2, 3. Then λ := −a +

∑2
i=1 sixi > 0 is an

eigenvalue of the matrix

M :=




−a s1 s2 0
ρ1q1

γ1

a
γ1

0 − s2

γ1
ρ2q2

γ2
0 a

γ2
− s1

γ2

0 ρ2q2

γ12

ρ1q1

γ12

a
γ12


 . (41)

Furthermore, [1, x1, x2, x1x2]
T is a corresponding eigenvector and λ2 ≥ τmax.

2) Assume that [1, x1, x2, x3]
T is an eigenvector corresponding to a positive eigenvalue λ of M , sat-

isfying λ2 ≥ τmax, and that the eigenspace corresponding with τ has dimension one. Then, (x1, x2)
solves (19,20). �

From Lemma 3.1 and Lemma 3.5 we have then the next numerical algorithm.

Algorithm 3.6 Let si :=
b2i
ri

and mi := e2

vi
. Assume that for every index set Ω ⊂ {1, · · · , N}, γΩ �= 0.

Then, the following algorithm calculates all solutions of (19,20)

Step 1 Calculate matrix M in (41) and τ := maxi(si +mi)qi.

Step 2 Calculate the eigenstructure (λi,ni), i = 1, · · · , k, of M , where λi are the eigenvalues and ni

the corresponding algebraic multiplicities.

Step 3 For i = 1, · · · , k repeat the following steps:

3.1) If i) λi ∈ IR; ii) λi > 0 and iii) λ2
i ≥ τ then proceed with step 3.2 of the algorithm.

Otherwise, return to step 3.

3.2) If ni = 1 then

3.2.1) calculate an eigenvector z corresponding with λi of M . Denote the entries of z by
(z0, z1, z2, · · · ). Calculate xj :=

zj

z0
. Then, (x1, · · · , xN) solve (19,20). Return to step

3.

If ni > 1 then

3.2.2) Calculate τi := siqi.

3.2.3) For all 2N sequences (t1, · · · , tN), tk ∈ {−1, 1},
i) calculate

yj := λi + tj
si

si +mi

√
λ2

i − σj, j = 1, · · · , N

ii) If λi = −a +
∑

j=1,··· ,N yj then calculate xj :=
yj

sj+mj
. Then, (x1, · · · , xN) solves

(19,20).

Step 4 End of the algoritm. �

Example 3.7 Consider the two-player scalar game with a = −2, bi = e = 1, ri = 1, vi = 1
9
, i = 1, 2,

q1 = 0.1 and q2 = 0.05.
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To calculate the soft-constrained Nash equilibria of this game, we first determine all solutions of
(19,20). According Algorithm 3.6, we first have to determine the eigenstructure of the next matrix

M :=




2 1 1 0
−1/80 5/2 0 5/4
−1/160 0 5/2 5/4

0 −1/120 −1/60 10/3


 .

Using Matlab, we find the eigenvalues {2.0389, 2.4866, 2.5132, 3.2946}. Since all eigenvalues are larger
than τ = 1, we have to process Step 3 of the algorithm for all these eigenvalues. Since all eigenvalues
have a geometric multiplicity of one, we find four solutions satisfying (19,20). From the corresponding
eigenspaces we obtain then the solutions tabulated below (with acl = a−s1x1−s2x2 = −eigenvalue):

eigenvalue (x1, x2) acl +m1x1 acl +m2x2

2.0389 (0.0262,0.0127) -1.8030 -1.9250
2.4866 (0.4763,0.0103) 1.8003 -2.3942
2.5132 (0.0208,0.4925) -2.3265 1.9192
3.2946 (0.6434,0.6512) 2.4958 2.5666

From the last two columns of this table we see that only the first solution satisfies the additional
conditions (21). Since qi > 0, and thus (15,16) are satisfied with yi = 0, we conclude that this game
has one soft-constrained Nash equilibrium. The with this equilibrium (0.0262, 0.0127) corresponding
equilibrium actions are

u∗1(t) = −0.0262x(t) and u∗2(t) = −0.0127x(t).

Assuming that the initial state of the system is x0, the worst-case expected cost by the players are

J∗
1 = 0.0262x2

0 and J∗
2 = 0.0127x2

0,

respectively. �

Remark 3.8 In case k of the γi parameters are zero, we obtain k linear equations in the variables
(1, p1, p2, p1p2). Under some regularity conditions, k of these variables can then be explicitly solved
as a function of the remaining 2N − k variables. The solutions of the remaining 2N − k equations
can then be obtained using a similar eigenstructure algorithm.

As an example consider the case that in the above described two-player case γ1 = 0 (and γj �=
0, j = 2, 3). So, equations (33,36,37,38) reduce to

λ := −a+ ρ1p1 + ρ2p2, (42)

0 = ρ1τ1 + ap1 − ρ2p1p2 (43)

γ2p2λ = ρ2τ2 + ap2 − ρ1p1p2 (44)

γ12p1p2λ = ρ2τ2p1 + ρ1τ1p2 + ap1p2. (45)

From equation (43) we can then solve, e.g., if a �= 0,

p1 =
−ρ1τ1
a

+
ρ2

a
p1p2. (46)
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Substitution of this into the remaining three equations (42, 44,45) yields

λ := −a− ρ2
1τ1
a

+ ρ2p2 +
ρ1ρ2

a
p1p2, (47)

γ2p2λ = ρ2τ2 + ap2 − ρ1p1p2 (48)

γ12p1p2λ =
−ρ1ρ2τ1τ2

a
+ ρ1τ1p2 + (

ρ2
2τ2
a

+ a)p1p2. (49)

Or, stated differently,




−a− ρ2
1τ1
a

ρ2
ρ1ρ2

a
ρ2τ2
γ2

a
γ2

−ρ1

γ2

−ρ1ρ2τ1τ2
γ12a

ρ1τ1
γ12

(
ρ2
2τ2
a

+a)

γ12





 1

p2

p1p2


 = λ


 1

p2

p1p2


 .

By solving this eigenvalue problem, in a similar way as described in Algorithm 3.6, one can determine
the solutions p2 and p1p2 of the set of equations (47–49). Substitution of this result into (46) yields
then p1. �

For the general N -player case we proceed as in [7].
Let pi, i = 1, · · · , N be a solution of (24,25). Denote the negative of the resulting closed-loop system
parameter by

λ := −a+
∑

i

ρipi. (50)

Then,
p2

i − 2λpi + τi = 0, i = 1, · · · , N. (51)

Next we derive, again, for each index set Ω ⊂ {1, · · · , N} a linear equation (linear in terms of
products of pi variables (Πpi)). This gives us in addition to (50) another 2N − 1 linear equations.
These equations, together with (50), determine our matrix M . In case Ω contains only 1 number we
have, using the definition of λ and (51), respectively

pjλ = pj(−a+
N∑

i=1

ρipi) = −apj + ρjp
2
j + pj

∑
i�=j

ρipi

= −apj + 2λρjpj − ρjτj + pj

∑
i�=j

ρipi.

From which we deduce that

pjλ =
ρjτj
γj

+
a

γj

pj − pj

∑
i�=j

ρi

γj

pi, j = 1, · · · , N.

Next consider the general case Πj∈Ωpjλ. For notational convenience we use the notation Ω−i to
denote the set of all numbers that are in Ω except number i. Then,

Πj∈Ω pjλ = −aΠj∈Ω pj + 2λ
∑
i∈Ω

ρiΠj∈Ω pj −
∑
i∈Ω

ρiτiΠj∈Ω−i
pj +

∑
i�∈Ω

Πj∈Ω pjρipi.

10



Therefore, with γΩ = −1 + 2
∑

i∈Ω ρi, we conclude that

Πj∈Ω pjλ =
1

γΩ

{aΠj∈Ω pj +
∑
i∈Ω

ρiτiΠj∈Ω−i
pj +

∑
i�∈Ω

Πj∈Ω pjρipi}. (52)

Equations (50) and (52) determine the matrix M̃ . That is, introducing

p := [1, p1, · · · , pN , p1p2, · · · , pN−1pN , · · · ,ΠN
i=1pi]

T

we have that M̃p = λp. Since pi = (si +mi)xi and τi = (si +mi)qi, matrix M is then easily obtained
from M̃ by rewriting p as p = Dx, where x := [1, x1, · · · , xN , x1x2, · · · , xN−1xN , · · · ,ΠN

i=1xi]
T and D

is a diagonal matrix defined by D := diag{1, s1 +m1, · · · , sN +mN , (s1 +m1)(s2 +m2), · · · , (sN−1 +
mN−1)(sN +mN), · · · ,ΠN

i=1(si +mi)}. Obviously, M = D−1M̃D. Below we elaborated the case for
N = 3.

Example 3.9 Consider the three-player case. With p := [1, p1, p2, p3, p1p2, p1p3, p2p3, p1p2p3]
T ,

D = diag {1, s1 +m1, s2 +m2, s3 +m3, (s1 +m1)(s2 +m2), (s1 +m1)(s3 +m3),

(s2 +m2)(s3 +m3), (s1 +m1)(s2 +m2)(s3 +m3)},

and

M̃ =




−a ρ1 ρ2 ρ3 0 0 0 0
ρ1τ1
γ1

a
γ1

0 0 −ρ2

γ1
−ρ3

γ1
0 0

ρ2τ2
γ2

0 a
γ2

0 −ρ1

γ2
0 −ρ3

γ2
0

ρ3τ3
γ3

0 0 a
γ3

0 −ρ1

γ3
−ρ2

γ3
0

0 ρ2τ2
γ12

ρ1τ1
γ12

0 a
γ12

0 0 − ρ3

γ12

0 ρ3τ3
γ13

0 ρ1τ1
γ13

0 a
γ13

0 − ρ2

γ13

0 0 ρ3τ3
γ23

ρ2σ2

γ23
0 0 a

γ23
− ρ1

γ23

0 0 0 0 ρ3τ3
γ123

ρ2τ2
γ123

ρ1τ1
γ123

a
γ123




.

Which yields,

M =




−a s1 s2 s3 0 0 0 0
ρ1q1

γ1

a
γ1

0 0 − s2

γ1
− s3

γ1
0 0

ρ2q2

γ2
0 a

γ2
0 − s1

γ2
0 − s3

γ2
0

ρ3q3

γ3
0 0 a

γ3
0 − s1

γ3
− s2

γ3
0

0 ρ2q2

γ12

ρ1q1

γ12
0 a

γ12
0 0 − s3

γ12

0 ρ3q3

γ13
0 ρ1q1

γ13
0 a

γ13
0 − s2

γ13

0 0 ρ3q3

γ23

ρ2q2

γ23
0 0 a

γ23
− s1

γ23

0 0 0 0 ρ3q3

γ123

ρ2q2

γ123

ρ1q1

γ123

a
γ123




.

Using this matrix M in Algorithm 3.6 one can determine all solutions of the three-player scalar
equations (19,20). �
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Example 3.10 Consider a monetary union policy game with two countries using their fiscal policy
and one common Central Bank using its monetary policy to stabilize output and prices (see e.g. van
Aarle et al. [1] for more details). Assume that both countries do not expect severe external shocks
on the economy, whereas the Central Bank is somewhat less optimistic in this respect. We model
this by considering the game:

ṡ(t) = −s(t) − f1(t) + f2(t) +
1

2
iE(t) + w(t), s(0) = s0,

with

J1 :=

∫ ∞

0

{2s2(t) + f 2
1 (t) − 4w2(t)}dt,

J2 :=

∫ ∞

0

{2s2(t) + 2f 2
2 (t) − 4w2(t)}dt,

and

JE :=

∫ ∞

0

{s2(t) + 3i2E(t) − 2w2(t)}dt.

Here s is the competitiveness of country 2 vis-a-vis country 1, fi the real fiscal deficit and iE the
real interest rate. With these parameters, ρ1 = 4/5, ρ2 = 2/3, ρ3 = 1/7. Consequently, γ1 =
3/5, γ2 = 1/3, γ12 = −5/7, γ12 = −1 + 2ρ1 + 2ρ2 = 29/15, γ13 = −1 + 2ρ1 + 2ρ3 = 31/35,
γ23 = −1 + 2ρ2 + 2ρ3 = 13/21, and γ123 = −1 + 2ρ1 + 2ρ2 + 3ρ3 = 233/105. To calculate the
soft-constrained Nash equilibria of this game, we first determine all solutions of (19,20). According
Algorithm 3.6, we first have to determine the eigenstructure of the next matrix

M :=




1 1 1/2 1/12 0 0 0 0
8/3 −5/3 0 0 −5/6 −5/36 0 0
4 0 −3 0 −3 0 −1/4 0

−1/5 0 0 7/5 0 7/5 7/10 0
0 20/29 24/29 0 −15/29 0 0 −5/116
0 5/31 0 56/31 0 −35/31 0 −35/62
0 0 3/13 28/13 0 0 −21/13 −21/13
0 0 0 0 15/233 140/233 168/233 −105/233



.

Using Matlab, we find the eigenvalues

{−2.1369,−1.7173,−1.9576 ± 0.2654i,−1.267 ± 0.5041i, 1.9543, 2.37}.
Since the square of every positive eigenvalue is larger than τ = 5/2 (= max{5/2, 3/2, 7/12}), we
immediately conclude from Algorithm 3.6 that the equations (19,20) have two solutions.

From the corresponding eigenspaces we obtain the solutions tabulated below (with acl = a −
s1x1 − s2x2 − s3x3):

eigenvalue (x1, x2, x3) acl +m1x1 acl +m2x2 acl +m3x3

2.37 (0.4836,0.4546,7.909) -2.2491 -2.2564 1.5845
1.9543 (0.6445,0.5752,0.2664) -1.7932 -1.8105 -1.8211
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From the last three columns of this table we see that only the second solution satisfies the ad-
ditional conditions (21). Since qi > 0, and thus (15,16) are satisfied with yi = 0, we conclude
that this game has one soft-constrained Nash equilibrium. The with this equilibrium (x∗1, x

∗
2, x

∗
3) :=

(0.6445, 0.5752, 0.2664) corresponding equilibrium actions are

f ∗1 (t) = x∗1s(t), f
∗
2 (t) = −1

2
x∗2s(t) and i∗E(t) = −1

6
x∗3s(t).

Assuming that the initial state of the system is x0, the worst-case expected cost by the players are

J∗
1 = 0.6445s20, J

∗
2 = 0.5752s20 and J∗

E = 0.2664s20,

respectively.
Using [7, Algorithm 8] we obtain for the undisturbed case the next equilibrium strategies.

f ∗1 (t) = k1s(t), f
∗
2 (t) = −1

2
k2s(t), and i∗E(t) = −1

6
kEs(t),

where

k1 =
v(2)

v(1)
= 0.6202, k2 =

v(3)

v(1)
= 0.5611, kE =

v(4)

v(1)
= 0.2616.

This results in the next closed-loop system and cost

ṡ(t) = −1.9225s(t) and Ji = kis
2
0, i = 1, 2, E.

Taking a more closer look at the equilibrium actions we see that all players use more control efforts
than in the undisturbed case. The ratio of the increase in control efforts used by the fiscal player 1,
fiscal player 2 and the Central Bank is approximately 6 : 4 : 3. The expected increase in worst-case
cost by these three players is approximately 3.7%, 2.5% and 1.8%, respectively. So we see that
though, at first sight, it seems that the Central Bank is the most risk-averse player in this game,
due to the model structure the Bank will suffer least from an actual realization of a worst-case
scenario. Also, in coping with this uncertainty, the Bank deviates least from its original equilibrium
action. Finally, we observe that in case the players take uncertainty into account, the implemented
equilibrium policies yield a closed-loop system which adjustes faster towards its equilibrium value
s = 0. �

4 Properties of the scalar two-player case

In this section we analyze the consequences of taking deterministic noise into consideration in some
more detail for the two-player case. We list some properties pointwise below.

1. The first point we like to make is that the incorporation of noise by players into their deci-
sion making may result in the fact that a situation of no equilibrium changes into a situation in
which an equilibrium does exist. Take, e.g., qi = −1; bi = ri = vi = e = 1 and a = −3

2
. For these

parameters the undisturbed game has no equilibrium (see e.g. [7, Algorithm 8]). By, e.g., a direct
substitution of these parameters, xi = −1

2
and yi = −1 in (19–21) and (15,16)), we see that all
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conditions of Theorem 2.1 are satisfied. So the disturbed game does have an equilibrium.
2. The opposite effect as described in item 1. can also occur. That is a game in which first an equi-
librium occurred may result in a game without an equilibrium if players take noise into consideration
into their decision making. Take e.g. a = −0.2, si = qi = 1, i = 1, 2, m1 = 0.01 and m2 = 1.5. Using
both algorithms again, we see that the undisturbed game has an equilibrium, whereas the (slightly)
disturbed game has no equilibrium.
3. Taking the approach in [5] one can also analyse the effect of a unilateral variation in the attitude
towards noise on the equilibrium outcome of the game.
To that end, rewrite mi =: αisi, i = 1, 2. Then the Riccati equations (19) become

2(a− s1x1 − s2x2)x1 + s1(1 + α1)x
2
1 + q1 = 0, and (53)

2(a− s1x1 − s2x2)x2 + s2(1 + α2)x
2
2 + q2 = 0. (54)

Assuming that the equilibrium (x∗1, x
∗
2) can be described locally as a function h(α1, α2), using the

implicit function theorem, we get from (53,54) that

h′ =
−1

d

[ −p2 s2x
∗
1

s1x
∗
2 −p1

] [
s1x

∗2

1 0

0 s2x
∗2

2

]

where pi := −(a − s1x∗1 − s2x∗2 + mix
∗
i ) > 0 (see (21)) and d = 2(p1p2 − s1s2x∗1x∗2). From this we

observe in particular that the consequences of a unilateral deviation by player 1 on the solutions
(x∗1, x

∗
2) is

∂x∗1
∂α1

=
p2s1x

∗2

1

d
and

∂x∗2
∂α1

=
−s21x∗2

1 x
∗
2

d
.

Depending on the sign of x∗1 and d we see that various reactions are possible. If both d and x∗2
are positive, the effect of an increased uncertainty attitude by player 1 is that x∗1 increases and x∗2
decreases (take, e.g., a = qi = si = 1, m1 = 1.2 and m2 = 0.5). Since u∗i (t) = − bi

ri
x∗ix(t), this

implies that the response by player 1 is to use more control efforts, whereas player 2 uses less control
efforts. An opposite reaction is obtained by both players in case d is negative and x∗2 positive (which
happens, e.g., if we choose a = si = qi = 1 and mi = 1.1). In case x∗2 < 0 we see that both players
will react in the same direction by either both increasing their control efforts (d > 0) (as is the case
in the example we considered in item 1.) or lowering their control efforts (d < 0).
4. From Gershgorin’s circle criterion it is clear from M that if a is very negative; the parameters ρi, qi
and si not too large; and γi not too close to zero Algorithm 3.6 will provide exactly one solution.
5. In case both players expect much noise and either q1 or q2 is strictly positive, there will be no
equilibrium (unless a is very stable). This follows from the fact that if mi → ∞, i = 1, 2, matrix M
converges to




−a s1 s2 0
0 −a 0 s2
0 0 −a s1
0 0 0 −a


 .

So, the eigenvalues of M all approach −a. From Step 3.1 of Algorithm 3.6 we conclude then that a2

should be at least larger than (si +mi)qi, i = 1, 2.
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6. If the players expect almost no noise (i.e. mi is almost zero), matrix M converges to the matrix
that has to be analyzed for the undisturbed game.
7. In case just one player expects a large impact of noise and the other player is modest in his
expectations, matrix M converges to




−a s1 s2 0
0 −a 0 s2

s2q2

s2−m2
0 a

γ2

−s1

γ2

0 s2q2

s2−m2
0 a

γ2


 .

The characteristic polynomial of this matrix is

(λ2 − a( 1

γ2

− 1)λ− (
a2

γ2

− s22q2
s2 −m2

))2.

From this we infer that only in case a > 0 and s2 a little bit larger than m2 Algorithm 3.6 may have
an appropriate solution.

5 Concluding Remarks

In this paper we considered the problem to calculate the feedback Nash equilibria in a system
that is corrupted by deterministic noise. Basically, we followed the approach taken by Engwerda
in [7] to develop the numerical algorithm. The number of equilibrium points can be analyzed by
considering the eigenstructure of a 2N × 2N matrix M , where N denotes the number of involved
players. The algorithm is very efficient in case the eigenspaces of M have dimension one and can be
easily implemented in Matlab. Unfortunately, the generalization for the multivariable case is unclear.
The advantage of this approach is that matrix M might be useful in further theoretical developments
such as, e.g., determining parametric conditions under which there will cease to exist equilibria or,
from an opposite point of view, the introduction of noise into the game will bring on the occurence
of equilibria.
A disadvantage of the numerical approach taken here is that the size of matrix M we have to analyze
grows exponentially if the number of players increases. On the other hand, matrix M has some
tri-diagonal structure, which might be exploited in case the number of players grows to develop
efficient numerical tools. However, it seems that e.g. the interval method as developed by van
Hentenryck and coauthors (see e.g. [10]) might numerically be more efficient then. A point which
has to be elaborated in using the interval method is the choice of the initial interval that contains
all equilibria. A nice feature of the interval method is that, in principle, it can be used to calculate
all equilibria in the multivariable case too. However, the choice of the initial interval containing all
equilibria is a problem that has to be managed in this case.

Appendix

Below we describe the general N -player result of Theorem 2.1.

15



Theorem 5.1 Consider the differential game defined by (1) and (4–5). Assume there exist N real
symmetric n× n matrices Xi and N real symmetric n× n matrices Yi such that

− (A−
N∑

j �=i

SjXj)
TXi −Xi(A−

N∑
j �=i

SjXj) +XiSiXi −Qi −
N∑

j �=i

XjSijXj −XiMiXi = 0,

A−
N∑

j=1

SjXj +MiXi is stable for i = 1, . . . , N

A−
N∑

j=1

SjXj is stable

− (A−
N∑

j �=i

SjXj)
TYi − Yi(A−

N∑
j �=i

SjXj) + YiSiYi −Qi −
N∑

j �=i

XjSijXj ≤ 0.

Define the N -tuple F = (F 1, . . . , FN) by

F i := −R−1
ii B

T
i Xi. (55)

Then F ∈ F , and this N -tuple is a soft-constrained Nash equilibrium. Furthermore

J
SC

i (F 1, . . . , FN , x0) = xT
0Xix0. (56)
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