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On the sensitivity matrix of the Nash bargaining solution∗

Jacob C. Engwerda †

and

Rudy C. Douven ‡

Abstract

In this note we provide a characterization of a subclass of bargaining problems for which
the Nash solution has the property of disagreement point monotonicity. While the original
d-monotonicity axiom and its stronger notion, strong d-monotonicity, were introduced and
discussed by Thomson [15], this paper introduces local strong d-monotonicity and derives a
necessary and sufficient condition for the Nash solution to be locally strong d-monotonic. This
characterization is given by using the sensitivity matrix of the Nash bargaining solution w.r.t.
the disagreement point d. Moverover, we present a sufficient condition for the Nash solution to
be strong d-monotonic.

Keywords: Nash bargaining solution, d-monotonicity, diagonally dominant Stieltjes matrix.
Jel-codes: C61, C62, C71, C78.

1 Introduction

In this note we introduce the notion of local strong d-monotonicity for solutions of bargaining prob-
lems. Thomson introduced and discussed in ([14]) the disagreement point monotononicity property
(d-monotonicity) for solutions of bargaining problems. This property states that, if some agent in-
creases his threatpoint while the threatpoint of the other players remains constant then this agent’s
payoff increases (or at least not decreases). He also considered the stronger, strong d-monotonicity

requirement, which states that not only this agent’s payoff does not decrease but also the payoffs of
none of the other agents increases. Thomson shows by means of a counterexample that the Nash-
solution (N -solution) does not satisfy this notion of strong d-monotonicity.
This notion of d-monotonicity is a global property in the sense that this property should hold for
every positive increment of the threatpoint at every threatpoint d.
We will consider here the local version of this property. That is, we are interested in the effect of

∗This is a revised version of CentER DP 2005-35.
†Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
‡CPB, Netherlands Bureau for Economic Policy Analysis, P.O.Box 80510, 2508 GM The Hague, The Netherlands.
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changes on the point of agreement for a fixed feasible set if one (arbitrarily chosen) player unilaterally
changes his disagreement point something. If this player is the only one who gains from such a small
(positive) deviation and this property holds irrespective of which player alters his threatpoint we call
the bargaining solution local strongly d-monotonic at the threatpoint d.
Given some threatpoint and the corresponding bargaining point, this notion tells us something about
the stability of the realized bargaining point. This, in the following sense. Assume that the threat-
point can be controlled to some extent by an exogenous authority (e.g a European commission who
might consider to change some directives which might favor some outside options of participating
countries). If the bargaining point is local strongly d-monotonic at d then whenever this threatpoint
is changed at one entry only, this action will be disapproved by all other players. This, in contrast
to the case that such a change in the threatpoint is benefitial for some other player(s) too. In that
case it is rational for that (those) other player(s), at least, to be not against such a change in the
threatpoint. So, a less number of players will be against a reopening of the bargaining process in
such a case. In this sense, the threshold to reopen the bargaining process will be lower, and the
bargaining point might be called less stable.
So, this notion of local strong d-monotonicity can be viewed as a new independent axiom for a bargain-
ing solution which implies stability. We give in section 3 below a necessary and sufficient condition
of domain restriction over which the N -solution has the property of local strong d-monotonicity.
Furthermore, we present in this section a sufficient condition for strong d-monotonicity.
Section 2 introduces some notation and preliminary results, whereas section 4 considers some exam-
ples. Finally section 5 concludes.

2 Preliminaries

Following Thomson [15], we define an n-person bargaining problem to be a pair (S, d), where S ⊂ IRn

is called the feasible set, IRn the utility space and d the disagreement point.
Thomson considers two classes of bargaining problems: 1) Σ

n
, where the feasible set S is assumed to

be convex, compact and such that there exists a x ∈ S with x > d (here we use the vector inequality
notation); and 2) Σn, which is a subclass of Σ

n
, the so-called class of comprehensive bargaining

problems. This subclass is obtained by considering just those elements in S satisfying the additional
property that whenever x ∈ S and d < x ≤ x, then x ∈ S.
We will consider in this paper a subclass Σn

P of Σn. We assume that the (fixed) feasible set in this
subclass Σn

P satisfies the additional requirement that the set P of (weak) Pareto optimal solutions can
be described by a smooth strictly concave function ϕ, that is Σn

P = {(x1, . . . , xn)T ∈ S|xi ≥ di, xn ≤
ϕ(x1, . . . , xn−1), and whenever x ∈ S and d ≤ y ≤ x, then y ∈ S}. This class of problems (for
larger classes of bargaining problems, see e.g., [11] or [15]) is particular popular in applied economic
sciences (see e.g. the literature on policy coordination [12], [16], [6], [3], [13]).
Given this class of n-person bargaining problems, a solution is a function F associating with every
(S, d) in this class the point of agreement F (S, d) ∈ S. Since we consider here a fixed feasible set,
the dependence of F on S will be omitted. F is called the Nash solution, N , if for every fixed pair
(S, d), F (S, d) is assigned the point where the product Π(xi −di) is maximized for x ∈ S with x ≥ d.

For notational convenience n denotes the set {1, · · · , n}. Furthermore, I is the identity matrix, ei

the ith standard basis vector in IRn, vT the transpose of a vector/matrix v, e the vector (1, · · · , 1)T
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and 0
¯

the zero vector (0, · · · , 0)T . The dimension of these vectors will be clear from the context.
Furthermore, diag(ai) denotes a diagonal matrix with as its ith diagonal entry ai; (A|B) the extended
matrix of A and B; and sgn(a) the sign of the number a. If x := (x1, · · · , xn) is a vector, x− is the
truncated vector (x1, · · · , xn−1). ϕ

′

i denotes the i-th partial derivative of ϕ.

The property of local strong d-monotonicity with respect to the disagreement point d is now formal-
ized as follows:

Definition 1: A bargaining solution F on ΣN
P is called local strongly d-monotonic at a problem

(S, d) ∈ ΣN
P , if F is differentiable in d, and for all i and j 6= i,

∂Fj(S,d)

∂di
≤ 0 and ∂Fi(S,d)

∂di
≥ 0.

[]

In the ensueing analysis the set of so-called M-matrices arise in a natural way. An M-matrix is
an n× n matrix with nonpositive off-diagonal entries whose inverse exists and is entry-wise nonneg-
ative. Symmetric M-matrices are called Stieltjes matrices. From Berman et al. [1, pp.141] we recall
the following result.

Lemma 1:
1) Symmetric M-matrices are positive definite.
2) Symmetric positive definite matrices with nonpositive off-diagonal entries are M-matrices. �

Unfortunately, the inverse of a nonsingular nonnegative matrix is not in general an M-matrix. In
literature the problem has been addressed to characterize all matrices which do have this property.
This turns out to be a difficult problem. A class of matrices that satisfy this property are e.g. the
so-called strictly ultrametric matrices (see Nabben et al. [8] and [9]).

Finally, we call a symmetric square matrix A = (aij) diagonally dominant if |aii| ≥
∑

j 6=i

|aij |, for all i.

3 Theoretical Results

By assumption, the Nash bargaining solution xN := (xN
1 , · · · , xN

n ) is determined by the argument
that solves the maximization problem

max
x−

f(x−) := max
x−

Πi∈n−1(xi − di)(ϕ(x−) − dn),

where ϕ′
i < 0 and ϕ

′′

is negative definite.
This maximization problem has, according to Nash [10], exactly one solution. Obviously, this solution
lies not on the edge of the Paretofrontier P of ΣN

P , i.e., it is an interior point of P . Thus, the first
order conditions yield that the Nash bargaining solution is uniquely determined by:

gi(x
N
− , d) = 0, ∀i ∈ n− 1, (1)

where gi(x−, d) := ϕ(x−) − dn + (xi − di)ϕ
′
i(x−), i ∈ n− 1.

Note that all derivatives in these n-1 equations are evaluated at the Nash solution. To simplify
notation we will drop this argument whenever it is the Nash solution. So, unless stated differently,
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we assume from now on that the argument in the derivatives will always be the Nash solution.

Remark 1 Recall from the two-player case that the Nash solution can geometrically also be char-
acterized as that point xN on the curve ϕ that has the property that the line tangent to ϕ at xN

intersects the d1-axis at the point d1 + 2(xN
1 − d1). For the multi-player case this generalizes as

follows. Consider the plane tangent to the graph of ϕ at x, i.e.,

yn(y−) = ϕ(x−) + ϕ′(x−)(y− − x−). (2)

Then xN is the point that satisfies the property that this plane intersects the vertical plane through
the Nash point parallel to the di-axis in the dn-plane at the point y− = (xN

1 , · · · , xN
i−1, di + 2(xN

i −
di), x

N
i+1, · · · , xN

n−1), i ∈ n− 1. Substitution of this into (2) yields the equations (1). []

Since the solution of the above optimization problem is a maximum location we know that the
second order derivative H of f evaluated at the Nash solution will be semi-negative definite. Simple
calculations show that

H = Dg
′

(3)

where the ith entry, dii, of the diagonal matrix D is Πj 6=i∈n−1(x
N
j − dj) and

g
′

x−
(xN

− , d) =
∂g

∂x−

(xN
− , d) = (eeT + I)diag(ϕ

′

i) + diag(xN
i − di)ϕ

′′

. (4)

We will assume throughout this note additionally that H is invertible. In particular it follows then
from (3) that the inverse of g

′

exists and g
′−1

= H−1D. According the implicit function theorem

∂xN
−

∂d
= −{

∂g

∂x−

(xN
− , d)}−1∂g

∂d
.

It is easily verified that
∂g

∂d
= −(diag(ϕ

′

i) | e). (5)

To complete the picture of
∂xN

i

∂dj
we still have to consider ∂xN

n

∂dj
. To that end we recall that xN

n = ϕ(xN
− ).

Consequently,

∂xN
n

∂dj

= ϕ
′









∂xN
1

∂dj

...
∂xN

n−1

∂dj









, where ϕ′ :=
(

ϕ′
1, · · · , ϕ′

n−1

)

.

So, with L :=

(

I

ϕ′

)

, we have that ∂xN

∂d
= −L{ ∂g

∂x−

(xN
− , d)}−1 ∂g

∂d
.

Before we present the sensitivity matrix we introduce for notational convenience

vN
i :=

xN
i − di

√

ϕ(xN
− ) − dn

and G :=

(

−(eeT + I) + (ϕ − dn)diag(
1

ϕ
′

i

)ϕ
′′

diag(
1

ϕ
′

i

)

)−1

.
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Theorem 1: Under the assumption that the hamiltonian of the Pareto frontier evaluated at the N -
solution is invertible, the sensitivity matrix of the N -solution is given by

∂xN

∂d
= −

(

diag(vN
i )

−vN
n eT

)

G(diag(
1

vN
i

) |
−1

vN
n

e). (6)

Proof: Using (4,5) it is clear that

∂xN

∂d
=

(

I

ϕ′

)

(

(eeT + I)diag(ϕ
′

i) + diag(xN
i − di)ϕ

′′

)−1

(diag(ϕ
′

i) | e). (7)

Some elementary rewriting of this equation (7) gives:

∂xN

∂d
=

(

I

ϕ′

)(

(eeT + I)diag(
ϕ

′

i(x
N
i − di)

xN
i − di

) + diag(xN
i − di)ϕ

′′

diag(xN
i − di)diag(

1

xN
i − di

)

)−1

(diag(
ϕ

′

i(x
N
i − di)

xN
i − di

) | e).

From (1) we have that at the N-solution

ϕ
′

i(x
N
i − di) = ϕ

′

j(x
N
j − dj) = −(ϕ − dn). (8)

Using this, we can rewrite the above equation as follows

∂xN

∂d
=

(

I

ϕ′

)

diag(xN
i − di)

(

−(ϕ − dn)(ee
T + I) + diag(xN

i − di)ϕ
′′

diag(xN
i − di)

)−1

(−(ϕ − dn)diag(
1

xN
i − di

) | e)

=

(

diag(vN
i )

−vN
n eT

)

(

−(eeT + I) + diag(vN
i )ϕ

′′

diag(vN
i )
)−1

(−diag(
1

vN
i

) |
1

vN
n

e)

=

(

diag(vN
i )

−vN
n eT

)(

−(eeT + I) + diag(
ϕ

′

iv
N
i

ϕ
′

i

)ϕ
′′

diag(
ϕ

′

iv
N
i

ϕ
′

i

)

)−1

(−diag(
1

vN
i

) |
1

vN
n

e).

From this, using (8) and the above introduced notation, (6) is obtained. []

Elementary spelling out (6) shows that the sensitivity matrix can also be written as

∂xN

∂d
= −

(

diag(vN
i )Gdiag( 1

vN
i

) −1
vN

n
diag(vN

i )Ge

−vN
n eT Gdiag( 1

vN
i

) eT Ge

)

. (9)

Since, by assumption, ϕ
′′

is negative definite G is negative definite too. Using this, it follows im-
mediately from (9) that all diagonal entries of the sensitivity matrix are always positive. Or stated
differently,

Corollary 1: The N-solution is d-monotonic. []
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Next, we address the question under which conditions on ϕ the N-solution is local strongly d-
monotonic. We have the following result:

Theorem 2: The N-solution is local strongly d-monotonic if and only if −G is a diagonally domi-
nant Stieltjes matrix.

Proof: Consider (9). Since vN
i > 0 it follows that sgn((∂xN

∂d
)ij) = sgn(−Gij), i, j ∈ n − 1. As

already noted before, −G is positive definite. So, by Lemma 1.2), −G is a Stieltjes matrix. Moreover

it follows from (9) that sgn((∂xN

∂d
)in) = sgn(

vN
i

vN
n

eT
i Ge). So, (∂xN

∂d
)in ≤ 0 if and only if entry i of Ge ≤ 0,

i ∈ n − 1. Or, stated differently, −G is diagonally dominant. []

Remark 2

1) Since G = −diag(ϕ
′

i)
(

g
′

x−
(xN

− , d)
)−1

, −G−1 is nonnegative if and only if g
′

x−
(xN

− , d) is nonpositive.
Furthermore, as already noticed before, −G is a positive definite matrix. Therefore, an equivalent
statement of Theorem 2 is: the N -solution is local strongly d-monotonic if and only if g

′

x−
(xN

− , d)

is nonpositive and diag(ϕ
′

i)
(

g
′

x−
(xN

− , d)
)−1

is a diagonally dominant matrix with nonpositive off-
diagonal entries.
This clarifies the statement about ultrametric matrices we made at the end of the preliminaries.
Notice that g

′

x−
(xN

− , d) is nonpositive if, e.g., ϕ” is a nonpositive matrix.

2) Since −G is an M-matrix it follows that eeT − (ϕ − dn)diag( 1

ϕ
′

i

)ϕ”diag( 1

ϕ
′

i

) is nonnegative. Or,

equivalently, ϕ′T ϕ′ − (ϕ − dn)ϕ
” is a nonnegative matrix.

3) In the two-player case the N -solution is always strongly d-monotonic.
In the three-player case the N -solution is local strongly d-monotonic if and only if g

′

x−
(xN

− , d) is

nonpositive and g
′

x−
(xN

− , d)diag( 1

ϕ
′

i

) is a diagonally dominant matrix. This follows by a simple elab-

oration of −G−1.
4) In case the Pareto frontier has no extreme bendings, i.e. ϕ

′

is almost constant, ϕ” is almost zero.
In that case G almost equals −(eeT + I)−1 which is a diagonally dominant Stieltjes matrix. Since
this is the case independent of the choice of the threatpoint, under these conditions the N -solution
will be strongly d-monotonic. []

Next we derive a sufficient condition on the Pareto frontier under which the N -solution will be
(global) strongly d-monotonic. Inspired by items 1) and 2) of the above remark we will consider the
case that ϕ” is a nonpositive matrix. The result is stated in Theorem 3. Its proof uses the next lemma.

Lemma 2: Assume S is an invertible matrix and D is a positive diagonal matrix. Consider P :=
(S + D)−1.
1) If S−1 is diagonally dominant, then P is diagonally dominant.
2) If S−1 is a Stieltjes matrix, then P is a Stieltjes matrix.

Proof: 1) First notice that

(S + D)−1 = D−1 − D−1(D−1 + S−1)−1D−1. (10)
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Next consider

H :=

(

D−1 + S−1 D−1

D−1 D−1

)

.

Due to our assumptions, it is easily verified that H is diagonally dominant. From e.g. Lei et al. [7]
(see also Carlson et al. [2]) we conclude then that the Schur complement of H , which equals (10), is
also diagonally dominant.
2) Since by assumption S−1 is a Stieltjes matrix, by Lemma 1.1), S−1 is a positive definite matrix.
From this it is obvious that P will be positive definite too. So, the diagonal entries of P are positive.
Furthermore since, by assumption, both S and D are a nonnegative matrix also S + D is a nonneg-
ative matrix. Next we consider the off-diagonal entries of P . Since both D−1 and S−1 are Stieltjes
matrices, also D−1 + S−1 is a Stieltjes matrix. So, in particular, all entries of (D−1 + S−1)−1 are
nonnegative. From (10) it is obvious then that all off-diagonal entries of P are nonpositive. Since we
already argued above that P is positive definite, Lemma 1.2) shows that P is a Stieltjes matrix. []

Theorem 3: Assume that at any point of the Pareto frontier

Φ−1 := −[diag(
1

ϕ
′

i

)ϕ
′′

diag(
1

ϕ
′

i

)]−1 (11)

is a diagonally dominant Stieltjes matrix. Then, the N-solution is strongly d-monotonic.

Proof: What has to be shown is that irrespective of the choice of the threatpoint d the N-solution
will be local strongly d-monotonic. Or, equivalently (see Theorem 2), that matrix −G is irrespective
of the choice of the threatpoint d a diagonally dominant Stieltjes matrix.
To that end first note that, since Φ−1 is a diagonally dominant Stieltjes matrix, also (ϕ − dn)Φ

−1 is
a diagonally dominant Stieltjes matrix. So, by Lemma 2,

P := (I + (ϕ − dn)Φ)−1 (12)

is a diagonally dominant Stieltjes matrix. Next consider −G. We have

−G =
(

(eeT + I) + (ϕ − dn)Φ
)−1

=
(

eeT + P−1
)−1

= P − Pe(eT Pe + 1)−1eT P.

Since P is diagonally dominant Pe ≥ 0. Consequently, Pe(eT Pe + 1)−1eT P ≥ 0. So, all off-diagonal
entries of −G are nonpositive. Obviously, −G is a positive definite matrix and all entries of −G−1

are nonnegative. So, by Lemma 1.2), −G is a Stieltjes matrix.
Furthermore it follows from (13) that

−Ge = (P − Pe(eT Pe + 1)−1eT P )e = (1 −
eT Pe

1 + eT Pe
)Pe ≥ 0.

That is, −G is diagonally dominant. []

Remark 3:
1) Clearly, (11) is only satisfied if ϕ” is nonpositive. Furthermore, it is easily verified that for the
scalar case Φ = [ 1

ϕ
′ ]

′

, whereas for the multivariable case, with S := diag(ϕ
′

i), Φ = S[ 1

ϕ
′

i

· · · 1

ϕ
′

n−1

]
′

S−1.

This relationship might be helpful in getting a better intuition about the conditions under which a
bargaining solution satisfies the strong d-monotonicity property.
2) Consider the next statements:
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i) Φ−1 is a diagonally dominant Stieltjes matrix.

ii) (eeT + (ϕ − dn)Φ)−1 is a diagonally dominant Stieltjes matrix.

iii) −G is a diagonally dominant Stieltjes matrix.

Then, i) ⇒ ii) ⇒ iii). The first implication can be shown by using the fact that (eeT + Φ)−1 =
1
α
Φ−1(αI − eeT Φ−1), where α = 1 +

∑n
i,j=1 Φ−1

i,j > 0, whereas the second implication follows using
similar arguments as in the proof of Theorem 3. Unfortunately none of the reverse implications
holds.
3) By a local interpretation of (11) one immediately obtains, using (1), that the N -solution is local
strongly d-monotonic if −[diag(xN

i − di)ϕ
′′

(xN
− )diag(xN

i − di)]
−1 is a diagonally dominant Stieltjes

matrix. []

Remark 4:
The above analysis can also be used to study the case of weighted Nash solutions. That is the
solution that solves the maximization problem

max
x−

f̃(x−) := max
x−

Πi∈n−1(xi − di)
αi(ϕ(x−) − dn)αn , αi > 0.

Introducing the weight matrix Wk ∈ IRk×k as Wk := diag(αn

αi
) we have that with

G̃ :=

(

−(eeT + Wn−1) + (ϕ − dn)diag(
1

ϕ
′

i

)ϕ
′′

diag(
1

ϕ
′

i

)

)−1

,

∂xN

∂d
= −Wn

(

diag(vN
i )

−vN
n eT

)

G̃(diag(
1

vN
i

) |
−1

vN
n

e).

Using this it follows then that the results of Corollary 1 and Theorems 2 and 3 apply for this case
as well, with G replaced by G̃. []

4 Examples

In this section we provide two examples. The first example provides a number of Pareto frontiers for
which the N -solution is strongly d-monotonic. Intuitively it demonstrates that if the frontier is not
too extremely bending one may expect that this property holds.
The second example may be interpreted as a cartel-formation game. For different sets of parameters
we present numerically the set of threatpoints where the N -solution is local strongly d-monotonic.

Example 1:

1) Assume that ϕ
′′

is a nonpositive diagonal matrix (so, ϕ(x−) is e.g. a plane or ϕ(x−) = r + bT x− +
1
2
xT
−Ax−, where b, x− are n − 1-dimensional vectors with b ≤ 0 and d ≥ 0 and A a nonpositive

diagonal matrix). Then, for every choice of d, −G is a diagonally dominant Stieltjes matrix. So, see
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Theorem 2, the N -solution is strongly d-monotonic.
2) Assume that the Pareto frontier has a constant curvature, that is

ϕ(x−) =
√

r2 − x2
1 − · · · − x2

n−1.

Then ϕ
′

i = −xi

ϕ(x−)
, ϕ

′′

ij =
−xixj

ϕ3(x−)
if i 6= j and ϕ

′′

ii =
−(ϕ2(x−)+x2

i )

ϕ3(x−)
. Consequently,

Φ =
1

ϕ(x−)





















ϕ2(x−)+x2

1

x2

1

1 · · · · · · 1

1
ϕ2(x−)+x2

2

x2

2

1 · · · 1
...

. . .
...

...
. . . 1

1 · · · · · · 1
ϕ2(x−)+x2

n−1

x2

n−1





















and

Φ−1 =
1

r2ϕ(x−)















(r2 − x2
1)x

2
1 −x2

1x
2
2 · · · · · · −x2

1x
2
n−1

−x2
2x

2
1 (r2 − x2

2)x
2
2 −x2

2x
2
3 · · · x2

2x
2
n−1

...
. . .

...
...

. . . −x2
n−2x

2
n−1

−x2
n−1x

2
1 · · · · · · −x2

n−1x
2
n−2 (r2 − x2

n−1)x
2
n−1















.

Obviously Φ−1 is a Stieltjes matrix. Furthermore Φ−1e = ϕ

r2 [x
2
1, · · · , x2

n−1]
T . So Φ−1 is diagonally

dominant too. Therefore (see Theorem 3) the N -solution is strongly d-monotonic. It is easily verified
that this result also holds if ϕ(x−) is replaced by ϕ(x−) =

√

r2 − α1x
2
1 − · · · − αn−1x

2
n−1, αi > 0.

3) Assume that the Pareto frontier is described by ϕ(x−) = Πn−1
i=1 (bi − xi)

αi , where 0 < αi < 1 and
xi ≤ bi, i ∈ n − 1. Note that this type of functions includes e.g. the Cobb-Douglas function which
often occurs in economics. Then,

ϕ
′

i =
−αi

bi − xi

ϕ; ϕ
′′

ij =
αiαj

(bi − xi)(bj − xj)
ϕ, i 6= j; and ϕ

′′

ii =
αi(−1 + αi)

(bi − xi)2
ϕ.

Elementary calculations show that then −Φ = 1
ϕ

(

eeT + diag(−1
αi

)
)

. Consequently,

−G =
(

eeT + I + (ϕ − dn)Φ
)−1

=

(

eeT + I − (ϕ − dn)
1

ϕ

(

eeT + diag(
−1

αi

)

))−1

= ϕ

(

dnee
T + diag(ϕ +

ϕ − dn

αi

)

)−1

= ϕ

(

D−1 − D−1e(eT D−1e +
1

dn

)−1eT D−1

)

, (13)

where D := diag(ϕ+ ϕ−dn

αi
). From (13) it is easily verified that −G is a Stieltjes matrix. Furthermore

−Ge = (1 − eT D−1e

eT D−1e+ 1

dn

)D−1e. Clearly this vector is positive, so −G is diagonally dominant too.

Since, irrespective of the location of the threatpoint d, −G is a diagonally dominant Stieltjes matrix
we conclude that the N -solution is strongly d-monotonic. []
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Example 2:
Consider 3 firms who sell an amount xi of a product on a market. The price, p, they get on the
market depends on the quantity sold by all firms. That is, p = c − α1x1 − α2x2 − α3x3, where αi

and c are some positive constants. The costs for producing xi are Ci(xi). So the profits for firm i

are πi = pxi − Ci(xi). Next consider the parameterized joint profit function

π =
3
∑

i=1

λiπi, where
3
∑

i=1

λi = 1 and λi ≥ 0.

By maximizing for all possible parametercombinations, λ := (λ1, λ2, λ3), π one obtains the Pareto
frontier characterizing all possible joint maximal profits the firms can obtain by cooperation.
We will consider two different specifications for the cost functions Ci.
Case 1: Ci(xi) = βxi.
In this case straightforward (though lengthy) calculations show that the Pareto frontier is given by
the plane:

α1πi + α2π2 + α3π3 =

(

c − β

2

)2

.

So, whatever the threatpoint d is, the N -solution is strongly d-monotonic in this case (see Example
1.1)).
Case 2: Ci(xi) = βix

2
i .

In this case it is not possible to derive an analytic expression for the Pareto frontier. We will briefly
indicate how one may pursue in this case numerically to verify the local strong d-monotonicity of
the N -solution. Differentiation of π w.r.t. xi yields 3 first order conditions in xi for every λ (in
this case this is just a set of linear equations). From this one can solve xi in terms of λ. Using this
one can determine then for an arbitrary threatpoint, with e.g. the numerical algorithm outlined in
Douven [4, Section 3.3.2] (see also Engwerda [5, Section 6.4]), the with this threatpoint corresponding
N -solution.
From the seven equations πi − pxi − Ci(xi) = 0, ∂π

∂xi
= 0, i = 1, 2, 3 and

∑3
i=1 λi = 1, one can then

implicitly solve (π3, x1, x2, x3, λ1, λ2, λ3) as a function of π1 and π2. In particular the implicit function
theorem can be used to find analytic expressions for the derivative and hamiltonian of π3 = ϕ(π1, π2)
at the N -solution. From this then straightforwardly the monotonicity property can be verified.
Figures 1-3 present some results for this example for different parameters and threatpoints. In all
these cases the parameters α1 = 1, βi = 1 and c = 5 remained unchanged.
Figure 1 reports the local strong d-monotonicity property of the N -solution, if the threatpoint d = 0,
for different values of the parameters α2 and α3 (both ranging between 0.1 and 0.5). A dot (empty
space) indicates that with that choice of parameters the zero-threatpoint is (not) local strongly
d-monotonic. Not shown here is that for large values of these parameters the zero-threatpoint is
also local strongly d-monotonic. So a situation with two firms having a small impact on the price
compared to the third firm seems to be not stable (in the sense discussed in the introduction). Here
the notion ”small” should however be interpreted in the light of the other modelparameters that
were kept constant. Some additional experiments suggest that the level of the βi parameters are
more important than that of the c parameter for this comparison. In case all firms have a substantial
effect on the price, the N -solution is always local strongly d-monotonic.
Figure 2 reports the local strong d-monotonicity property for different threatpoints in case α2 =
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Figure 1: Case α1 = 1, βi = 1, c = 5,
d = 0. Dot=local strongly d-monotonic.
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Figure 2: Case α1 = 1, α2 = α3 = 1
4
,

βi = 1, c = 5.

α3 = 1
4
. The threatpoint d1 ranges here from 0 to 1.9 and d2 = d3 ranges from 0 to 3.1. To complete

the three dimensional picture we plotted in Figure 3 for three different values of d1 (0, 0.5 and 0.7,
respectively) using the same modelparameters the monotonicity result if the other two threatpoints
d2 and d3 range between 0 and 3.1. Notice that the more closer the threatpoint is to the Pareto
frontier, the more this frontier resembles a plane. For that reason in fact the dots in the right and
upper part of these graphs extend until the Pareto frontier. For numerical simplicity we did not plot
this extension.
Concluding, this example demonstrates that in case firms have a substantial effect on the price, the
N -solution is strong d-monotonic. In case at least one firm has a ”small” (see above discussion)
impact on the price there exist area’s of threatpoints where the N -solution is not local strongly d-
monotonic. Furthermore we observe the phenomenon that if at a certain threatpoint the N -solution
is local strongly d-monotonic this does not imply that at every larger threatpoint the N -solution will
have this property too. �

5 Concluding remarks

In this note we derived, under some technical conditions, the sensitivity matrix of the Nash bargaining
solution w.r.t. the disagreement point d. In particular, this makes it possible to analyze the local
strong d-monotonicity of the N -solution. We showed that the N -solution satisfies this property if
and only if a certain matrix, −G, evaluated at the Nash bargaining solution is a diagonally dominant
Stieltjes matrix. Using this result, a class of bargaining problems was characterized for which the
N -solution satisfies the strong d-monotonicity property. The results were illustrated in a number of
examples.
The condition under which the Nash solution is local strongly d-monotonic is phrased in terms of
the (second) order derivative of the Pareto frontier. Unfortunately at this moment a clear intuition
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(a) d1 = 0.
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(c) d1 = 0.7.

Figure 3: Case α1 = 1, α2 = α3 = 1
4
, βi = 1, c = 5.

about the set of problems for which the N -solution is (local) strongly d-monotonic is lacking. From
the condition it is clear that in case the Pareto frontier has no extreme bendings, the property will
hold. This implies that if in the bargaining problem the interests of the players are similar the N -
solution will be (local) strongly d-monotonic. Finding a geometric interpretation of the conditions
and, from that, more intuition about the set of bargaining problems for which the N -solution satisfies
the monotonicity properties remains, however, an open problem.
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