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Abstract: In this paper we shall be interested in two questions on extremes
relating to world records in athletics. The first question is: what is the
ultimate world record in a specific athletics event (such as the 100m for men
or the high jump for women), given today’s state of the art? Our second
question is: how ‘good’ is a current athletics world record? An answer to the
second question will also enable us to compare the quality of world records
in different athletics events. We shall consider these questions for each of
twenty-eight events (fourteen for both men and women).

We approach the two questions with the probability theory of extreme
values and the corresponding statistical techniques. The statistical model
is of nonparametric nature, but some ‘weak regularity’ of the tail of the
distribution function will be assumed. We will derive the limiting distribution
of the estimated quality of a world record.

While almost all attempts to predict an ultimate world record are based
on the development of top performances over time, this will not be our
method. Instead, we shall only use the top performances themselves. Our
estimated ultimate world record tells us what, in principle, is possible now,
given today’s knowledge, material (shoes, suits, equipment), and drugs laws.

JEL codes: L83, C13, C14.
Key words: Endpoint estimation, exceedance probability, ranking, statis-
tics of extremes, world record.
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1 Introduction

How fast can humans or cheetahs run? What is the total (insured) loss of
hurricane Katrina? Is a specific runway at JFK airport long enough for a
safe landing? How high should the Dutch dikes be in order to protect us
against high water levels? How long can we live?

These questions all relate to extremes. In this paper we shall be interested
in two questions on extremes relating to world records in athletics. The first
question is: what is the ultimate world record in a specific athletics event
(such as the 100m for men or the high jump for women), given today’s state
of the art? Our second question is: how ‘good’ is a current athletics world
record? An answer to the second question will enable us to compare the
quality of world records in different athletics events.

We shall approach these two extremes-related questions with the proba-
bility theory of extreme values and the corresponding statistical techniques.
The statistical model is of nonparametric nature, but some ‘weak regularity’
of the tail of the distribution function will be assumed. Somewhat related
work on records in sports is given in Barão and Tawn (1999) and Robin-
son and Tawn (1995), who considered the annual best times in the women’s
3000m event and drugs-related questions for the same event, respectively.
Smith (1988) proposed a maximum likelihood method of fitting models to
a series of records, and applied his method to athletics records for the mile
and the marathon.

Almost all attempts to predict an ultimate world record are based on the
development of top performances over time. This will not be our method and
we are not trying to predict the world record in the year 2525. Instead, we
shall only use the top performances themselves (see Table 1). Our estimated
ultimate record tells us what, in principle, is possible now, given today’s
knowledge, material (shoes, suits, equipment), and drugs laws.

Our selection of athletics events is based on the Olympic Games. While
at the first of the modern Olympic Games in 1896, only a few hundred male
athletes competed in ten events, at the 2004 Athens Olympics, male athletes
competed in twenty-four events:

Running: 100m, 200m, 400m, 800m, 1500m, 5000m, 10,000m, marathon,
110m hurdles, 400m hurdles, 20km walk, 50km walk, steeplechase;

Throwing: shot put, javelin throw, discus throw, hammer throw;

Jumping: long jump, high jump, pole vault, triple jump;
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two relay events (4×100m and 4×400m), and the decathlon.
Women first competed at the 1924 Olympics in five events, but in Athens

they competed in twenty-two events (not in the steeplechase and the 50km
walk). Furthermore, women run 100m hurdles (instead of 110m) and compete
in a heptathlon (instead of a decathlon).

For the purposes of our study we selected fourteen events: eight running
events, three throwing events, and three jumping events, as follows:

Running: 100m (D), 200m (H), 400m (D), 800m (H), 1500m (D), 10,000m,
marathon, 110/100m hurdles (DH);

Throwing: shot put (DH), javelin throw (DH), discus throw (D);

Jumping: long jump (DH), high jump (DH), pole vault (D).

The selection was made such that all events that make up the decathlon
(D) and heptathlon (H) are included, supplemented by the 10,000m and the
marathon.

The paper is organized as follows. In the following section we describe
the data and how they were collected. In Section 3 we develop the required
extreme-value theory, and present the limiting distribution of the estimated
quality of a world record (Theorem 1). In Section 4 we apply the theory to
the data and answer our two questions. An appendix contains the proof of
Theorem 1.

2 The data

For each of the twenty-eight events (fourteen for both men and women) we
collected data of the personal best of as many of the top athletes in each
event as we could. We emphasize that we are primarily interested in personal
bests and not in the development of the world record. As a consequence, each
athlete appears only once in our list, namely with his or her top result, even if
he or she has broken the world record several times. Our observation period
ends on April 30, 2005.

The data are obtained from two websites, namely a Swedish website com-
piled by Hans-Erik Pettersson,

web.telia.com/∼u19603668/athletics all-time best.htm#statistik,

for the period up to mid-2001, and the official website of the International
Association of Athletics Federations (IAAF),
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www.iaaf.org/statistics/toplists/index.html,

for each year from 2001 onwards. These two sites provide a list of the top
athletes (and their results) per event. The lists of both sites have been merged
and multiple entries of the same athlete have been removed. The Swedish
website provides additional information under the headings ‘doubtful wind
reading,’ ‘doubtful timing,’ and ‘subsequent to drugs disqualification.’ These
concern records not recognized by the IAAF, and consequently not included
in our lists. The same applies to information under the heading ‘hand timing,’
times clocked by hand in a period when electronic timing was available. These
records are also not recognized by the IAAF and not included by us. Times
clocked by hand from the period when electronic timing was not available
are recorded with a precision of 0.1 seconds (rather than 0.01 seconds) and
have been interpreted to be exact to two decimal places. For example, a
hand-clocked time of 9.9 seconds is recorded by us as 9.90.

The raw data thus consist of six lists per event: one for the period up
to mid-2001 from the first website, and lists for 2001–2004 and 2005 (until
April 30) from the second website. We considered the worst performance in
each of the six lists. The best of these worst performances was taken as the
lower bound for each event. This guarantees that there are no ‘holes’ in the
combined list. Next we removed all multiple entries of the same athlete, so
that each athlete appears only once with his or her personal best. The end
result is a list per event of top athletes with their personal bests. Table 1 gives
an overview of the number of athletes per event and the depth covered. The
data consist of about 10,000 observations for the men and 7000 observations
for the women. On average, we have about twice as many observations for
the running events than for jumping and throwing. Especially the number
of observations for the throwing events (on average 383 for the men and 241
for the women) is on the low side.

All distances in the jumping and throwing events are measured in meters,
and the more meters, the better. All times in the running events are measured
in seconds, and the fewer seconds, the better. This discrepancy is somewhat
inconvenient and we thus transformed running times to speeds, so that the
higher the speed, the better. Thus, 10.00 seconds on the 100m is transformed
to a speed of 36.00 km/h.

Some data occur in clusters, especially in the shorter distances such as
100m. These clusters occur not because the actual times are the same, but
because the timing is imperfect. Since these clusters can cause problems in
the estimation, we ‘smoothed’ these data. For example, suppose m athletes
run a personal best of d = 10.05 seconds on the 100m. Then we smooth
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Men Women
Event depth worst best depth worst best
100m 970 10.30 9.77 578 11.38 10.49
110/100m hurdles 805 13.83 12.91 432 13.20 12.21
200m 780 20.66 19.32 561 23.14 21.34
400m 658 45.74 43.18 538 52.02 47.60
800m 722 1:46.61 1:41.11 537 2:01.05 1:53.28
1500m 781 3:38.74 3:26.00 531 4:09.03 3:50.46
10,000m 1239 28:30.03 26:17.53 876 33:04.00 29:31.78
marathon 1546 2:13:36 2:04:55 1024 2:36:06 2:15:25
shot put 392 19.80 23.12 223 18.42 22.63
javelin throw 422 77.00 98.48 279 54.08 71.70
discus throw 335 62.84 74.08 222 62.52 76.80
long jump 629 8.00 8.95 434 6.61 7.52
high jump 436 2.26 2.45 392 1.90 2.09
pole vault 512 5.50 6.14 407 4.00 5.01

Table 1: Data summary.

these m results over the interval (10.045, 10.055) by

dj = 10.045 + 0.01
2j − 1

2m
(j = 1, . . . , m).

3 Extreme-value theory

Consider one athletics event, say the 100m for men, and let X1, X2, . . . , Xn

denote the personal bests of all n male 100m athletes in the world. The
precise definition of ‘athlete’ is left vague, and therefore the definition and
possible measurement of n is difficult. Clearly n is much larger than the
‘depth’ in Table 1, which refers only to the top athletes (in this case 970).
Fortunately, the value of n turns out to be unimportant.

We consider these n personal bests as i.i.d. observations from some dis-
tribution function F . Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the associated order
statistics, so that Xn,n denotes the world record. (Recall that we transform
running times to speeds, so that the higher the jump, the farther the throw,
and the higher the speed, the better.) As an analogue to the Central Limit
Theorem for averages, we know that if the maximum Xn,n, suitably centered
and scaled, converges to a nondegenerate random variable, then sequences
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{an} (an > 0) and {bn} exist such that

lim
n→∞

Pr

(
Xn,n − bn

an

≤ x

)
= Gγ(x), (1)

where
Gγ(x) := exp

(−(1 + γx)−1/γ
)

for some γ ∈ R, with x such that 1+γx > 0. (By convention, (1+γx)−1/γ =
e−x for γ = 0.) If (1) holds, then we say that F is in the max-domain of
attraction of Gγ; γ is called the extreme-value index. This will be the main
regularity condition on the right tail of F . Note that (1) implies (by taking
logarithms) that

lim
t→∞

t
(
1− F (atx + bt)

)
= − log Gγ(x) = (1 + γx)−1/γ, Gγ(x) > 0, (2)

where t now runs through R+ and at and bt are defined by interpolation. We
may take bt = U(t) with

U(t) :=

(
1

1− F

)−1

(t) = F−1

(
1− 1

t

)
(t > 1),

where ‘−1’ stands for the left-continuous inverse.
We need to estimate γ, at, and bt. Let, for 1 ≤ k < n,

M (r)
n :=

1

k

k−1∑
i=0

(log Xn−i,n − log Xn−k,n)r (r = 1, 2).

We consider two estimators for γ ∈ R. The first is the moment estimator

γ̂1 := M (1)
n + 1− 1

2

(
1− (M

(1)
n )

2

M
(2)
n

)−1

;

see Dekkers, Einmahl, and de Haan (1989). The second, γ̂2, is the so-called
maximum likelihood estimator; see Smith (1987). Next we define the follow-
ing estimators for an/k and bn/k:

âj := âj, n/k :=

{
Xn−k,n M

(1)
n (1− γ̂j) if γ̂j < 0

Xn−k,n M
(1)
n otherwise

for j = 1, 2, and
b̂ := b̂n/k := Xn−k,n .
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Observe that bn/k = U(n/k), and that b̂ is just its empirical analogue.
This paper has two purposes. The first purpose is to estimate the right

endpoint
x∗ := sup{x | F (x) < 1}

of the distribution function F , that is, the ultimate world record. When
estimating the endpoint we assume that γ < 0; note that x∗ = ∞ when
γ > 0. It can be shown that condition (1) is equivalent to

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
(x > 0). (3)

For large t we can write heuristically

U(tx) ≈ U(t) + a(t)
xγ − 1

γ
.

Since γ < 0, this yields, for very large x and setting t = n/k,

x∗ ≈ U
(n

k

)
− a

(n

k

) 1

γ
.

We therefore estimate x∗ with

x̂∗j := b̂− âj

γ̂j

(j = 1, 2), (4)

when γ̂j < 0, and x̂∗j := ∞ otherwise.
Under appropriate conditions, including (1) and k → ∞, k/n → 0, as

n → ∞ (x̂∗2 also requires γ > −1/2), these estimators are consistent and
asymptotically normal estimators of x∗. In particular, for x̂∗1 we have under
certain conditions

√
k(x̂∗1 − x∗)

â1

d−→ N

(
0,

(1− γ)2(1− 3γ + 4γ2)

γ4(1− 2γ)(1− 3γ)(1− 4γ)

)
;

see Dekkers, Einmahl, and de Haan (1989, p. 1851). The estimation of
extreme quantiles and endpoints has been thoroughly studied; see de Haan
and Ferreira (2006, Chapter 4) for a detailed account.

The second purpose of this paper is to assess the quality of the world
record. We measure this quality by n(1 − F (Xn,n)), which is the expected
number of exceedances of the current world record Xn,n (conditional on this
world record), if we take n i.i.d. random variables from F that are inde-
pendent of the Xi. The lower this number, the better is the world record.
It might seem more natural to measure the quality of the world record by
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x∗ −Xn,n . This quantity can be infinite, however. Moreover, and more im-
portantly, it does not take into account the tail behavior of F . Observe that
our measure of quality is equal to n(F (x∗)− F (Xn,n)).

From (2), with atx + bt = Xn,n and t = n/k, we have heuristically,

n(1− F (Xn,n)) ≈ k

(
1 + γ

Xn,n − bn/k

an/k

)−1/γ

.

Hence we ‘estimate’ n(1− F (Xn,n)) by

Qj := k

[
max

(
0, 1 + γ̂j

Xn,n − b̂

âj

)]−1/γ̂j

(j = 1, 2);

see Dijk and de Haan (1992) or de Haan and Ferreira (2006, Chapter 4). It
is important to observe that Qj can be computed without knowing n.

We will need a second-order refinement of the so-called domain of attrac-
tion condition (1), phrased in terms of U as in (3). We assume that there
exists a function A of constant sign satisfying limt→∞ A(t) = 0, such that for
x > 0:

lim
t→∞

U(tx)−U(t)
a(t)

− xγ−1
γ

A(t)
=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
(5)

with ρ ≤ 0, where we interpret (x0 − 1)/0 as log x. We now present the lim-
iting distribution of Qj, the estimated quality of the world record. A proof
of Theorem 1 is presented in the Appendix.

Theorem 1: Let γ > −1/2. Let F be continuous and assume that U
satisfies the second-order condition (5) with ρ < 0. Assume further that
k →∞, k/n → 0, and

√
kA(n/k) → λ ∈ R, as n →∞. Finally assume that

the three random variables

√
k

(
âj, n/k

an/k

− 1

)
,

√
k

(
Xn−k,n − bn/k

an/k

)
,

√
k(γ̂j − γ)

are all Op(1) for j = 1, 2. Then,

Qj
d−→ Exp(1) (j = 1, 2)

as n →∞.

We will see in the proof that Qj/[n(1 − F (Xn,n))]
p−→ 1. Hence all the

asymptotic randomness of Qj comes from Xn,n and not from the estimation
of F . We also note that any estimators of an/k, bn/k and γ can be used as
long as the three Op(1) requirements are fulfilled.
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4 World records

We now apply the estimators of the previous section to the data discussed in
Section 2 in order to answer our questions: (a) what are the ultimate world
records, and (b) how good are the current world records?

4.1 Estimation of the extreme-value index

Our first goal is to estimate γ, the extreme-value index, for the fourteen se-
lected athletics events, for men and women respectively. In order to estimate
γ we must first know whether it exists, that is, that relation (1) holds for
some γ ∈ R. We have tested the existence, using Dietrich, de Haan, and
Hüsler (2002) and Drees, de Haan, and Li (2006). The test results indicate
that only the distribution function of two events, namely the pole vault for
both men and women, fails to satisfy relation (1). Hence we drop the pole
vault from our analysis and continue with 13 × 2 athletics events for which
we want to estimate γ.

In general, for estimation problems in extreme-value theory, the estimator
is plotted as a function of k (the number of upper order statistics used for
estimation minus one). It is a difficult practical problem to find a good value
for k to base the estimator on. Typically, for small k the estimator has a high
variance and the plot is unstable; for large k the estimator has a bias. Our
strategy has been to find the first stable region in the plot of the estimator
versus k and to use the corresponding vertical level as our estimate.

This is illustrated in Figure 1, where we plot γ̂1 and γ̂2 as a function of

0 100 200 300 400 500 600 700 800 900 1000
−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure 1: Moment estimator (solid line) and maximum likelihood estimator
(dashed line) versus k for the men’s 100m. The selected estimate is the
dotted horizontal line.
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k in the 100m event for men. We see that both estimators behave roughly
the same and that γ is clearly negative. Drawing such plots for all events
confirms that γ < 0 for the large majority.

It is not immediately obvious from Figure 1 (and similar figures for the
other twenty-five events) what our estimate for γ should be. We therefore also
consider two additional estimators that have good properties when γ < 0.
The first additional estimator,

γ̂3 := 1− 1

2

(
1− (M

(1)
n )

2

M
(2)
n

)−1

,

is simply the ‘second part’ of the moment estimator, since it is well-known
that M

(1)
n (the Hill estimator) is a good estimator when γ > 0. The second

additional estimator has a similar structure:

γ̂4 := 1− 1

2

(
1− (N

(1)
n )

2

N
(2)
n

)−1

,

where N
(r)
n := 1

k

∑k−1
i=0 (Xn−i,n −Xn−k,n)r for r = 1, 2; see, for example, Fer-

reira, de Haan, and Peng (2003).
For every event we looked at the plots of these four estimators and tried

to find the first stable region in k of the estimates. For example, for the

Event Men Women
100m −0.11 −0.14
110/100m hurdles −0.16 −0.25
200m −0.11 −0.18
400m −0.07 −0.15
800m −0.20 −0.26
1500m −0.20 −0.29
10,000m −0.04 −0.08
marathon −0.27 −0.11
shot put −0.18 −0.30
javelin throw −0.15 −0.30
discus throw −0.23 −0.16
long jump 0.06 −0.07
high jump −0.20 −0.22
pole vault — —

Table 2: Estimates of γ.

moment estimator in the men’s 100m such a stable region runs from about
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k = 100 to k = 200. Then we took averages over the region and over the
different estimators. For estimates close to zero or positive we mainly used
γ̂1 and γ̂2. This procedure led to the results in Table 2. We see that indeed
all our estimates of γ are negative, except the one for the men’s long jump.

4.2 The ultimate world records

We now address our first question, namely the estimation of the right end-
point of the probability distribution, that is, the ultimate world record. We
could proceed as for the estimation of γ, by plugging the four estimators of
γ in the definition of x̂∗j (and in âj), j = 1, 2, 3, 4; see (4). For j = 1, 2 these
estimators are shown for the men’s 100m in Figure 2. A much more stable

0 100 200 300 400 500 600 700 800 900 1000
36.5

37

37.5

38

38.5

39

39.5

40

40.5

41

Figure 2: Endpoint estimators (in km/h) versus k for the men’s 100m: mo-
ment (solid line), maximum likelihood (dashed line), fixed γ̂ (dashed-dotted
line). The selected estimate is the dotted horizontal line.

plot, however, is obtained when we replace γ̂j = γ̂j(k) by our (fixed) selected
estimate of γ in Table 2. So, we still plot our endpoint estimator (4) versus k,

but the dependence on k is now only through Xn−k,n and M
(1)
n = M

(1)
n (k); see

the dashed-dotted line in Figure 2. We estimate x∗ on the basis of the latter
plot. This leads to the results in Table 3, where we have transformed the
speeds of the running events back to times. In this table we also present the
current world records for comparison. Note that the data collection ended
on April 30, 2005, but here and in the sequel the world records are updated
until the date on this manuscript. Also in Table 3 a rough estimate of the
standard error of x̂∗, based on the asymptotic normality of x̂∗1 (see Section 3),
is presented.

Since we have assumed that γ < 0, we do not present an estimate for
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Men Women
Event endpoint prec. world rec. endpoint prec. world rec.
100m 9.29 0.39 9.77 10.11 0.40 10.49
110/100m h. 12.38 0.35 12.88 11.98 0.19 12.21
200m 18.63 0.88 19.32 20.75 0.57 21.34
400m — — 43.18 45.79 1.83 47.60
800m 1:39.65 1.44 1:41.11 1:52.28 1.39 1:53.28
1500m 3:22.63 3.31 3:26.00 3:48.33 2.78 3:50.46
10,000m — — 26:17.53 — — 29:31.78
marathon 2:04:06 57 2:04:55 2:06:35 10:05 2:15:25
shot put 24.80 1.25 23.12 23.70 0.86 22.63
javelin throw 106.50 10.30 98.48 72.50 2.99 71.70
discus throw 77.00 2.85 74.08 85.00 8.10 76.80
long jump — — 8.95 — — 7.52
high jump 2.50 0.05 2.45 2.15 0.05 2.09

Table 3: Ultimate world records, their precisions, and the current world
records.

x∗ when the estimate of γ is positive or so close to zero that it is not clear
if indeed γ < 0. This happens in five events: the men’s 400m, and the
10,000m and long jump for both men and women. The relatively high value
of γ̂ indicates that a substantial improvement of the current world record is
possible for these events.

It appears that not much progress is possible in the men’s marathon (only
49 seconds), but much more in the women’s marathon (almost nine minutes).
In contrast, the javelin throw for women appears to be close to its frontier
(80cm), while for the men an improvement of eight meters is possible.

4.3 Quality of the current world records

Our second question relates to the ordering of world record holders by means
of the estimated quality Q of the world record. Essentially this quality is
measured by transforming all twenty-six different distributions to the (same)
uniform (0, n) distribution. For finding Q we use a similar procedure as for
estimating x∗. Again for the men’s 100m, Q1 and Q2 are shown in Figure 3,
as well as a version of Q with γ̂ fixed. We use mainly the latter plot to
find Q. Based on the asymptotic theory of Theorem 1, we present e−Q

(rather than Q itself), which has in the limit a uniform (0, 1) distribution,
thus providing not only a relative but also an absolute criterion of quality.
Since this transformation is decreasing, a higher value of e−Q means that the
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0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

Figure 3: Q versus k for the men’s 100m: moment (solid line), maximum
likelihood (dashed line), fixed γ̂ (dashed-dotted line). The selected estimate
is the dotted horizontal line.

record is better. In Table 4, the values of e−Q are presented for the twenty-six
world records and the corresponding world record holders. Although far from
perfect, some ‘uniformity on (0, 1)’ of the twenty-six values can be observed.
Note that the list is led by the javelin throwers, but in general the various
events as well as the gender are well mixed.

The table demonstrates that a world record can have a high quality while
it can still be much improved (like the marathon for women), but that it
can also be close to its limit while of relatively low quality (like the 100m
hurdles for women). This is due, in part, to the fact that the γ̂ = −0.11 of
the women’s marathon is much higher than the −0.25 of the women’s 100m
hurdles.

We have mentioned before that Q is an estimate of n(1 − F (Xn,n)) and
that Q can be computed without knowing n, the number of all athletes in
the world in a specific event. If we did know n (or if a credible estimate
were available), we could estimate 1 − F (Xn,n), the conditional probability
of achieving a new world record. This would provide an alternative measure
for the quality of the current world record. Since we cannot estimate n,
this alternative measure cannot be computed. If, however, we are willing to
assume that n is the same for all events (which is not unreasonable in this
context), then the relative qualities reported in Table 4 would not change.
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athlete event record year e−Q

Osleidys Menéndez javelin (W) 71.70 2005 0.98
Jan Zelezný javelin (M) 98.48 1996 0.93
Michael Johnson 200m (M) 19.32 1996 0.92
Javier Sotomayor high jump (M) 2.45 1993 0.86
Florence Griffith-Joyner 100m (W) 10.49 1988 0.86
Yunxia Qu 1500m (W) 3:50.46 1993 0.86
Paula Radcliffe marathon (W) 2:15:25 2003 0.86
Marita Koch 400m (W) 47.60 1985 0.78
Jarmila Kratochv́ılová 800m (W) 1:53.28 1983 0.78
Wilson Kipketer 800m (M) 1:41.11 1997 0.74
Hicham El Guerrouj 1500m (M) 3:26.00 1998 0.74
Jürgen Schult discus (M) 74.08 1986 0.74
Florence Griffith-Joyner 200m (W) 21.34 1988 0.74
Michael Johnson 400m (M) 43.18 1999 0.67
Stefka Kostadinova high jump (W) 2.09 1987 0.64
Paul Tergat marathon (M) 2:04:55 2003 0.61
Gabriele Reinsch discus (W) 76.80 1988 0.55
Junxia Wang 10,000m (W) 29:31.78 1993 0.50
Natalya Lisovskaya shot put (W) 22.63 1987 0.50
Randy Barnes shot put (M) 23.12 1990 0.45
Kenenisa Bekele 10,000m (M) 26:17.53 2005 0.33
Yordanka Donkova 100m h. (W) 12.21 1988 0.33
Galina Chistyakova long jump (W) 7.52 1988 0.30
Mike Powell long jump (M) 8.95 1991 0.27
Asafa Powell 100m (M) 9.77 2005 0.25
Xiang Liu 110m h. (M) 12.88 2006 0.20

Table 4: Quality of world records and ordering of world record holders.

Appendix: proof of Theorem 1

We observe first that the continuity of F in conjunction with the probability
integral transform implies that the three random variables

n(1− F (Xn,n)), n(1− Un,n), nU1,n

have the same distribution, where Un,n and U1,n denote the maximum and
the minimum, respectively, of a random sample of size n from the uniform

(0, 1) distribution. It is easy to see that nU1,n
d−→ Exp(1). Therefore the
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same is true for n(1− F (Xn,n)). Thus it suffices to show that

Qj

n(1− F (Xn,n))

p−→ 1,

which in turn is implied if we can show that

R :=
Q̃j

n(1− F (Xn,n))

p−→ 1,

where

Q̃j := k

(
1 + γ̂j

Xn,n − b̂

âj

)−1/γ̂j

(j = 1, 2).

We set p̂ := 1− F (Xn,n) and d̂n := k/(np̂), we write a := an/k and b := bn/k,
and we suppress j in the remainder of the proof (j = 1, 2). Now define

An :=
√

k

(
â

a
− 1

)
, Bn :=

√
k

(
Xn−k,n − b

a

)
, Γn :=

√
k(γ̂ − γ),

and notice from the conditions of Theorem 1 that all three are Op(1).
We first consider the case where γ 6= 0. Rewrite R as

R = d̂n

[
1 +

γ̂

γ

a

â
(d̂γ

n − 1)

(
Xn,n − b

a
· γ

d̂γ
n − 1

− b̂− b

a
· γ

d̂γ
n − 1

)]−1/γ̂

.

Using the facts that Xn,n = U(1/p̂) and b = U(n/k), and defining

S :=

U(1/p̂)−U(n/k)
a

γ

d̂γ
n−1

− 1

A
(

n
k

) , Yn :=
γ̂

γ

a

â
=

1 + Γn

γ
√

k

1 + An√
k

,

we obtain (see also Proposition 8.2.9 in de Haan and Ferreira (2006))

R = d̂n

[
1 + Yn(d̂γ

n − 1)

(
1 + A

(n

k

)
S − γ

d̂γ
n − 1

Bn√
k

)]−1/γ̂

= d̂n

[
1 + Yn(d̂γ

n − 1)
(
1 + A

(n

k

)
S
)
− γYn

Bn√
k

]−1/γ̂

=

[
d̂−γ̂

n + d̂−γ̂
n (d̂γ

n − 1)Yn

(
1 + A

(n

k

)
S
)
− d̂−γ̂

n γYn
Bn√

k

]−1/γ̂

=

[
d̂γ−γ̂

n

(
d̂−γ

n

[
1− Yn

(
1 + A

(n

k

)
S
)
− γYn

Bn√
k

]
+ Yn

(
1 + A

(n

k

)
S
))]−1/γ̂

=: [ T1(T2 + T3) ]−1/γ̂ .
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We have

T1 := d̂γ−γ̂
n = d̂−Γn/

√
k

n = exp

(
− Γn√

k
log

k

np̂

)
p−→ 1.

From (5) with ρ < 0, it follows that S
p−→ −1/(ρ + min(γ, 0)); see de Haan

and Ferreira (2006, Lemma 4.3.5). Hence, A(n/k)S
p−→ 0 and T3

p−→ 1.
Finally we note that

√
k

(
1− Yn

(
1 + A

(n

k

)
S
)
− γYn

Bn√
k

)
= Op(1)

and that
1√
k d̂γ

n

=
(np̂)γ

√
k kγ

p−→ 0.

This implies that T2
p−→ 0 and completes the proof for γ 6= 0.

Next we consider the case γ = 0. By convention, (d̂0
n−1)/0 is interpreted

as log d̂n. Then,

R = d̂n

[
1 + γ̂ log d̂n

a

â

(
1 + A

(n

k

)
S − 1

log d̂n

Bn√
k

)]−1/γ̂

and hence

log R = log d̂n − 1

γ̂
log

(
1 + γ̂ log d̂n

[
1 + Op

(
1√
k

)])
.

It follows that

| log R| = Op

(
1√
k

)
log d̂n + Op(|γ̂| log2 d̂n)

p−→ 0,

thus concluding the proof.

References

Barão, M. I., and Tawn, J. A. (1999), “Extremal Analysis of Short Series with
Outliers: Sea-Levels and Athletics Records,” Applied Statistics, 48, 469–487.

Dekkers, A. L. M., Einmahl, J. H. J., and de Haan, L. (1989), “A Moment
Estimator for the Index of an Extreme-Value Distribution,” The Annals of
Statistics, 17, 1833–1855.



17
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