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Deterministic versus Stochastic Sensitivity Analysis in 
Investment Problems: An Environmental Case Study

Abstract

Sensitivity analysis in investment problems is an important tool to determine which factors can

jeopardize the future of the investment. Information on the probability distribution of those factors

that affect the investment is mostly lacking. In those situations the analysts have two options: (i)

apply a method that does not require knowledge of that distribution, or (ii) make assumptions

about the distribution. In both approaches sensitivity analysis should result in practical information

about the actual importance of potential factors. For approach (i) we apply statistical design of

experiments (DOE) in combination with regression analysis or meta-modeling. For approach (ii)

we investigate five types of relationships between the model output and each individual factor;

Pearson’s D, Spearman’s rank correlation, and location, dispersion, and statistical dependence.

We introduce two distribution types popular with practitioners: uniform and  triangular. In an

environmental case study both approaches identify the same factors as important.

Keywords: sensitivity analysis, experimental design, investment analysis, simulation
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1 Introduction

In practice, investment decisions are often made using the Net Present Value (NPV) criterion; that

is, a necessary condition to accept an investment proposal is that the NPV be non-negative. In this

paper we address the problem of uncertainty in the model’s “inputs” or “factors”. To solve this

problem, risk analysis was introduced by Hertz (1964) and Hillier (1963). That analysis  assumes

a known joint distribution function of the factor values, which is used to estimate the  distribution

of the output, . To obtain this output distribution, analysts use either Monte Carlo (MC) or

a statistical refinement called Latin Hypercube Sampling (LHS); both techniques are available in

software such as @Risk and Crystal Ball (see Buede, 1998; and  Evans and Olson, 1998). An

investment proposal is accepted if , with  decided upon by the decision

makers. In practice, however, most analyses are still deterministic, because either no information

at all or only very limited information is available on the factor distribution. For both the

deterministic and the stochastic problem formulations, a practical question is: Which factors can

make a project go “wrong”; that is, which factors may cause  and 

respectively. Decision makers ask for this type of information to support their decision making

process; see Van Groenendaal (1998b).

One approach to obtain this information applies the statistical theory on design of

experiments in combination with regression analysis or meta-modeling (further referred to as

DOE). DOE shows which individual factors may jeopardize the results, and which factors interact.

In earlier work we reported on the use of DOE in a large investment project; Van Groenendaal

and Kleijnen (1997), and Van Groenendaal (1998a). These references, however, do not show how

reliable this information is for decision making: does it reveal all important factors, in the correct

order of importance? Therefore, we compare the deterministic approach (in which the stochastic

character of factors is not modeled explicitly) with an approach that does account for the

stochastic nature of factors.

In Risk Analysis a similar problem arises. Suppose we have perfect knowledge about the

factor distribution, and have estimated that  holds. Then the next question

is: “Which factors are important, and which are unimportant?”. This question is asked in order

to monitor the project after the project proposal is accepted. Van Groenendaal (1998b) argues

that without information on factor importance the distribution function  is only of very
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limited use to the decision makers, namely, only in case  holds and the project

is rejected. It does not show which factors are important.

Kleijnen and Helton (1999a, b) analyze a problem that - from a mathematical viewpoint - is

similar to our NPV problem. They too wish to detect what effects individual factors have on the

output of their model (which concerns nuclear-waste disposal). They argue that simple linear

regression models per factor can determine monotonic relationships only. Therefore they argue

that additional methods are required. They propose a set of five meta-models and twelve statistical

tests to determine factor importance in the case of stochastic inputs of deterministic simulation

models, which is a setting similar to risk analysis. Their procedure starts with simple models: a

first-order polynomial per factor. If this meta-model is rejected, a monotonic relationship per

factor is assumed and tested. If this relation is rejected, they test location dependence, dispersion

dependence, and statistical dependence between input and output respectively. They stop testing

as soon as a statistically significant relationship is found that can also be explained by “domain”

experts. 

However, we claim that there is no reason to stop testing after the first statistically significant

test. Suppose a number of factors are identified by the first test. If a factor is identified as

important by subsequent tests and other factors are not, the relation between this factor and the

output requires more thorough  analysis. After all, the objective of the tests is to identify which

factors to focus on in the sensitivity analysis, and during project implementation.

The goal of this paper is to investigate if DOE and Kleijnen-Helton’s procedure may lead to

different results. We use a case study concerning a simulation model developed for the NPV

analysis of a biogas plant in China (ADB, 1996). We apply both the deterministic and the

stochastic approach. For the stochastic approach we assume perfect knowledge about the joint

factor distribution function. Next we perform a robustness analysis, i.e., we use different factor

distributions, and analyze how this change affects the results of the Kleijnen-Helton procedure.

Another way to look at the two approaches is to compare their use of scenarios

(combinations of input factors) to generate information. Risk analysis uses a random selection of

scenarios (likely as well as unlikely) to generate information. Besides the base case scenario, DOE

uses extreme points of the experimental area to generate information, which can be interpreted

as a non-random selection of scenarios. The result of DOE may be that some factors are

overemphasized in decision making, whereas others are neglected. One of the goals of this paper
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is to examine the validity of such a DOE analysis. Both methods, however, have the same goal:

determine which factors are important.

The remainder of this paper is organized as follows. Section 2 discusses the two approaches

in more detail. Section 3 reviews the NPV case study. Section 4 applies DOE. Section 5 applies

the Kleijnen-Helton approach. Section 6 compares the results. Section 7 contains conclusions.

2 Tests for Sensitivity Analysis

The goal of sensitivity analysis is to determine which factors within the total set of factors in the

model should be the focus of attention; that is, which factors have really important effects on the

output. In an investment model the important factors are the factors that may jeopardize a positive

. A typical investment model has an evaluation period of more than ten years, and for many

factors there is no historic information to estimate future factor values. Therefore practitioners

often treat investment project analysis as a deterministic problem.

In DOE information on the effect of factor changes on the  is obtained by simulating (a

subset) of the extreme points of the parameter space, and estimate a linear regression (meta)model

to detect which factors are important. This approach also allows us to search for interactions

between important factors. Although large investment problems are influenced by many factors,

the nature of the problem allows us to analyze the effect of “composite” factors which act as a

“funnel” (Van Groenendaal, 1998b). For example, total investment costs depend on many factors.

At the highest aggregation level, however, we can restrict the analysis to the effect of total

investment costs without bothering about the many factors that influence total investment. If this

factor is important, the effect of the main factors within total investment (construction costs and

material costs) can be analyzed next, etc. In many cases decision makers are actually interested

in main categories only and not in details, because the latter become important only in the detailed

engineering phase, which is mostly performed after the actual investment decision has been taken.

Kleijnen and Helton (1999a, b) try to find patterns in scatter plots of model output versus

each factor separately. A first impression of how a stochastic input affects an output can be

obtained through a scatter plot; an example is given in Figure 1. They distinguish five types of

relationships, for which they apply a number of tests:

(i) Correlation analysis using Pearson’s D for the pairs (X , Y) with output Y and factor X , k =k k
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1,  ... , K; K denotes the number of factors. If  is bivariate normally distributed, then 

 and . Let N denote the sample size in the MC or LHS sample; for

example, in Figure 1 N = 500, and in our case study K = 14. In Figure 1 we display only 1

of the 14 factors. Note that each sampled vector of K factors (x , ... , x  ,... , x ), i = 1, ...,1i k,i K,i

N, is input to the deterministic simulation model, and gives a scalar value y  for Y. Thei

significance of the correlation is tested by Student’s statistic.

(ii) Monotonic relations estimated through Spearman’s rank correlation, and tested through an

approximate normal distribution (Conover, 1999, pp. 314-319). For this test the x  arek,i

replaced by r(x ) = 1 for the smallest x , r(x ) = 2 for the next smallest value of x , etc. Thek,i k,i k,i k,i,

same is applied to y . Then the pairs (r(x ), r(y )), i = 1,...,N, are formed and the monotonici k,i i

relationship is tested.

(iii) Location of Y dependent on X , as follows. k

a. Common means. Kleijnen and Helton divide the domain of x into ten classes. Assuming

that the conditional distribution of Y on x  is approximately normal, they apply the classick

ANOVA F-statistic to test whether or not the conditional means E(Y| X =x ) depend on x.k k

b. Common locations or Kruskal-Wallis test. Assuming identical conditional distributions for

Y, they apply the Kruskal-Wallis rank test for E(r(Y| X =x )), where r(Y| X =x ) denotes thek k k k

rank of Y given X  = x  (Conover, 1999, p. 288)k k .

c. Common medians. To test whether the different classes of input X  have different mediank

values for Y, they apply the chi-square test for contingency tables; Conover (1999, pp. 218-

224).

(iv) Dispersion of Y dependent on X , tested by the ANOVA F-statistic after jackknifing thek

variances, and by the chi-square contingency table statistic for interquartile ranges. The latter

test is formulated by Kleijnen and Helton (1999a, b), based on the quantile test mentioned

in Conover (1999, p. 223).

(v) Statistical dependence between the factor X  and output Y, tested by a chi-square contingencyk

statistic. For this we partition the domain of X  and Y into ten classes.k

For these five types of relationships Kleijnen and Helton (1999a, b) calculate the critical value,

also known as the probability value or p-value: the smallest value of  at which the null-

hypothesis would be rejected (Type I error) for the observed value of the test (Iman and Conover,

1983, p. 279).
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Note, Kleijnen and Helton apply twelve tests in total, whereas we apply only eight tests. We

neglect their standardized regression and standardized rank regression tests, because they lead to

results very similar to the Pearson and Spearman correlation tests. They also apply two tests on

partial correlation coefficients. However, we agree with Conover (1999, p. 327) that this concept

is difficult to grasp and hard to interpret. For this reason we do not repeat these tests here.

3 An environmental Case Study: A Chinese Biogas Plant

The Chinese government sees large-scale biogas production as an opportunity to solve several

problems simultaneously, namely: (i) the lack of energy in rural areas, (ii) the pollution of the

environment by large breeding farms, and (iii) the lack of fertilizer for the agricultural sector.

Large-scale biogas digesters produce a convenient form of energy (biogas), while recycling the

manure of one or more breeding farms. The residuals of this production process can be used as

fertilizer in the production of vegetables, and as an addition to fodder for other stock, such as,

pigs, fish, and prawns. A number of factors affect the profitability of investing in large scale

biogas. To analyze these factors we formalize the problem as follows.

The investment is in a large scale bio-digester with an annual rated or design production

capacity of

where  is a vector of system outputs, with  biogas,  liquid sludge, 

fertilizer, and  regenerated fodder;  is a non-specified production function (with multiple

inputs and multiple outputs);  is the investment amount;  denotes labor,  is the vector of

other inputs (desulfurizer and water);  is the vector of energy inputs (electricity, coal, and diesel

oil); and   are the three raw materials used in production, namely cow dung

, chicken dung , and industrial waste , all expressed in metric tons. The investment

amount  follows a fixed scheme, and is zero in most years. (We suppressed the time index in all

equations that are not dynamic.) The time period studied is  with  the length of the

evaluation period; after   periods the salvage sum is assumed zero.

The design capacity  is achieved under good management practice, but such practice is

often lacking. Therefore we introduce the actual production capacity
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(1)

where  is a vector of efficiency rates (mostly, but not necessarily, smaller

than 1), which can be improved through better management.

The annual sales value of the output is

with  the vector of output prices. The price of biogas  is

strongly correlated with the prices of other energy sources. The prices for liquid sludge ( ),

fertilizer ( ), and regenerated fodder ( ) depend on the composition of raw materials

. A higher usage of industrial waste decreases the value of the end products

, , and .

The annual operating costs are 

with  the price of labor,  the vector of prices of intermediary inputs,  the vector of

prices for energy inputs, and  the vector of raw material prices. 

The annual net benefits of the investment are

where  represents the avoided indemnities and damages to the environment that result from the

investment;  avoided indemnities are a benefit because without the investment they would have

to be paid to the government.

The net present value at time t  (“now”) is0



PI NPV

NPV

NPV

Z

(0.808 , 0.114, 0.078)T

j3
i'1 Zi

PI
TI

A

PL

P T
M' ( PW , PD )

PQ1

P T
E ' (Pelectricity , Pdiesel oil , Pcoal )

( Q2 ) ( Q3 ) ( Q4 )

( PQ2
, PQ3

, PQ4
)

J1 m 3
gas/m

3
digester

"2 "3

("1 , "2 , "3 ) "2 "3 "2

8

where  is the price of the investment. This  is used to evaluate the investment. 

If all variables are at their base case value (see below), the  in (1) turns out to be 2.56

million Yuan, so the project is justified financially. There are, however, a number of factors that

may affect the . For this study we consider the following eight factors; for convenience we

also give their base values.

1. The shares of the different inputs in the total , for which the vector of base values is

.  

2. The total amount of annual input ; base value is 31,000 metric ton.

3. The total investment costs ; base: 4,961,000 Yuan and a building time of one year.

4. Environmental benefits ; 564,900 Yuan per year. 

5. The prices of labor ; 4,200 Yuan per year, and the intermediary inputs water and

desulferizer ; (0.48;2,034) Yuan per unit.

6. The price of biogas ; 0.8 Yuan/m , and the prices of the other energy inputs electricity,g
3

diesel oil, and coal ; (0.375, 1780, 285) Yuan per unit.

7. The prices  of the post-processing output liquid sludge , fertilizer , and fodder 

;  (1.627, 813.7, 537.0) Yuan per unit.

8. The efficiency of the biogas installation; its base value is 1.029 .

3.1 Factor Uncertainty

We set magnitudes for the possible changes in the base values listed above, as follows. For the

factors 1, 2, 5, and 7 we set the maximum changes at ± 20%. For factor 3 the change is ± 25%,

based on our previous experience. Factor 4 contains 209,900 Yuan per year of avoided damages,

but these are highly uncertain. So we set the change of avoided damages at ± 50%. Given the

current law, the indemnities are assumed fixed. For factor 6 we vary the price of biogas by ± 25%,

whereas we vary the other energy prices by ± 20%. (The difference in price variation is due to

differences in quality between biogas and other fuels.) We vary the efficiency of factor 8 by ±

17%, a value obtained from operating other digesters.

Note that factor 1 actually comprises two factors, factors 1a and 1b: the share of chicken dung

(say)  and the share of industrial waste  in the total annual input (the sum of all shares

 equals 1). We vary  and  in the same way; that is, if  is at its maximum
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(minimum) than so is ; hence in DOE the two components are treated as a single factor. In the

same way factor 6 comprises four factors, and factor 7 three factors. In the Kleijnen-Helton

analysis these factors will be treated as different factors, but they will be made correlated. So in

total there are fourteen factors for the stochastic approach (eight in DOE).

We have no other information besides the ranges of the factor values. This lack of more

specific information may be quantified through uniform marginal factor distributions, with the

range as support for these distributions. (Such uniform distributions are called non-informative

prior distributions in Bayesian analysis.) For the Kleijnen-Helton analysis this leads to the

following stochastic structure.

1. The input shares  and  are uniformly and independently distributed, with

 and .

2. The amount of total input  is uniformly distributed over the range of  around the base

case value.

3. The investment costs  are uniformly distributed .

4. Environmental benefits  are uniformly distributed on .

5. The prices  of the intermediary inputs are uniformly distributed , with correlation

coefficients of one, so they act as a single factor as they did in the DOE approach.

6. The variation in the prices of energy inputs   are correlated with the

price of biogas . The price of biogas is uniformly distributed , the other energy

prices are uniformly distributed , and the correlation coefficients between all individual

prices are assumed to be 0.8. The four energy prices  are further

called factors 6a through 6d. 

7. The prices  of  the post-processing output liquid sludge , fertilizer

, and fodder , called factors 7a, 7b, and 7c, are uniformly distributed . Since

liquid sludge and fertilizer are partly substitutes, their correlation coefficient is set at 0.8,

whereas the correlation coefficient with fodder is set at 0.6. 

8. The efficiency of biogas production, , is uniformly distributed .

 4 Deterministic Sensitivity Analysis through DOE

For the deterministic investment model we denote the eight factors by   ( );
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(2)

for these  we consider only three values: -1, 0, and 1, where  -1 denotes the low value of the

range, 0 denotes the base case value, and 1 denotes the high value of the range. In a so-called star

design all factors, except one, are kept zero (the star design is a one-factor-at-a-time design). For

the specific star design given below, we added 10% to (subtracted 10% of) the high (low) value

of the range.

To analyze the effects of the eight factors, we select an unreplicated central composite design

(CCD) including a  design (Montgomery, 1991). The star design comprises the 16 axial

points, two for  each factor i,   and  plus the

central point   . This design has 81 data points: 64 points of the

design, and the 17 points of the star design. This CCD gives unbiased estimators of the main

effects , the two-factor interactions , and the quadratic effects  in 

where stochastic variables are underlined. 

The result of our analysis is given in Table 1: All main effects turn out to be significant and

there are ten significant two-factor interactions, and no significant quadratic effects.  is high:

0.98. 

Because the CCD uses extreme points of the experimental area, it is not reasonable to assume

that the error or residue term  in (2) will be normally distributed. To test normality of the

residues we applied Wald’s statistic on skewness and kurtosis, and a combined test (Greene, 1993,

pp. 309-311). All three statistics are  distributed. The statistics turn out to be highly significant,

so the assumption of normality of the residues has to be rejected. Therefore, we cannot use the

F-test on model reduction that is,  (Kleijnen, 1987, pp. 155-57). To test for model

reduction, we first used the limiting distribution of Wald’s statistic

 (3)

which converges to a chi-square distribution with degrees of freedom equal to the rank of the

matrix R (Greene, 1993, pp. 300-301). In (2) there are (1 + 8 + 8x7/2 +8=) 45 coefficients, of

which 26 are assumed to be zero. This model reduction is accepted: the value of W is only 6.68
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( ). 

However, this Wald statistic on model reduction assumes homoscedasticity. Because we

simulate extreme points, this assumption may not hold. So next we tested the model reduction

assuming heteroscedasticity. Let  be the vector of squared estimated  residues,

with m the number of observations (in our case study m = 81), and let  denote an estimated

covariance matrix with  on the main diagonal and zeroes elsewhere. Wald’s

statistic for the heteroscedastic model is  

(4)

which has the same chi-square limiting distribution as before. The value of W turns out to be 17.9,

so the model reduction is again accepted. 

Further reduction leads to significant W-values for both tests, which indicates that assuming

homoscedasticity is permitted here. In summary, Wald’s test on model reduction indicates that out

of the 45 effects in (2) 19 (the constant, 8 main effects, 10 two-factor interactions, and no

quadratic effect) are significant, see Table 1.

TABLE 1 ABOUT HERE

Table 1 further shows that the grand mean  is almost equal to the base case

value (namely NPV = 2,557,937 Yuan). Equation (2) in combination with Table 1 implies that at

the center of the design ( ) the metamodel correctly “predicts” the

simulation outcome. Further, all main effects have the signs expected by experts. Their absolute

values indicate their relative importance (because we standardized: ), assuming  the

experimental area (the combination of factor ranges) is chosen correctly (see Kleijnen and Van

Groenendaal, 1992, pp. 177-178).

5 Stochastic Sensitivity Analysis through the Kleijnen-Helton Approach

To implement the simulation of the NPV model with stochastic inputs, we use the spreadsheet

software Excel, combined with Crystal Ball’s risk analysis. We apply LHS with N = 500
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simulation runs. The Lilliefors test for normality (Conover, 1999, p 443) of the 500 observations

does reject the assumption of normality, in contrast with what most theorists expect. 

Figure 1 shows a scatter plot of the amount invested (X ) and the NPV (Y). The Kleijnen-3

Helton analysis tries to find what type(s) of relationships can explain this scatter plot (and others);

that is, what type of  relationships are there between investment and NPV? So we test the five

relationships of § 2, using the eight statistical tests mentioned. The results are as follows (also see

Table 2).

(i) The Pearson Correlation coefficient, indicating a linear relationship between input and

output, is significant at the 5% level for twelve of the fourteen factors. The p-values and the

Student test results in Column 1 of Table 2 may deviate slightly, because the p-values are

based on an approximation (Press at al., p. 631 ).

(ii) The Spearman Rank Correlation coefficient, indicating a monotonic relationship, gives a

pattern similar to the Pearson correlation; only the order of factors 7a and 1a has changed.

(iii) The location of Y depends on X . This hypothesis is tested through the following three tests.k

Common means. The ANOVA F-test is significant for nine of the fourteen variables; namely

the factors 6a through 7c. The Kruskal-Wallis rank test gives the same nine factors as the test

on common means does, but in a slightly different order. Finally, the test for Common

medians gives significant results for the same nine factors as the other two tests on location,

but again in a different order.

(iv) Dispersion of Y depends on X . The test on common variances indicates that only two factorsk

have significant effects, namely 8 and 7c. Only one factor is significant, namely factor 6a,

using the test on common interquartiles. These two tests use related, yet different variability

measures. They give quite different conclusions, e.g., factors 8 and 7c may affect the

variances, likewise, factor 6a may affect the interquantiles.

(v) Statistical independence. Eight factors give significant dependence between X and Y. (We

also partitioned the domain for Y and X  into five instead of ten classes, but this did notk

change our conclusions.)

TABLE 2 ABOUT HERE

Comparing the results of the various tests shows that all eight tests lead to significant results at
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the 5% level. (Increasing the level to 10% or 25% does not alter this conclusion noticably; not

displayed in Table 2.) To see if the tests result in roughly the same factor ranking (identify the

same factors as important), we calculate the top-down correlation, defined by Iman and Conover

(1987) as follows. 

The top-down correlation uses the Savage scores  of input X : if X  is ranked (say) h byk k

a test, then . We have 14 variables, so the maximum score is  =

and the minimum score is . We can form the 14 by 8 matrix S =

(S , ... , S ) of scores with S  = (s , ..., s )  the vector of scores of the fourteen input variables1 8 i i,1 i,14
T

X  according to test i. For this S we then calculate the classical Pearson correlation coefficientsk

for the pairs (S , S ), i = 1, ... , 7 and j = i + 1, ... , 8; see Table 3 above the diagonal. Again wei j

test the significance of these correlations by p-values using  = ,

where erfc is the complementary error function defined in Press et al. (1992, p. 631). These p-

values are displayed below the diagonal in Table 3. For example, the correlation between the

ranking according to tests 2 and 3 is 0.991 (which is in cell {2, 3}), and the corresponding p-value

is 0.0004 (in cell {3, 2}). Table 3 shows that the correlations between the significant test results

are high and significant; i.e., the tests give roughly the same important factor lists.

In the Kleijnen-Helton analysis we used  uniform distributions. To examine the effects of

these distributions, we repeat the analysis with symmetric triangular distributions. For every

factor the base value is taken as the midpoint of the triangular distribution, and the low and high

value as the minimum and maximum. We do not report the full analysis, but the main conclusions

only:

i) In almost all cases the significant factors are the same as in Table 2; that is, the tests show

the same pattern of statistically significant results.

ii) The tests indicate the same factors as important, although there is a difference in  ranking.

In Table 2, factor 8 seems  more important than factors 3 and 2, but this is the other way

around for triangular distributions. We test the results for uniform versus triangular

distribution, using the Iman-Conover top-down correlation; see Table 4, upper part. The

correlations for six tests are significant (but all less than 1).

In each experiment (uniform and triangular) all factors have the same distribution. To analyze the

effect of different distribution types, we use uniform distributions for all factors except for factor

4; for this factor we use the triangular distribution with the midpoint identical to the maximum
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value (asymmetry). The effects of this change are moderate; see Table 4 center part. 

Finally, we use symmetrically triangular distributions for all factors except for factor 4; for

this factor we use again the asymmetric triangular. The same six tests as under ii) give significant

results and identify the same factors as being important, but again in a slightly different order. The

Iman-Conover top-down correlations are significant - see Table 4, lower part -, indicating that

changes in the distributions are important, but do not necessarily lead to completely different

results.

6 Comparing DOE and Kleijnen-Helton approach

Both the deterministic and the stochastic approaches can rank factors in order of “importance”.

The question is: do both methods lead to the same ranking? In our case study, DOE indicated that

all factors are important (§ 4). One way to rank the factors according to DOE is by looking at the

absolute values of the main effect. For example, factor 3 would then be the most important factor

followed by factor 6; see Table 1. However, interaction effects are then neglected, and these can

be substantial. We therefore  calculate the effect of factor i as the absolute value of its main effect

plus the most favorable outcome of the significant interactions between factor i and the other

factors. For example, to calculate the effect of factor 5 we assume X  = -1,  X  = 1, X  = 1 and all1 2 5

other factors are zero. The effect of factor 5 is calculated as |-264,147 - 43,461 - 46,371| =

353,979. This combination of main effects and two-factor interactions leads to the following order

of importance: factors 6, 8, 2, 3, 4, 1, 7, 5. The contributions of the first four factors ranges

between 1.235 and 1.353 million Yuan, which indicates that these factors are roughly of the same

importance.  The effect of the next most important factor (factor 4) is only half that size (0.645

million Yuan), and the least important factor (factor 5) is about 25% of that of the most important

factors (0.354 million Yuan). 

Returning to the Kleijnen-Helton analysis, we now use the significant test results in Table 2.

Then clearly the five most important factors are 6, 8, 3, 2, and 4 (which are significant in six of

the eight tests). So the tests give almost the same order of importance as DOE does; however,

they do not differentiate among factors. DOE clearly indicates that the factors 6, 8, 3, and 2 are

more important than factor 4. 

Is one approach superior? Certainly not. Apparently DOE can be used to indicate important
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factors when no information on the factor distributions is available. An advantage of DOE is that

it directly quantifies the magnitude of the effects, which is valuable information for decision

makers. The Kleijnen-Helton approach does indicate the same factors as important, but with no

information on the magnitude. It does indicate the order through the p-values. This may, however,

be hard to interpret by non-statisticians. The Kleijnen-Helton approach does, however, result in

detailed information on the nature of the relationship between the inputs and the output.

Furthermore, the limited size of the case study and the fact that several sets of factors can be

identified that are strongly related (for example, factor 6, energy prices) favor DOE. When the

number of factors increases, DOE requires more runs. Actually, we applied a resolution V design,

but when the number of factors further increases this may not be feasible. Kleijnen and Helton

(1999) analyzed 75 factors. DOE for 75 factors would require much more work and a resolution

V design would not be feasible. DOE does on the other hand offer screening methods to deal with

very large numbers of factors; for example Bettonvil and Kleijnen (1997) study 281 factors (also

see Campolongo et al. (2000)).

Investment analysis uses the NPV < 0 as its criterion. Therefore, it is worthwhile to look at

the number of times NPV < 0 occurs in both approaches. In DOE 9 of the 81 (11.1%) data points

are negative. In the stochastic simulation with uniform distributions,  is less than 1%.

To see if this low probability is by accident, we simulated the problem several more times; in all

cases  was less than 2%. The same holds for the simulation with the symmetric

triangular distributions. These results may tempt to conclude that the chance that the project goes

wrong, is very small. However, we should be cautious. Because we have no information on the

exact form of the factors’ probability distributions, the estimation of the tail of the NPV

distribution is likely to be sensitive to specification errors. To check this, we simulated the model

with asymmetric triangular distributions with midpoints identical to the extreme value that has a

negative effect on the NPV. In this case  is 10.26 %, which is similar to DOE.

7 Conclusion

In practice, NPV calculations are made for the base case scenario, using the NPV formula

displayed in (1). Analysts and clients are aware of the fact that other scenarios may materialize

during the life span of the investment. The aim of sensitivity analysis in investment analysis is to
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determine which factors are important and need to be made more precise during the investment

analysis and to be monitored more carefully during the construction phase. 

Mostly factors are unknown or stochastic by nature. We presented a case study where the

only information on the stochastic nature of the factors was the range over which factors vary and

the most likely (base case) value. The further analysis depends on whether or not it is reasonable

(or necessary) to assume knowledge on the joint probability function of the factors. We compared

two approaches: (i) DOE (design of experiments in combination with regression analysis), which

assumes no knowledge on the joint probability distribution of the factors except for their ranges,

and (ii) an approach developed by Kleijnen and Helton, which assumes the joint probability

distribution is known. The two approaches were applied to a case study, namely a model of an

investment problem in a large scale biogas plant in China. 

In case the analyst is not prepared to make assumptions about the factor distributions, DOE

can be applied to identify important factors. Efficient sensitivity analysis is possible if the

simulation model implies an I/O transformation that can be approximated by a first- or second-

order polynomial in the factors, such as the second-order polynomial in eq. (2). DOE implies that

extreme or unlikely scenarios are investigated, namely ‘corners’ in the space of factor values. We

used an un-replicated central composite design to obtain data on the changes of NPV due to factor

changes. Estimation of eq. (2) was not straightforward, because the assumption of a normally

distributed error term will in general not be met. This was corroborated by Wald’s statistics on

skewness, kurtosis, and a combined test of the residuals. We therefore used Wald’s statistics for

model reduction in case of homo- and heteroscedasticity.

Several scenarios result in negative NPV values, indicating that some factors or rather factor

combinations can jeopardize the investment. Eight main effect and ten two-factor interactions

were identified as important; this is valuable information for the analyst and the client.

In case the analyst is prepared or obliged (by the client) to make assumptions on the joint

probability distribution of the factors, we can apply a stochastic approach to identify important

factors developed by Kleijnen and Helton. They  analyze scatter plots of individual factor values

versus model output. In this setting every combination of draws from the marginal  probability

distributions is a scenario, which may or may not be a likely one. Kleijnen and Helton identified

five types of relationships between output and factors: linear, monotonic, location of output

depends on factor, dispersion of output depends on factor, and statistical dependence of output
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and factor. They give twelve tests to see what relationships are present; we applied eight of their

tests.

For the factor distributions we introduced two assumptions popular with practitioners:

uniform and triangular marginal distributions. The factor ranges used in DOE, are also used to

support the uniform marginal distributions. Triangular marginal distributions, with the mode at the

base case value, are often used when analysts and clients feel that the base case value is more

likely than the extreme values. 

For both types of probability distributions the Kleijnen-Helton approach indicates that three

types of relationships are significant in the case study: linear, the location of the output depends

on particular factors, and there is statistical dependence between the output and factors.

To investigate the effect of the assumed factor distributions, we also introduced a mix of

thirteen uniform and one triangular distribution. The same factors are found to be important. 

In all stochastic analyses  the probability of a negative NPV is small (less than 2%). However,

this result needs to be interpreted with care. A simulation with asymmetric triangular marginal

distributions shows that the 2% becomes 10%.

In the case study, DOE and the Kleijnen-Helton approach identify the same factors, in almost

the same order. DOE, however, indicates possible interactions between factors, whereas the

Kleijnen-Helton approach analyzes the relation between individual inputs and outputs only. In case

of investment projects, however, information on interactions is valuable. 

A disadvantage of DOE is that it takes many more runs when the number of factors increases.

The Kleijnen-Helton approach is more robust in this respect.
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Table 1: Regression meta-model based on an unreplicated central composite design; only
estimates significant at "  = 0.05 are displayed 

Coefficient Estimate Coefficient Estimate

2,558,301 61,967

309,817 43,461

912,900 34,736

-1,235,250 34,178

644,872 26,877

-264,147 -46,371

1,084,915 216,987

310,418 62,100

869,229 173,846

217,307
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Table 2: Ranking of factors according to their p-values

Linear Monotonic Location of Y depends on X Dispersion of Y depends on X Statistical
relationship relationship independence

k k

Pearson Spearman common Kruskal-Wallis common common common statistical
correlation correlation means medians variance interquartiles independence

ranked p-value ranked p-value ranked p-value ranked p-value ranked p-value ranked p-value ranked p-value ranked p-value
factors factors factors factors factors factors factors factors

6a    0.0000 6a   0.0000 6a   0.0000 6a 0.0000 6a   0.0000     8   0.0216 6a   0.0034 6a 0.00001)

6c   0.0000 6c   0.0000 6c   0.0000 6c 0.0000 8   0.0000     7a   0.0464 4   0.0605 8   0.0000
8   0.0000 8   0.0000 8   0.0000 8 0.0000 3   0.0000      1b   0.0609 6c   0.0943 6b   0.0000

6b   0.0000 6b   0.0000 6b   0.0000 3 0.0000 6c   0.0000      6b   0.1656 8   0.3314 6c   0.0000
3   0.0000 3   0.0000 3   0.0000 6b 0.0000 6d   0.0000     7c   0.2660 1a   0.3838 3   0.0000

6d   0.0000 6d   0.0000 6d   0.0000 6d 0.0000 6b   0.0000      4   0.2713 6d   0.4410 6d   0.0000
2   0.0000 2   0.0000 2   0.0000 2 0.0000 2   0.0000      6a   0.2878 7c   0.4866 2   0.0000
4   0.0000 4   0.0000 4   0.0000 4 0.0000 4   0.0000     6d   0.3948 7b   0.5341 4   0.0004

7c   0.0000 7c   0.0000 7c   0.0056 7c 0.0080 7c   0.0343      6c   0.5555 7a   0.5503 5   0.2404
7a   0.0018 1a 0.0027 7b   0.0669 7b 0.0870 1a   0.2044      1a   0.5665 3   0.5831 7c   0.4236
1a   0.0042 7a 0.0037 7a   0.1375 5 0.1150 1b   0.3071      3   0.6371 6b   0.7319 1a   0.4729
5   0.0111 5 0.0047 5   0.2183 1 0.1404 7b   0.3703      2   0.7836 1b   0.7479 7a   0.5105

    7b   0.0544 7b 0.0430 1b   0.2619 7a 0.1960 5   0.3977      5   0.9119 3   0.9114 1b   0.5232
1b   0.0552 1b 0.0596 1a   0.3100 1a 0.2374 7a   0.8514     7b   0.9828 5   0.9401 7b   0.6115

 Bold numbers indicate insignificant test results at the 5% level.1)
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Table 3: Uniform versus triangular top-down correlations and their p-values

top-down correlation coefficients , i = 1, ... ,7 and j = i + 1, ... , 8

estimated
p-values

1 2 3 4 5 6 7 8

1 - 0.999 0.993 0.993 0.919 0.115 0.712 0.944

2 0.0003 -  0.991 0.991 0.922 0.098 0.718 0.945

3 0.0003 0.0004 - 0.992 0.917 0.098 0.698 0.937

4 0.0003 0.0004 0.0003 - 0.938 0.051 0.694 0.925

5 0.0009 0.0009 0.0009 0.0007 - 0.166 0.673  0.942

6 0.6789 0.7243 0.7229 0.8535 0.5500 - 0.065 0.233

7 0.0103 0.0096 0.0118 0.0123 0.0153 0.8160 - 0.633

8 0.0007 0.0007 0.0007 0.0008 0.0007  0.4012 0.0224 -

Remark: The cells above the diagonal contain the top-down correlations and the cells below the diagonal
the corresponding p-value.

.
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Table 4: Top-down correlations for different factor distributions

Pearson Spearman common means Kruskal-Wallis common common common statistical
correlation Correlation medians variance interquartiles independence

all uniform versus all symmetric triangular

0.7405 0.7373 0.7324 0.7610 0.7332 0.4747 0.0201 0.7376

p-value 0.0076 0.0079 0.0083 0.0061 0.0082 0.0870 0.9422 0.0078

all uniform versus all uniform except factor 4 which is non-symmetric triangular

0.7495 0.7676 0.7088 0.7599 0.7878 -0.0543 -0.0554 0.7627

p-value 0.0069 0.0056 0.0106 0.0045 0.0045 0.8447 0.8418 0.0060

all triangular versus all triangular except factor 4 which is non-symmetric triangular

0.9212 0.9543 0.9607 0.9706 0.9608 0.2428 0.3968 0.9518

p-value 0.0009 0.0006 0.0005 0.0005 0.0005 0.3813 0.1525 0.0006



Figure 1: Scatterplot of NPV versus Investment Costs
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