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Abstract

Recent studies debate how the unobserved dependence between the monetary return to
college education and selection into college can be characterized. This paper examines
this question using British data. We develop a semiparametric local instrumental variables
estimator for identified features of a flexible correlated random coefficient model. These
identified features are directly related to the marginal andaverage treatment effect in pol-
icy evaluation. Our results indicate that returns to college systematically differ between
actual college graduates and actual college non-graduates. They are on average higher for
college graduates and positively related to selection intocollege for 96 percent of the in-
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educated mothers, and for working-class individuals.
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1. Introduction

In labor economics it is well understood that estimating thereturns to college education is

anything but straightforward.1 One reason for this is that an individual’s educational choice is

likely to be based on information that is superior to what is recorded in the data. For example,

if ability is unobserved and positively related to the return to a college degree, then we might

expect individuals with high ability to be more likely to obtain a college degree. A direct

consequence of this is that a simple regression of wages on anindicator for college education

yields upward biased estimates of the average return to college education.

Neither matching techniques nor standard instrumental variables estimators (referred to as

2SLS from now on) are able to overcome this problem because they preclude any unobserved

dependence between the return to a college degree and selection into college education (Heck-

man and Vytlacil, 1998; Heckman, Urzua, and Vytlacil, 2006;Wooldridge, 2007). However,

following Imbens and Angrist (1994), Heckman and Vytlacil (1999, HV in the remainder) show

that the average return for a well-defined subgroup can be estimated using a local instrumental

variables estimator. It is local because it estimates the return using only observations for which

the probability to obtain a college degree falls into a smallneighborhood.2

In this paper we set up a flexible correlated random coefficient model that allows for bi-

nary endogenous variables. We develop a semiparametric local instrumental variables estimator

for identified features of this model, among others the conditional average structural function

(CASF), which is the expected wage if (no) college educationis assigned to an individual. The

CASF depends both on observed and unobserved characteristics that lead to selection into col-

lege. The identifiable features that are estimated are directly related to the marginal and average

treatment effect in policy evaluation. Hence, the estimator is suitable for many other situations

in which a binary endogenous variable is related to its effect. One example is the estimation of

1See Griliches (1977) and Card (2001) for surveys on the returns to schooling and Solmon and Taubman (1973)
on the returns to college education.

2See Heckman and Vytlacil (2001, 2005) as well as Heckman, Urzua, and Vytlacil (2006) for a comprehensive
discussion.
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the effect of participation in a training program on unemployment duration, where the partici-

pation decision is made in light of the idiosyncratic expected effect of the program.

We implement this estimator using data from United Kingdom’s National Child Develop-

ment Survey (NCDS). Our results indicate that returns to college systematically differ between

college graduates and college non-graduates. They are on average higher for college graduates.

We find that returns are positively related to selection intocollege for 96 percent of the indi-

viduals. The difference in returns between those who actually attend collegeand those who do

not is largest for individuals with low math test scores, less educated mothers, and individuals

whose father’s occupation is associated with a lower socialclass. Many of those individuals

actually do not attend college, but would profit from doing soif they were to have high levels

of unobserved ability. Thus, within this well-specified subgroup of individuals, those with high

levels of unobserved ability should be encouraged to attendcollege.

The remainder of this paper is organized as follows. Section2 presents and discusses the

econometric approach. In Section 3 we describe the data set.Section 4 contains the empirical

results. In Section 5 we assess the validity of the instruments. Section 6 concludes.

2. Econometric Approach

2.1. Econometric Model

Our point of departure is the correlated random coefficient model

Y = X′ϕ(D,U,V)(1)

D = 1{P(Z) ≥ V}.(2)
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Y is the log hourly wage at the age of 33,X is aK-vector of covariates that includes a constant

term, a math test score, family background variables, and regional indicators.3 D is an indicator

for having received college education.Z containsX and variables that are excluded from the

wage equation (instruments). In our analysis these excluded variables are indicators for the

parents’ interest in the education of the child. At least onevariable inX or Z is continuous.U

is unobserved and possibly vector-valued.V is an unobserved scalar random variable.ϕ(·, ·, ·)

is a vector valued function andP(·) is a scalar-valued function. We will refer to (1) as the

wage equation and (2) as the selection equation. This model allows for unobserved dependence

between wages and selection into college becauseV enters both the wage equation and the

selection equation. We will later interpret low values ofV as representing high unobserved

ability regarding formal schooling, and high values ofV as representing low ability.

We impose the following stochastic restrictions.

Assumption 1 (Stochastic Restrictions): (i) (U,V) are jointly independent of(X,Z) and (ii) U

is independent of V.

Assumption 1(i) prescribes that the distribution ofV is unrelated to all variables inX andZ.

Assumption 1(ii) restricts the randomness inY throughU to be unrelated toV.4

The approach taken here is inspired by the nonparametric identification result in HV. They

show nonparametric identification of various parameters ofinterest under the assumption that

(U,V) is jointly independent ofZ conditional onX, and thatX is is not affected by the choice of

D.5 In addition they require that there is a continuous variablein Z that is not inX. In practice,

however, the typical situation is that researchers only have access to discrete instruments, e.g.

3We will denote (vectors of) random variables by uppercase letters and their respective typical elements by
lowercase letters.

4One can show that this is not restrictive because there exists an observationally equivalent model with three
unobservables,UD in the selection equation,U0 in the outcome equation forD = 0, andU1 in the outcome equation
for D = 1, that are not restricted to be independent of one another. Derivations are available upon request from the
author.

5The requirement thatX is is not affected by the choice ofD is weaker than the assumption thatX is exogenous.
See the discussion in Heckman and Vytlacil (2005) and Section 2.4.
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when exogenous variation in eligibility rules is used (Battistin and Rettore, 2008, e.g.). It is

therefore worth noting that under Assumption 1 we can instead exploit continuous variation in

X. Another difference is that HV require thatZ shifts the probability to observeD = 1 from 0 to

1, givenX, whereas we only require this for the unconditional probability to observeD = 1. To

summarize, the stochastic restrictions in HV are weaker butthe support conditions are stronger.

In Section 2.4 we discuss how Assumption 1 restricts the set variables that can be included in

X.

Apart from the stochastic restrictions, we assume that the following regularity conditions

hold.

Assumption 2 (Regularity Conditions):(i) All first moments exist and (ii) the distribution of V

is absolutely continuous with respect to Lebesgue measure.

Assumption 2(i) ensures that all parameters of interest defined below exist. Assumption

2(ii) implies thatV is a continuous random variable. This allows us, without loss of generality

(w.l.o.g.), to normalizeV from now on to be uniformly distributed on the unit interval,see,

e.g., Vytlacil (2002) for details. It then follows immediately from Assumption 1(i) thatP(Z)

is identified since it is equal to Pr(D = 1|Z). For simplicity, we will writeP for P(Z) in the

remainder, and denote its typical element byp.

The CASF is the average outcome when we assignD = d, X = x, andV = v, i.e.

(3) G(d, x, v) ≡ x′E[ϕ(d,U, v)].

Here, we average overU. The terminology CASF is related to the one used by Blundell and

Powell (2003). They suggest to focus on recovering the average structural function,

(4) Ḡ(d, x) ≡ x′E[ϕ(d,U,V)]



College Education and Wages in the U.K. 6

in our case, where we also average overV.

We are further interested in

(5)
∂G(d, x, v)
∂x

= E[ϕ(d,U, v)],

the vector of conditional averageceteris paribuseffects, understanding the notion ofceteris

paribusas holding all other factors constant, includingV, while again averaging overU. Finally,

(6)
∂Ḡ(d, x)
∂x

= E[ϕ(d,U,V)]

is the vector of averageceteris paribuseffects, where we again average overV.

Equation (2) prescribes how the decision to attend college depends onV. For a givenP = p,

those individuals withV ≤ p sort into college and those withV > p do not. Hence, we can

think of low values ofV as representing high levels of ability, and high values representing low

ability. The dependence of the CASF and the conditional averageceteris paribuseffects onV is

therefore informative about the relationship between wages and selection into college, and how

this relationship depends on observed characteristicsX.

The parameters of interest that were defined above are directly related to the treatment effect

parameters in policy evaluation. The difference in the CASF betweenD = 1 andD = 0 is

Björklund and Moffit’s (1987) marginal treatment effect (MTE) forX = x,

G(1, x, v) −G(0, x, v) =x′
(

E[ϕ(1,U, v)] − E[ϕ(0,U, v)]
)

.(7)

This is the expected effect of a college degree on wages for a given level of unobserved ability

and for a given vector of covariates. The average treatment effect (ATE) is the average MTE

when we average over the population distribution of unobserved ability. For a givenX = x it is

(8) x′
∫ 1

0

(

E[ϕ(1,U, v)] − E[ϕ(0,U, v)]
)

dv,
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recalling that we have normalizedV to be uniformly distributed. It follows from Assumption

1 that the unconditional ATE is equal to the expression in equation (8), evaluated at the mean

of X. The average treatment effect on the treated (ATT) can be obtained by integrating over

the distribution ofV, conditional onD = 1, and evaluating the expression at the mean ofX

conditional onD = 1. For the average treatment effect on the untreated (ATU) we use the

distribution ofV conditional onD = 0 and the mean ofX conditional onD = 0.6

2.2. Identification

In this subsection, we show that the CASF is identified. Because of the multiplicative structure

of the wage equation, identification of the CASF atD = d, V = v andX = x, equation (3), is

equivalent to identification of the conditional averageceteris paribuseffects, equation (5).7 The

average structural function, equation (4), and averageceteris paribuseffects, equation (6), are

identified atD = d if the CASF is identified at allv in the open unit interval, recalling that we

have normalizedV to be uniformly distributed and that the endpoints have probability measure

zero. Finally, if the (conditional) average structural function is identified at bothD = 0 and

D = 1, then so is the average (marginal) treatment effect.

From equation (1) it follows that

(9) E[Y|D = 1,P = p,X = x] = x′E[ϕ(1,U,V)|D = 1,P = p,X = x]

which is equal to

x′E[ϕ(1,U,V)|P ≥ V,P = p,X = x]

by the selection model in equation (2). Assumption 1(i) implies thatP is independent of (U,V)

6See Heckman and Vytlacil (1999, 2000) for the relationship between treatment parameters within a latent
variable framework.

7SinceX includes a constant, the intercept is identified once the conditional averageceteris paribuseffects are
identified.
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so that this is equal to

x′E[ϕ(1,U,V)|X = x, p ≥ V].

By Assumption 1(i), we can reexpress this as

x′E[ϕ(1,U,V)|p ≥ V] =: x′β(1, p).

E[ϕ(1,U,V)|p ≥ V] is a vector valued function ofp which we will denote byβ(1, p) in the

remainder. Since the left hand side of equation (9) is identified at pointsx andp of the support

of X andP in the D = 1 population, respectively,β(1, p) is identified if we observe at least

K linearly independent values ofX for D = 1 andP = p. β(0, p) is defined in an analogous

manner and a similar result holds forD = 0 andP = p.

Starting from this, we show that the CASF is identified.8 We call p a limit point of the

support ofP, if P has a continuous density in a neighborhood aroundp which is bounded away

from zero. Notice that atP = p derivatives of differentiable functions ofP are identified.

Proposition 1 (Identification): Assume thatβ(0, p) andβ(1, p) are continuously differentiable

with respect to p and that we observe at least K linearly independent values of X for D= 0, D =

1, and all values of P in a neighborhood around p (rank condition). Then, under Assumptions

1 and 2 the CASF is identified at V= p, where p is a limit point of the support of P, and given

by

G(0, x, v) = x′
(

β(0, p) − (1− p) ·
∂β(0, p)
∂p

)

G(1, x, v) = x′
(

β(1, p) + p ·
∂β(1, p)
∂p

)

.

8We state the result in a proposition which resembles Theorem1 in Carneiro and Lee (2009). Following HV,
they show nonparametric identification under weaker stochastic restrictions than the ones in Assumption 1, at
the price of stronger support conditions that need to hold for their result. Only when they estimate the model
they impose the restrictions in Assumption 1. We show the proof for two reasons. First, strictly speaking, our
identification result is not implied by their Lemma 1, even though their proof is similar to ours. Second, our rank
condition differs from theirs.
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Proof. We show identification ofG(1, x, v). The proof forG(0, x, v) is similar. Recall that we

have normalizedV to be uniformly distributed. By definition,

x′E[ϕ(1,U,V)|p ≥ V] = x′β(1, p).

From the normalization onV and Assumption 1(ii) it follows that

(10) x′
∫ p

0

∫ ∞

−∞

ϕ(1, u, v) µ(du) dv/p = x′β(1, p),

whereµ(du) is the marginal probability measure ofu. Multiplying both sides byp gives

x′
∫ p

0

∫ ∞

−∞

ϕ(1, u, v) µ(du) dv= p · x′β(1, p)

and differentiating both sides with respect top using Leibniz’ rule reveals that

x′
∫ ∞

−∞

ϕ(1, u, p) µ(du) = x′β(1, p) + p · x′
∂β(1, p)
∂p

.

If p is a limit point of the support ofP then the rank condition implies thatβ(1, p) and∂β(1, p)/∂p

are identified atP = p. The left hand side is the object of interest. �

Finally, notice that identification relies on the monotonicity of D in P, which is implied by

the selection model and allows us to formulate equation (10).9

2.3. Estimation

We have established that under the conditions of Proposition 1

E[Y|D = d,P = p,X = x] = x′β(d, p) , d ∈ {0, 1},

9See Klein (forthcoming) for a discussion and an analysis of the case in which monotonicity does not hold, but
is wrongly assumed.



College Education and Wages in the U.K. 10

whereβ(d, p) is a coefficient vector that is a function of the observableD, andP, which can be

estimated.10 We parametrically estimateP using a logit model. We assume that the coefficient

functions are bounded and have bounded second derivatives.This allows us to estimate them by

local linear smoothing.11 This estimation procedure is usually motivated by a Taylor expansion

of the coefficient function inp̃ aboutp̃ = p which yields

βk(d, p̃) = βk(d, p) +
∂βk(d, p)
∂p

· (p̃− p) +
1
2
∂2βk(d, p̄)
∂p2

· (p̃− p)2,

wherep̄ is a point betweenp and p̃. We select all observations withD = d and index them by

i, i = 1, . . . , n. The estimates ofβ(d, p) and∂β(d, p)/∂p are given by

(11)
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whereK(·) is a kernel function with the usual properties andh is the bandwidth.12

From these estimates ofβ(d, p) and∂β(d, p)/∂p, which we provide with hats in the remain-

der, we calculate the vector of conditional averageceteris paribuseffects, equation (5), and the

10This is a version of the varying coefficient model which was suggested by Cleveland, Grosse, and Shyu (1991)
and Hastie and Tibshirani (1993).

11This assumption is stronger than what is required for identification. A sufficient condition for this to hold
is that the second derivative ofE[ϕ(D,U,V)|D = d,V = v] with respect toV is bounded ford = 0 andd = 1.
Concerning the properties of the estimator see e.g. Fan and Zhang (1999) and Xia and Li (1999) for details as well
as a proof of consistency and results on rates of convergence.

12Write ỹi =
√

K((pi − p)/h) · yi andx̃i =
√

K((pi − p)/h) · (x′i , (pi − p)x′i )
′. Then,
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Following Fan (1992) we add a matrix with elements equal to 0.001 to the matrix
∑n

i=1 x̃i x̃′i to ensure that it can
be inverted. We use an Epanechnikov kernel and estimate the coefficient vectors at 101 grid points between 0
and 1. The bandwidths are chosen using a leave-one-out crossvalidation procedure. Figure 5 in the Appendix
shows, separately forD = 0 andD = 1, the sample mean integrated squared error plotted againstthe bandwidth.
It decreases until a value of the bandwidth of 1.2 for D = 0 and flat thereafter, so we use 1.2 as the bandwidth
to allow for maximum flexibility. ForD = 1 it is minimal at 0.8, so we use 0.8 as the bandwidth. In Proposition
1, we require the rank to beK. Here, we also use interaction terms betweenP andX for the estimator in (11),
and therefore we require it to be 2K. This rank condition holds in our data, i.e. the weightedn × 2K matrix of
explanatory variables and interaction terms is of rank 2K at all evaluation pointsp.
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CASF using the formulae in Proposition 1. From these we calculate values of other identifiable

features of interest and simulate average effects.

Since fitted valuespi were parametrically estimated in a first step we do not expectthem to

have an impact on the distribution of̂β(d, p) and ̂∂β(d, p)/∂p in a first order asymptotic sense.

However, we obtain confidence intervals, accounting for thefirst step estimation error, from

1, 000 bootstrap replications. In our application they are wider than bootstrapped confidence

intervals that do not account for the first step estimation error. We also account for simulation

error if simulations are undertaken.

2.4. Discussion

In this section we briefly discuss the econometric approach taken here. There are two key ad-

vantages. First, functional form restrictions are mild.X could include approximating functions

in such a way that the number of approximating functions grows with the sample size. Then,

following Newey (1997), equation (1) could be interpreted as a series approximation to a gen-

eral nonseparable structural equationY = g(X,D,U,V).

Second, the estimator that is proposed here allows for, and is able to recover, richer selection

patterns than 2SLS, matching, and the local instrumental variables estimator for the additive

model that is implemented e.g. by Carneiro and Lee (2009).13 The additive model allows for

selection based on the return, but imposes that the selection pattern does not depend onX. If

we expressX as (1,X′
−1)
′ andϕ(·, ·, ·) as (ϕ1(·, ·, ·), ϕ−1(·, ·, ·)′)′, equation (1) can be written as

Y = ϕ1(D,U,V) + X′−1ϕ−1(D,U,V),

13Heckman and Vytlacil (1998), Heckman, Urzua, and Vytlacil (2006) and Wooldridge (2007) point out that
2SLS requires that the difference in the coefficients,ϕ(1,U,V) − ϕ(0,U,V), is not correlated withD andZ. This
precludes selection that is related to the return to a college degree. Matching estimators require that conditional
on a set of observed variables, sayX̄, the difference in the coefficients is mean independent ofD (Rosenbaum and
Rubin, 1983), i.e.

E[ϕ(1,U,V) − ϕ(0,U,V)|X̄,D] = E[ϕ(1,U,V) − ϕ(0,U,V)|X̄]

if we maintain the functional form restrictions. Hence, matching estimators cannot be used if there is selection
based on the return conditional on̄X.
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and the additive model as

(12) Y = µ(D,U,V) + X′−1γ(D,U).

The sorting pattern is characterized by the dependence of the MTE onV, and this dependence

is unrelated toX for the additive model.14 In Section 4, we examine whether the additive model

is consistent with our data.

The estimator that is proposed in this paper requires that there is a continuous variable inX

or Z. 2SLS does not require continuous variation inX or Z because the assumption of uncor-

relatedness between the effect and the endogenous variable can be exploited instead (Heckman

and Vytlacil, 1998).

Interestingly, both the nonparametric identification result in HV and the matching estimator

do not require the conditioning variables inX and X̄, respectively, to be exogenous. For the

nonparametric identification result in HV, the addition of variables toX increases the likelihood

that the assumption of independence betweenZ and (U,V) conditional onX holds. At the

same time, however, it becomes less likely that there is continuous variation inZ givenX that

shifts the probability to observeD = 1 from 0 to 1, which is necessary unless one directly

estimates local average treatment effects instead (Frölich, 2007). Also for matching, adding

more variables tōX makes it more likely that the conditional mean independenceassumption

holds. In both cases the conditioning variables can be thought of as predictors of wage levels.

However, also with these techniques we can only recover the causal effect of X on wages and

on the returns to a college degree if we assume thatX is exogenous. Besides, under exogeneity

of X we can rely on weaker assumptions on the support ofZ givenX, which turns out to be of

key importance in our application because the instruments are discrete.

14The MTE in the additive model isE[µ(1,U, v)− µ(0,U, v)] + x′
−1E[γ(1,U)− γ(0,U)] and hence the effect of a

change inv is not related tox.
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3. Data

The estimator is implemented using NCDS data from the U.K. The NCDS is conducted by the

Centre for Longitudinal Studies at the Institute of Education in London. It is a longitudinal data

set and keeps detailed records for all those living in the U.K. who were born between March 3

and 9, 1958. The data were first collected at birth in 1958, in 1965 (age 7), in 1969 (age 11),

in 1974 (age 16), in 1981 (age 23), in 1991 (age 33), in 1999-2000 (age 41-42), in 2004-2005

(age 46-47), and in 2008-2009 (age 50-51). The NCDS has gathered data on child development

from birth to early adolescence, as well as on child care, medical care, health, physique, school

readiness, home environment, educational progress, parental involvement, cognitive and social

growth, family relationships, economic activity, income,training, and housing.

In a related application, Blundell, Dearden, and Sianesi (2005) study these data using 2SLS,

a control function estimator, and matching techniques. We use the same procedures to prepare

the data for analysis. For a more detailed data description and variable definitions the reader is

referred to their paper.

For the analysis we select working men for whom information on their highest educational

degree is available.15 Our core sample thus consists of 3, 609 observations, of which 646

(17.9%) did not complete their O-levels, 986 (27.3%) completed their O-levels, 960 (26.6%)

did so for the A-levels, and 1, 017 (28.2%) completed college education.16 We distinguish be-

tween college graduates (D = 1), who have completed some kind of higher education, and the

remaining individuals (D = 0). Test scores are rescaled so that each of them lies betweenzero

and one.

Following Mincer (1974), the outcome of interest is the log hourly wage in 1991, at the age

of 33. The NCDS contains information on a number of family background variables such as the

respective parents’ ages, their years of education, whether the mother was working when the

15Information on the education is not available for non-working individuals. Out of 3, 945 individuals 270
(6.84%) are not working. For 66 of the remaining individuals information on the education is missing.

16We say that an individual completes his A-levels if he completed at least one A-level, which is generally
obtained at the end of secondary school, see Blundell, Dearden, and Sianesi (2005) for details.
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child was 16, as well as the number of siblings. Furthermore,we observe the occupation of the

father when the child was 16, in particular whether he was an intermediate employee. This can

be interpreted as a proxy for the social class.

As discussed in Section 2.4, variables inX need to be selected such that they are unrelated

to U andV. This precludes the inclusion of indicators for secondary school type because cer-

tain secondary schools are more likely to be chosen by individuals who plan to attend college

thereafter. Also test scores might be related to unobservedability. For that reason we include

only the math test score at the age of 7 in the set of covariatesand consider it a proxy for purely

analytical skills, which are unrelated to other types of unobserved ability such as assertiveness

and social intelligence that affect wages at the age of 33 as well as the decision to attend col-

lege. We do not include the number of siblings because it might be related to unobserved ability

through interaction of the child with his siblings, again thinking of unobserved ability as being

related to traits such as assertiveness and social intelligence. However, we include the mother’s

years of education intoX and consider it a proxy for the kind of education the child receives at

home,irrespectiveof his unobserved ability.17

We discarded some additional variables such as the respective age of the parents when the

child was 16, because the corresponding coefficient estimates were insignificant in a first stage

regression of an indicator for college education on the fullset of covariates and indicators for the

mother’s interest in the child’s education when the child was 16.18 In addition, these discarded

variables had insignificant coefficient estimates in the wage equation when the efficient GMM

estimator (to be described in Section 5) was implemented. Most of the indicators for both the

father’s occupation and region were dropped as well, which did not have a big effect on the

remaining significant coefficient estimates.

We use indicators for the mother’s interest in the child’s education when aged 16 as instru-

17Currie and Moretti (2003) show that maternal education is endogenous in a regression that explains birth
outcomes. Carneiro, Meghir, and Parey (2007) extend this finding to outcomes such as ability test scores and other
types of outcomes for children and adolescents. However, toour knowledge, it has not been shown that maternal
education is also endogenous in a wage equation.

18Choices were made using both linear regression and logit estimates.
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no college college
mean std. mean std.

log hourly wage at the age of 33 1.929 0.400 2.329 0.369
math ability at 7 0.446 0.277 0.584 0.293

missing 0.113 - 0.116 -
family background variables when the child was 16
mother’s years of education 7.133 4.455 7.857 4.945

missing 0.269 - 0.256 -
father is intermediate employee 0.019 - 0.108 -

missing 0.108 - 0.101 -
mother’s interest in the education of the child when the child was 16
expects too much 0.020 - 0.023 -
very interested 0.190 - 0.462 -
some interest 0.221 - 0.163 -
little interest 0.141 - 0.025 -
number of obs. 2,592 1,017
Summary statistics for our core sample of individuals who are working at the age of
33 and for whom information on the highest educational degree is available. Standard
deviations for indicator variables are not shown.

Table 1: Summary statistics.

ments for the decision to attend college. The interest in thechild’s education is assessed by the

child’s head teacher. It is an objective assessment of the parent’s behavior, because the head

teacher is not asked to evaluate the appropriateness of the parents’ interest in the education,

but rather to describe it. We expect this variable to be measured accurately because the teacher

usually knows the parents from personal meetings.19 It is plausibly unrelated to a child’s ability,

as long as the importance parents attach to the child’s education does not depend on the child’s

unobserved characteristics. This is an assumption that will be formally tested by conducting

tests of overidentifying restrictions in Section 5.

Table 1 shows summary statistics for our sample. The statistics are shown separately for

college graduates and college non-graduates. On average, college graduates have a higher math

ability test score, more highly educated mothers, and they are more likely to have a father who

19It would be problematic if the assessment was made by an interviewer because he would have to make it based
on the impression he gained in the interview. It would be evenmore troublesome if the parents were asked to
answer this question themselves, because their answer would probably be related to their child’s ability.
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is an intermediate employee. In addition, individuals who went to college are more likely to

have parents who were interested in their education.

There are missing values for some variables in the data. In the analysis we assume that they

are missing at random, set the value of the respective variable to zero, and include indicators for

missing information in the set of covariates.20

4. College Education and Wages in the U.K.

First stage estimates were obtained using a logit model and are not reported here.21 Since most

explanatory variables are indicator variables our specification is very close to the series logit

specification implemented by Hirano, Imbens, and Ridder (2003).22

Figure 1 shows the sample distributions of the fitted values of P. For bothD = 0 andD = 1

the support is almost equal to the full unit interval. Note that the distributions differ between

D = 0 andD = 1. This illustrates that the variables inZ have explanatory power.

The identification result in Proposition 1 implies that in principle, instead of using the

mother’s interest in the child’s education as an excluded variable, we can exploit the non-

linearity of P in X for identification. To check whether this is possible here weobtained logit

estimates, with and without the excluded variables inZ, obtained fitted values ofP, and then

regressedY on X andP. With the excluded variables inZ the coefficient onP is 0.715 with a

standard error of 0.065.23 Without the excluded variables the coefficient estimate changes sign

and is equal to−0.305 with a standard error of 0.340. This shows that identification off the

20The table shows that the probability a value is missing is about equal for college graduates and college non-
graduates.

21They are reported in the Online Appendix to this paper. The coefficient estimates for our final specification
confirm to expectations and are in line with the literature which takes a closer look at the channels through which
parents’ education is transmitted to the children, see Goldberger (1989) and Haveman and Wolfe (1995) for an
overview and discussion.

22We tried several specifications with interaction terms but they were generally not significant. There are two
variables, math ability at the age of 7 and the mother’s yearsof education, which we treat as continuous. In the
second stage, we will estimate coefficients on those variables, which are functions ofV. Therefore, to keep the
results nicely interpretable, we have not included higher order terms for those variables.

23Again standard errors are obtained from 1, 000 bootstrap replications and correct for the first stage estimation
error. For comparison, the two stage least squares estimateis 0.781 with a standard error of 0.073.
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Figure 1: Sample distribution of the propensity score.

functional form is not a successful strategy here. The reason for this is thatP is very close to

being linear inX.24 We now present the main results.

4.1. Wage Levels and Effects of Covariates

Figure 6 in the Appendix contains estimates of the conditional averageceteris paribuseffects

with respect to the variables in the vectorX, (5), that are plotted againstV, separately forD = 0

andD = 1. Figure 2 is an example and shows that forD = 0 the effect of the math test score

at age 7 is positive and significant for low values ofV. Recall that, according to the selection

model, low values ofV induce individuals to attend college. Thus, we should thinkof low

values ofV as representing high unobservable ability. Figure 6 shows that for individuals with

high levels of unobserved ability andD = 0 wages increase in the math test score and the

mother’s years of education, and are higher when the father is an intermediate employee. When

D = 1 the effect of those variables does not depend onV.

Table 5 (in the Appendix) presents estimates of the impacts of covariates on wages forD = 0

(left panel) and forD = 1 (right panel).25 The fourth column contains the result of a test for a

24TheR2 of a linear regression of the fitted value ofP onZ is 0.967 with the excluded variables inZ and 0.9787
without them.

25The additive model was estimated using a regression of the log hourly wage on a polynomial that is linear in
X and quadratic in the first stage estimate ofP, separately forD = 0 andD = 1. The order of the polynomial in
P was chosen according to a leave-one-out cross-validation procedure. The averageceteris paribuseffect in this
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Figure 2: Averageceteris paribuseffects of change in math score at the age of 7, estimates and
95% confidence intervals.

particular kind of unobserved heterogeneity. We say that unobserved heterogeneity is present

whenever the impact of a component ofX, including the constant, depends onV. Therefore,

we test whether the linear approximation to the slope of the conditional averageceteris paribus

effect with respect toV is zero.26 We find evidence for a non-zero slope for the impact of the

math ability test score, the indicator for Scotland and the constant forD = 0. Not surprisingly

there is a bias in the coefficient estimate of the additive model whenever the test indicates that

the type of heterogeneity we test for here is present. This shows that the additive model is too

restrictive for our data.

Figure 7 in the Appendix contains an estimate of the CASF for arepresentative individual

with median characteristics. Interestingly, the CASF increases inV for D = 0. This means that

the kind of ability measured byV (for which low levels are associated with a higher likelihood

of obtaining a college degree) is negatively related to wages if no college degree is obtained.

Conversely, highV types do better when not obtaining a college degree than lowV types do.

This is compatible with the view that college graduates would in fact not do better on the labor

model is the coefficient on the respective variable inX.
26Here we face two sources of estimation error. First, the error that stems from estimating the conditional

averageceteris paribuseffect itself and second, the error from estimating the linear approximation to its slope.
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Plotted for a man aged 33 who has a math ability test score of 0.5, whose mother has 9 years of education,
whose father is not an intermediate employee, and who does not live in London, Scotland or Wales.

Figure 3: Marginal treatment effect for individual with median characteristics.

market than college non-graduates if one would have prevented them from attending college.

4.2. Selection into College

Figure 3 shows the MTE for the same representative individual with median characteristics.

A negative slope implies that individuals with low values ofV, i.e. high ability types, have a

higher expected return to obtaining a college degree. Carneiro and Lee (2009, p. 201) point out

that individuals base their selection into college education on theircomparative advantagewith

respect to monetary benefits if the MTE is higher for those individuals who go to college, i.e. if

the MTE decreases inV conditional on observablesX.

Figures 3 and 7 were plotted for an individual with median characteristics. SinceX varies

across individuals, it is interesting to take a closer look at the dependence of the MTE onV

whenX varies across individuals. Variation in covariates induces variation in the slope of the

MTE. Therefore, we estimated a linear approximation to the slope of the CASF and the MTE for

every individual to investigate for how many individuals the comparative advantage hypothesis
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fraction 95% conf. int.
level, no college 0.973 0.894 0.996
level, college 0.664 0.158 0.862
MTE 0.042 0.026 0.049

Table 2: Prevalence of positive dependence of CASF and MTE onV.

estimate ste.
ATE 0.366 0.129
ATT 0.538 0.079
ATU 0.303 0.154
OLS 0.282 0.016
ATT, matching estimate 0.274 0.030
GMM 0.773 0.107
For the matching estimate of the ATT as well as the
OLS and GMM estimate the set of covariates is the
same as for the estimates presented in Table 4. Stan-
dard errors for the first three estimates as well as the
matching estimate were obtained from 1,000 boot-
strap replications. Both OLS and GMM standard er-
rors are analytic and robust to heteroskedasticity.

Table 3: Average treatment effects.

holds.

Table 2 contains the fractions of the population for which, respectively, the slope of the

CASF and the MTE are positive. In order to obtain those numbers, linear approximations to the

slope were estimated. The slope of the level is positive for 97% of the individuals if we assign

D = 0 to all of them. If we assignD = 1 to everybody, it is positive for 66% of the individuals.

Interestingly, the slope of the MTE is positive for only 4.2% of the individuals, indicating that

the comparative advantage hypothesis holds for the remaining 95.8% of the individuals.27

If selection is based onV, it is interesting to calculate average returns for different subpop-

27This is in line with findings in previous studies including Willis and Rosen (1979) and Carneiro and Lee
(2009). Those two studies impose additivity and therefore the comparative advantage hypothesis either holds for
all individuals or for none. In Table 5, we observed that additivity does not hold and that coefficient estimates could
therefore be biased. In light of this, our results are reassuring as they rule out this source of bias and nevertheless
show that the comparative advantage hypothesis holds for almost all individuals. At this point, it is worth noting
that this way of thinking about the comparative advantage hypothesis ignores nonmonetary costs and benefits. For
example, it could well be that a college degree is additionally associated with nonpecuniary benefits such as the
pleasure of being educated. Suchadditionalreturns are not addressed in this paper.
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ulations. We first calculate ATE using equation (8), replacing x with the population mean of

X. For ATT and ATU, we use the respective sample mean ofX for D = 1 andD = 0 and sim-

ulate the distribution ofV conditional onD, exploiting the structure of the selection model.28

Respective confidence intervals account for the simulationerror. In Table 3, our estimates are

compared to those obtained from an ordinary least squares (OLS) regression, a matching esti-

mate, and the efficient GMM estimate. Notably, and consistent with the findingthat the MTE is

negatively sloped for almost all individuals, we find that the ATT is higher than the ATU. The

ATE is between the ATT and the ATU.29

Not surprisingly, the OLS estimate is very close to the matching estimate since matching

is built on the assumption that conditional on observables,D is independent of the error term

in the outcome equation. The similarity between the OLS and the matching estimate indicates

that the functional form assumption imposed by the OLS estimator is innocuous for our data.

This could be becauseX contains many indicator variables. However, the fact that there is a

difference between the matching estimate and our estimate of ATT(reported in Table 3) shows

that the conditional independence assumption that matching is based on might be violated.

We find that both the OLS and the matching estimate are downward biased, indicating that

the selection bias is negative. Controlling for covariates, the estimates are both roughly equal

to the difference in the average wage for those individuals who are observed to haveD =

1, averaging over low values ofV according to equation (2), and the average wage for those

individuals who are observed to haveD = 0, averaging over high values ofV. Figure 7 in the

Appendix shows that for the representative individual, thewage depends positively onV when

we assignD = 0. However, the wage is flat inV if we assignD = 1. Hence the downward bias.

Commonly, the GMM estimate is interpreted as estimating theaverage treatment effect for

those individuals who are induced to attend college by the variables that are excluded from the

28For example, if we observe an individual withD = 0 andP = p, we draw values ofV from a uniform
distribution on (p, 1].

29We also find this when we estimate the additive model, equation (12), and implement the matching estimator
for ATE and ATU.
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The left curve is the empirical c.d.f. of simulated treatment effects for college non-graduates and the right
curve is the empirical c.d.f. for college graduates.

Figure 4: Distribution of simulated treatment effects.

outcome equation.30 The GMM estimate is higher than those obtained from other estimation

strategies.31

Next, we simulate the treatment effect for every individual. For this we draw 100 values

of V, calculate the corresponding MTE, and then calculate the average MTE. If we observe

D = 0, we draw values ofV from a uniform distribution on [p, 1], and if D = 1 we draw them

from a uniform distribution on [0, p], where, respectively,p is the fitted value of the probability

to obtain a college degree. The idea behind this is that by observing D and P we can infer

in which rangeV must lie. SinceV is independent ofP, it is uniformly distributed. Figure 4

shows that the distribution of simulated treatment effects for individuals who actually graduated

from college first order dominates the distribution of simulated treatment effects for those who

did not do so. However, the support overlaps, indicating that there are individuals who did not

graduate from college and that would have benefitted more (inmonetary terms) from obtaining

30See, e.g., the discussion in Blundell, Dearden, and Sianesi(2005) and Imbens and Angrist (1994) as well as
Card (2001).

31In Section 5 we provide additional discussion and interpretation.
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a college degree than others who are college graduates.

Finally, we examine the dependence of the selection patternon observed characteristics

more closely. It follows from equation (7) that the effect of covariates on the MTE is given

by the difference in conditional averageceteris paribuseffects betweenD = 1 andD = 0.

Hence, it follows from Figure 6 that the dependence of the returns to college education on

V is larger for individuals with low math test scores, less educated mothers, and fathers that

are not intermediate employee. Within this well-defined group, a policy maker should target

those individuals with high unobserved ability and strongly encourage them to attend college,

assuming that the policy maker’s objective is to allocate college education to those individuals

with the highest expected returns.32 Conversely, the screening effort within other groups (e.g.

individuals with high math scores whose father is an intermediate employee) could be lower

because those individuals’ return to a college degree depends less on unobserved ability.33

5. Validity of Instruments

In this paper, indicators for the mother’s interest in the education of the child (when the child

was 16) serve as instruments for college education. These are valid instruments if the interest is

unrelated to unobserved ability and at the same time relatedto the decision to attend college. In

this section we assess the validity of the instruments by estimating standard Mincer (1974) type

wage equations using the generalized method of moments (GMM). We carry out overidentifying

restrictions tests and tests for joint significance of the excluded instruments. We do so for our

preferred and potential alternative sets of instruments. The candidate instruments are indicators

for the mother’s and father’s interest in the education of the child when the child was 7, 11, and

16, respectively.

To test whether the instruments are not weak or just mask variation in other individual

32See, e.g., Berger, Black, and Smith (2001) on profiling in thecontext of unemployment.
33Notice, however, that the test for heterogeneity in Table 5 shows that we cannot reject the null hypothesis that

the effect of the mother’s years of education and the father being anintermediate employee does not depend onV.
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characteristics we additionally include inX a race indicator, math ability at age 11, verbal ability

at age 7 and 11, indicators for secondary school type, additional family background variables,

indicators for the occupation of the father, and a full set ofregion indicators.34

The sixth column of Table 4 presents efficient two-step GMM estimates of the effect of

attending college on the log hourly wage at the age of 33. The set of excluded variables varies

across the ten specifications. The first six specifications use indicators for all values of the

interest in the child’s education (and the ones for the respective missing value).35 Specifications

7 through 10 use only the indicators for one category, respectively, as instruments.

F-statistics for the test of joint significance of the excluded instruments are presented in

the fourth column of Table 4 and are calculated to detect the presence of weak instruments.

Values above 10 are considered acceptable (Bound, Jaeger, and Baker, 1995; Staiger and Stock,

1997). The fifth column contains thep-values. Comparing specifications across Table 4 shows

that adding more instruments never decreases the partialR2 of the excluded instruments but

results in a decreased value of theF statistic. Including all potential instrumental variables,

specification 6, may result in biased estimates of the returns to college education because the

correspondingF statistic is equal to 6.39, which is well below 10. By contrast, indicators for the

mother’s interest in the child’s education when the child was 16 could be a good set of candidate

instruments. TheF statistic of 23.4 shows that these indicators are strongly related toD.

The last two columns of Table 4 display Hansen’sJ statistic and the correspondingp-value

for the test of overidentifying restrictions. The null for this test is that the difference between

observed and predicted wages is not correlated with the instrument.36 It is rejected if the in-

struments are related to the error term or if different instruments identify different local average

treatment effects, see Imbens and Angrist (1994) and Heckman, Urzua, and Vytlacil (2006,

p. 392). In our case the null is rejected, at the 5% level, for specifications 2 and 3, suggesting

34Summary statistics for all variables but the region indicators can be found in the Online Appendix to this paper.
35There are four indicators for each parent and indicators formissing values. There were no missing values

when the child was 16.
36It is often imposed thatD has a non-random coefficient. Then, the null hypothesis is valid only if the usual

exclusion restriction holds.
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instruments num. iv part.R2 F p college ste. J p
interest in education, all values

1 mother at 16 4 0.026 23.400 0.000 0.773 0.107 5.103 0.164
2 mother at 11 and 16 9 0.036 14.690 0.000 0.629 0.085 18.921 0.015
3 mother at 7, 11 and 16 14 0.037 9.820 0.000 0.625 0.083 26.1970.016
4 mother and father at 16 8 0.028 12.600 0.000 0.810 0.105 6.243 0.512
5 mother and father at 11 and 16 17 0.042 9.140 0.000 0.658 0.079 24.078 0.088
6 mother and father at 7, 11 and 16 26 0.046 6.390 0.000 0.639 0.077 33.436 0.121
interest by mother and father at 7, 11and 16

7 only indicator for little interest 6 0.009 9.350 0.000 1.138 0.188 2.216 0.819
8 only indicator for some interest 6 0.008 5.320 0.000 0.434 0.165 2.845 0.724
9 only indicator for very interested 6 0.038 20.130 0.000 0.586 0.083 8.512 0.130

10 only indicator for overly concerned 6 0.005 3.130 0.000 0.537 0.227 2.950 0.708

All test statistics and standard errors are robust to heteroskedasticity.

Table 4: Performance of alternative sets of instruments.
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that returns might be heterogeneous or that the exclusion restriction is violated for the instru-

ments.

Specifications 7 through 10 provide evidence that returns are heterogeneous because they

show that the estimate of the returns to college education depends on the indicators that are

employed as instruments. Specification 9, e.g., estimates the return for those individuals whose

decision to attend college changes if the parents become very interested in their education. Here,

all indicators should identify the average effect for the same group. This is for instance because

the group of individuals whose decision to attend college ischanged by their father’s taking an

interest in their education when the individual concerned was 16 should be (roughly) the same

group as the group of individuals whose decision to attend college is affected by the mother’s

interest in their education when aged 11. Therefore, the overidentifying restrictions test should

only reject the null if the exclusion restriction is violated. This is not the case in specifications

7 though 10, so there is no evidence that the exclusion restriction does not hold.

To summarize, we conclude from Table 4 that the overidentifying restrictions tests yield

evidence in favor of effect heterogeneity that is related to the decision to attend college, and

in favor of the assumption that the instruments can be excluded, i.e. that they are unrelated

to unobserved ability.37 Results show that the instruments are strongly correlated with college

attendance if not all indicators are selected. In Section 4,we therefore use indicator variables

for the mother’s interest in the child’s education when aged16 as excluded variables because

for this set of variables theF statistic is particularly high.

37Heckman, Urzua, and Vytlacil (2006, p. 397) point out that one can directly test for unobserved dependence
between the return to college and the decision to attend college by checking whether the expected wage conditional
on X andP is linear inP. So we first fitP using a logit model and then regressY on P, P2 andX. The coefficient
on P2 is −1.034 with a standard error of 0.209. This standard error is obtained from 1, 000 bootstrap replications
and accounts for the first stage estimation error. We conclude that the GMM estimates presented in Table 4 are
indeed not estimates of the population average return to college, but rather estimates of local average returns for
different subgroups, supporting our conclusion that the overidentifying restrictions tests yield evidence in favor of
effect heterogeneity, rather than against the validity of the exclusion restriction.
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6. Concluding Remarks

In this paper, we propose and implement a semiparametric local instrumental variables estima-

tor and use it to characterize the unobserved dependence between the monetary return to col-

lege education and selection into college in the U.K. We relate this dependence to observable

characteristics of the individuals. To accomplish this, the estimator requires that an exclusion

restriction holds unconditionally, that covariates are exogenous, and that there is continuous

variation in an instrument or a covariate.

Our empirical results indicate that sorting into college isbased on the comparative advan-

tage for almost all individuals.Therefore, the average return to college education for college

graduates is larger than the average return for college non-graduates. We find that the depen-

dence of selection into college and returns to college education is strongest for individuals with

low math test scores at age 7, individuals with less educatedmothers, and for working-class

individuals.

This knowledge is likely to be of value to policy makers who often design institutions in

such a way that eligibility, e.g. for a subsidy, is related toobserved individual characteristics.

We find that returns to college education highly depend on unobserved ability for working-class

individuals in the U.K. Based on this knowledge a policy maker may want to encourage more

high ability working-class individuals to attend college.He could do so by offering a subsidy

to all working-class individuals.38 Our results imply that among the individuals who would not

attend college without the subsidy, this subsidy will change the decision for the ones with the

highest return, which is exactly the target group.

The methods developed in this paper could be applied in various other contexts. For exam-

ple, they could be used to study how selection into a labor market program is related to the effect

of the program, possibly as a function of observable characteristics and labor market history.

Results could then be used to re-design eligibility rules ina such a way that the participation is

38In practice, it might not be possible to define eligibility according to social class. However, a good proxy for
this could be family income.
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allocated more efficiently. Since our estimation procedure does not require the excluded vari-

ables to be continuous, eligibility rules that were in placewhen the data were collected could

possibly be used as a source of exogenous variation.
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Appendix: Additional Tables and Figures
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These figures show, separately forD = 0 andD = 1, estimates of the mean integrated squared error as a
function of the bandwidth. Obtained using a leave-one-out cross validation procedure.

Figure 5: Cross validation.
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Figure 6: Conditional averageceteris paribuseffects, estimates and 95% confidence intervals.
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no college college
averageceteris paribuseffect test for averageceteris paribuseffect test for

E[ϕ(0,U,V)] additive bias het. E[ϕ(1,U,V)] additive bias het.
math ability at 7 -0.020 0.114*** 0.135 -0.500* 0.343 0.095** -0.248 -0.227

(0.104) (0.042) (0.084) (0.275) (0.390) (0.042) (0.386) (0.755)
math ability missing 0.030 0.035 0.005 0.024 -0.226 0.122*** 0.348 -0.949

(0.110) (0.029) (0.097) (0.323) (0.396) (0.029) (0.391) (0.685)
mother’s years of education 0.004 0.010 0.006 -0.034 -0.060 0.007 0.067* 0.013

(0.012) (0.022) (0.006) (0.038) (0.037) (0.022) (0.040) (0.071)
mother’s years of education missing 0.049 0.063** 0.014 -0.183 -0.551 0.107*** 0.658 0.607

(0.136) (0.025) (0.078) (0.407) (0.427) (0.025) (0.453) (0.817)
father intermediate -0.071 -0.061* 0.010 -0.467 -0.044 -0.003 0.042 -0.014

(0.079) (0.032) (0.043) (0.354) (0.239) (0.032) (0.223) (0.387)
indicator for London 0.201*** 0.211*** 0.011 -0.024 -0.109 0.063 0.171 -0.287

(0.057) (0.045) (0.047) (0.182) (0.210) (0.045) (0.205) (0.310)
indicator for Wales -0.061 -0.074 -0.013 0.038 -0.036 -0.038 -0.002 0.013

(0.074) (0.052) (0.060) (0.213) (0.260) (0.052) (0.257) (0.440)
indicator for Scotland -0.193*** -0.078 0.114** -0.418*** 0.270 0.006 -0.265 0.076

(0.051) (0.068) (0.045) (0.158) (0.213) (0.068) (0.210) (0.373)
constant 2.054*** 1.595*** -0.459*** 1.193*** 2.898*** 2.034*** -0.864* 0.036

(0.150) (0.130) (0.108) (0.407) (0.470) (0.130) (0.512) (0.989)

Standard errors in parenthesis were calculated from 1, 000 bootstrap replications and take the first stage estimation error into account. 1 through 3 stars
indicates significance at the 10%, 5% and 1% level, respectively.

Table 5: Averageceteris paribuseffects and test for heterogeneity.



College Education and Wages in the U.K. 32

0 0.5 1
0

0.5

1

1.5

2

2.5

3
D=0

V=v
0 0.5 1

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
D=1

V=v

Plotted for man aged 33 who has a math ability test score of 0.5, whose mother has 9 years of education,
whose father is not an intermediate employee, and who does not live in London, Scotland or Wales.

Figure 7: Conditional average structural function for individual with median characteristics.
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