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Abstract: This paper derives a novel procedure for testing the Karush-Kuhn-Tucker 

(KKT) first-order optimality conditions in models with multiple random responses. Such 

models arise in simulation-based optimization with multivariate outputs. This paper 

focuses on ‘expensive’ simulations, which have small sample sizes. The paper estimates 

the gradients (in the KKT conditions) through low-order polynomials, fitted locally. 

These polynomials are estimated using Ordinary Least Squares (OLS), which also 

enables estimation of the variability of the estimated gradients. Using these OLS results, 

the paper applies the bootstrap (resampling) method to test the KKT conditions. 

Furthermore, it applies the classic Student t test to check whether the simulation outputs 

are feasible, and whether any constraints are binding. The paper applies the new 

procedure to both a synthetic example and an inventory simulation; the empirical results 

are encouraging. 
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1. Introduction 

 

In this paper we present a novel multi-stage procedure to test whether a given input 

combination (also called factor combination, scenario, or iterate) for a random simulation 

model with multiple responses (also called multivariate outputs) is optimal (we give 

several synonyms, because simulation-based optimization is studied in many disciplines, 

each with its own terminology). In this way, our test provides a stopping criterion for 

iterative, heuristic simulation-based optimization.  We reason as follows. 

(i) The Karush-Kuhn-Tucker (KKT) first-order optimality conditions are well known in 

deterministic nonlinear mathematical programming (see, for example, Gill, Murray, and 

Wright 2000, p. 81). We shall formalize these conditions in equation (2). 

(ii) These KKT conditions may be checked in random simulation, by means of 

asymptotic tests (based on the delta method). By definition, these tests assume large 

numbers of ‘replicates’; replicates mean that a particular scenario is simulated several 

times, using non-overlapping streams of pseudo-random numbers (PRN). Details are 

JLYHQ�E\�$QJ Q�DQG�.OHLMQHQ����������6KDSLUR���������DQG�6KDSLUR�DQG�+RPHP-de-Mello 

(1998).  

(iii) We, however, assume that the simulation model at hand is so expensive that we 

generate a single replicate for each simulated input combination—except for the (single) 

center point of the design that specifies the input combinations to be simulated, which is 

replicated a few times (each simulation output consists of multiple responses). 

 There are many methods for optimizing simulated systems (see, for example, the 

survey paper Fu 2002 or the monograph Spall 2003). Many methods ignore the fact that 

in practice simulation models generate multiple responses per scenario. For example, an 

academic (s, S) inventory simulation—with reorder level s and order-up-to quantity S (so 

there are two inputs)—defines the output as the expected (or mean) sum of the inventory-

carrying, ordering, and out-of-stock costs, whereas a practical simulation typically has 

two responses, namely the sum of the average inventory-carrying and ordering costs —

which is to be minimized—and the service probability (also called the fill rate)—which 

must satisfy a prespecified lower bound (say, 95%). In this paper, we select one of the 
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multiple responses and minimize that response, while we satisfy constraints on the 

remaining random (noisy) responses. Figure 1 illustrates this problem (details will follow 

in Section 2). This figure demonstrates that the KKT conditions require the estimation of 

the local gradient of response h  (say) h;0−  (there are z responses so h = 0, 1, …, z – 1 

with 0 denoting the goal response, which is to be minimized; the subscript –0 denotes the 

elimination of the intercept h;0 , which we estimate automatically when applying OLS 

analysis; we suppress the symbol d in )(;0 dh−  where d implies a specific local area; see 

Section 2).  

 

 Insert Figure 1: An example of a constrained nonlinear random optimization problem  

  

 Some of these optimization methods treat the simulation model as a black box; i.e., 

they observe Input/Output (I/O data only (see again Fu 2002 and Spall 2003). Examples 

are the many meta-heuristics (ant colony optimization, genetic and evolutionary 

algorithms, scatter search, simulated annealing, tabu search), including response surface 

methodology (RSM). Other methods treat the simulation as a white box, so they can 

estimate the gradients from a single simulation run. Best known are perturbation analysis 

and the score function (or likelihood ratio) method. Our procedure can be combined with 

any method that estimates the gradient—either from a single run or from several runs—

provided the method also estimates the density function (distribution) of the gradient 

estimator, as we shall see below. 

 Note: To check the KKT conditions, Karaesman and Van Ryzin (2004) present an 

unconstrained optimization algorithm that uses the estimated gradient of the goal 

function, including a score function estimator.  

  We use this Estimated Density Function (EDF) of the estimated gradients for 

bootstrapping. In general, the bootstrap can estimate the distribution of any statistic 

provided that the likelihood function is continuous; see the seminal book on 

bootstrapping (outside simulation), Efron and Tibshirani (1993, pp. 54-56, 162-177). But, 

those authors caution: ‘bootstrapping is not a uniquely defined concept [...] alternative 

bootstrap methods may coexist’ (see Efron and Tibshirani 1993, pp. 115, 383). Moreover, 
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we wish to test the hypothesis that a specific input combination satisfies the KKT 

conditions—and Shao and Tu (1995, p. 189) warn: ‘bootstrap hypothesis testing ... is not 

a well-developed topic’. 

 We apply our procedure to the following two examples: 

(i) A synthetic (artificial, numerical, Monte Carlo) example so we—but not our 

method—know its I/O function explicitly. 

(ii) An inventory simulation that has only an estimated implicit I/O function. 

Our empirical results are encouraging; i.e., the type I error rates are close to the 

prespecified (nominal) rates; the type II error rates (complement of the power) decrease 

as the input combination tested moves farther away from the true optimum. 

 The remainder of this paper is organized as follows.  Section 2 formalizes a 

constrained nonlinear random optimization problem, and its KKT conditions. Section 3 

uses OLS to locally fit either a first-order or a second-order polynomial per response, 

using either a Resolution-3 (R-3) design augmented with a center point or a Central 

Composite Design (CCD). Section 4 develops a procedure for testing whether the center 

of the local area satisfies the KKT conditions. Its subsection 4.1 uses Student’s t test to 

check whether the simulation responses are feasible, and whether any constraints are 

binding (active). Subsection 4.2 derives a bootstrap procedure to test the remaining KKT 

conditions. Section 5 studies the performance of the novel procedure by means of the 

synthetic example. Section 6 illustrates the procedure through its application to an 

inventory simulation. Section 7 gives conclusions and future research topics. 

 

2. Mathematical programming formulation of simulation optimization with 

multivariate outputs  

 

Following Angün et al. (2002), we formalize our problem as follows. The simulation 

model has k ≥  1 inputs. Let jd  denote the value of the original (non-standardized) input j 

(j = 1, …, k). Let the z responses be denoted by 
h’

w  ( h’= 0, …, z – 1), where the goal 

output—to be minimized—corresponds with 0w . This results in the following 

constrained nonlinear random optimization problem: 
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Minimize ( )( )rd,0E w   

subject to ( )( ) 1 ..., 1,for  E −=≥ zhaw hh rd,  (1) 

 

where r denotes the PRN and ha  denotes the right-hand-side value for constraint h.  

Figure 1 (displayed in Section 1) illustrates (1). This figure has two inputs 

Tdd ),( 21=d ; see the labels of the two axes. Furthermore, this figure has three outputs 

Twww ),,( 210=w ; see the labels of the various contour functions. Actually, the figure 

shows (only) three ‘iso’ goal functions, which (by definition) are the set of input 

combinations with the same goal value—namely, 96, 76, and 66 respectively. The figure 

shows two constraints, namely ( ) 4E 1 =w  and ( ) 9E 2 =w . The optimal input (to be found 

by some given simulation optimization procedure) is point A; three suboptimal points are 

also shown—namely B, C, and D—with binding constraints 1 and 2 respectively. The 

figure also shows the gradients of the goal function and the constraint that is binding in 

the specific location; these gradients are (by definition) perpendicular to the local tangent 

lines, but those lines are shown only for the binding constraint (not for the goal function). 

The well-known KKT conditions for (deterministic) problem (1) are 

 

B J;-00;0 =−                                         (2) 

 

where 0;0−  denotes the (deterministic) gradient of the goal function (also see h;0−  

defined in Section 1); JB  is the Jk ×  matrix with the gradients of the J binding 

constraints, and  denotes the corresponding non-negative Lagrange multipliers. For 

example, Figure 1 shows that point A satisfies (2), as 0;0−  and 1B  point in (roughly) the 

same direction. Points B and C have 0;0−  and 1B  point in different but similar 

directions. Point D has 0;0−  and 2B  point in completely different directions. Note that at 

these four points (A through D) the matrix 1B  has only one column; this column consists 

of the components of the gradient of the constraint that is binding at the specific point. 



 6

 Note: If the optimum occurs inside the feasible area, there are no binding constraints. 

Then the KKT conditions reduce to the condition that the goal gradient is zero. The latter 

condition may be tested through a classic F-test; see the classic RSM or the linear 

regression literature (also see again Karaesman and Van Ryzin 2004). We do not consider 

this case any further. 

 Unfortunately, in random simulation the gradients must be estimated. Moreover, the 

slacks of the constraints must be estimated, to check which constraints are binding. This 

estimation turns the KKT conditions (2) into a problem of nonlinear statistics—discussed 

next. 

 

3. Estimation of gradients in random simulation 

  

In this section, we show how we may estimate the gradients in random simulation, using 

(i) a proper experimental design to select the input combinations to be simulated; 

(ii) OLS to analyze the resulting I/O simulation data. 

 Many analysts estimate the gradients in black-box (either random or deterministic) 

simulations by changing one input at a time, followed by some type of differencing; see 

Spall (2003). We, however, propose to estimate the coefficients (parameters) of either a 

first-order or a second-order polynomial—locally fitted per response (also see the tangent 

lines in Figure 1 above). The statistical theory on Design Of Experiments (DOE) proves 

that the best design to estimate a first-order polynomial is an R-3 design, which requires 

only n = k + 1 input combinations with k + 1 rounded upwards to the next multiple of 

four (remember: k denotes the number of inputs). For example, if 74 ≤≤ k  then n = 8, 

which is the number of combinations in a (fractional two-level factorial) 472 −  design. 

These pk −2 fractional designs (-p denotes the fraction) are a subclass of the Plackett-

Burman designs. For example, if 118 ≤≤ k  then n = 12, which is not a pk −2  design. We 

refer to Kleijnen (1987) and Myers and Montgomery (2002) for details. Figure 1 has only 

two inputs so 22=n , which corresponds with a full factorial design. 

 Joshi, Sherali, and Tew (1998) use second-order polynomials to estimate (conjugate) 

gradients (but they do not test the KKT conditions; classic RSM assumes that the single 

response reaches its maximum at a ‘hill top’, which is modeled through a second-order 
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polynomial). To estimate a second-order polynomial, different designs are available; 

again see Kleijnen (1987) and Myers and Montgomery (2002). The most popular design, 

however, is the CCD, which consists of the following subdesigns: 

i. A Resolution-5 (R-5) design, which—by definition—enables unbiased estimation of 

the k main effects, the k(k – 1)/2  two-factor interactions (or cross-products in the 

polynomial), and the intercept—provided no other effects are important (however, we 

assume that purely quadratic effects are important). In Figure 1 and our synthetic 

example there are only two factors, so the 22 design is an R-5 design. 

ii. The 2k axial points, which means that each factor j (j = 1, …, k) is simulated at the 

value (say) –c and +c while all other (k - 1) factors are at their base value (zero). These 

points enable estimation of the purely quadratic effects. 

iii. The center point, which is replicated. This replication is used to test the fit of the 

estimated polynomial (as we shall see below). 

Note that the CCD makes the estimated purely quadratic effects and intercept correlated. 

To avoid singularity in the OLS estimator defined in (3) below, the design should satisfy 

the condition n ≥ q; actually the CCD are not saturated at all: n >> q (also see the 

artificial and the inventory examples with two inputs, discussed in Sections 5 and 6). 

 The design determines the input combinations that are actually simulated. After this 

simulation, the parameters of the polynomials are estimated. To estimate these 

parameters, classic DOE uses OLS. The OLS assumptions imply that the ‘fitting error’ 

(also called ‘error’ or ‘disturbance’) is white noise; i.e., these errors (say) e are Normally, 

Identically, and Independently Distributed (NIID) with zero mean ( 0=e ) and ‘constant’ 

variance ( 2

e ); i.e., the variance is locally constant (but not globally: for example, the 

local areas centered around the points A, B, C, and D in Figure 1 may have different 

variances). The error e represents the joint effects of (i) lack of fit, and (ii) intrinsic 

variation caused by the use of PRN in random simulation. Furthermore, classic DOE 

assumes a univariate output; we shall discuss this issue in the paragraph including (3). 

 We now define some more symbols. Each first-order polynomial has k ‘main effects’ 

j  ( k ..., ,j 1= )—if there are k inputs—and an ‘intercept’ or ‘grand mean’ 0 , which 

together define the regression parameter vector T
k ),,,( 10 �= . Its OLS estimator is 
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denoted by T
k )ˆ,,ˆ,ˆ(ˆ

10 �= , which implies the estimated local gradient 

T
k )ˆ,,ˆ(ˆ

10 �=− . Note that this gradient is biased if higher order effects are important 

and the design does not protect against this bias; for example, by definition, Resolution-4 

(R-4) designs protect against bias caused by two-factor interactions, but not against 

purely quadratic effects (see next paragraph). 

 A second-order polynomial has the first-order effects T
k ),,,( 10 �= plus the 

‘purely quadratic effects’ (say) jj;  ( k ..., ,j 1= ) and the two-factor interactions j’j;  

( jj’> ). Altogether this polynomial has a regression parameter vector with (say) q 

parameters, T

qfull ),,,( 110 −= �  (the subscript ‘full’ denotes the full model, which 

should be distinguished from the ‘reduced’ model that has no second-order effects). 

Obviously, the OLS estimator of these parameters is denoted by T

qfull )ˆ,,ˆ,ˆ(ˆ
110 −= � . 

This implies the estimated local gradient with components 

jjjjjjjj xxxy ;’’;
ˆ2ˆˆ/ ++=∂∂ . Because we estimate the gradient at the center point 

(where jx  = 0), the estimated gradient reduces to T
k )ˆ,,ˆ(ˆ

10 �=− . This is the same 

expression as we derived for the first-order polynomial, but obviously the estimates are 

different; i.e., the estimated gradient is biased if second-order effects are important and 

yet a first-order polynomial is used. 

Whereas classic DOE assumes a single response per input combination, we assume 

multiple responses ’hw  ( ’h  = 0, 1, …  z - 1); see (1). Like Angün et al. (2003, 2002), we 

first fit a local first-order polynomial for each of these z responses; unlike Angün et al. 

we also consider second-order polynomials (if the first-order polynomial gives significant 

lack-of-fit; see equation 6 below). Like classic DOE and Angün et al., we further assume 

that these z responses together form a multivariate Gaussian variate. This assumption is 

realistic if the simulation responses are averages so some limit theorem applies; for 

example, in our inventory simulation the two responses are costs and service percentages 

averaged over very many periods (see Section 6). A multivariate Gaussian variate is 

characterized by its vector of z means ( )( ) 1) ..., 0, (E −= zh’wh’ rd,  and its zz ×  

covariance matrix ),(ˆ ’’’ hh wwvoc ( ’’,’ hh  = 0, 1, …  z - 1). The z responses for a specific 
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scenario are correlated (so ),(ˆ ’’’ hh wwvoc  is not a diagonal matrix), since they map the 

same PRN using different transformation functions; for example, our inventory 

simulation will record the average ordering costs and service percentage per scenario. 

Furthermore, the z responses have different variances; in the inventory example, the 

ordering costs and the service percentage have different dimensions! 

Because the simulation output is multivariate, the Best Linear Unbiased Estimator 

(BLUE) of the regression parameters  seems to require Generalized Least Squares 

(GLS) instead of OLS. However, since all z responses use the same design, the GLS 

estimator reduces to the OLS estimator (see Rao 1967 and for a more recent publication 

see Ruud 2000, p. 703): 

 

1...,0,’with)(ˆ
’

1
’ −== − zhhh wXXX TT              (3) 

 

where X  denotes the qn×  matrix of explanatory (regression) variables. This X  is 

completely determined by D
~

, the standardized design matrix for the k inputs—with 

elements jid ;

~
that are linear transformations of the original jid ;  in (1) such that the jid ;

~
 of 

the R-3 design lie between -1 and +1 (i = 1, …, n and  j = 1, …, k). This standardization 

simplifies our computations; for example, the matrix in (3) to be inverted becomes a 

diagonal matrix in case of an R-3 design analyzed through a first-order polynomial. If we 

use a second-order polynomial, then we use a CCD with axial points determined by the 

constant c. The selection of a particular value for this c is discussed in the classic DOE 

literature, given specific assumptions. For our examples with only two factors we use c 

= 2 ; see Myers and Montgomery (1995, p. 298).    

 Note: Angün et al. (2003, 2002) use an R-3 design, assuming that a first-order 

polynomial is adequate. They simulate one of the input combinations of the R-3 design 

two times, and all remaining combinations only once; their selection of the combination 

to be replicated is arbitrary.  

Besides obtaining the point estimates of the gradients through (3), we wish to 

obtain the estimated covariance matrix of these estimated gradients. We again consider 

first-order and second-order polynomials respectively. 
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If we assume first-order polynomials, then a non-replicated R-3 design (which 

minimizes computer time in expensive simulation) enables unbiased estimators of the 

covariance matrixes of the z individual gradients—provided this design is not saturated 

(a saturated design implies that all residuals are zero). The design is saturated if k + 1 (k 

denotes the number of inputs) equals a multiple of four (so k = 3, 7, 11, 15, ….). Even if 

the design is not saturated, we propose to simulate—besides the R-3 design—the center 

point of the local experimental, to test whether a constraint is binding in a local area; the 

center point is more representative of the local behavior than any of the corner points that 

are part of the R-3 design (also see Section 4.1). 

The R-3 design enables unbiased estimators of gradients and their covariance 

matrices, provided a first-order polynomial is adequate. In practice it is not obvious how 

small the local area should be selected, to make this polynomial adequate. Therefore this 

adequacy is tested through a lack-of-fit F statistic. This statistic requires that one or more 

points be replicated, so that pure error can be estimated. Because we focus on expensive 

simulations, we propose to minimize the number of replicates. Therefore we replicate 

only the center point (as is traditional in RSM). The classic univariate statistic requires 

that this point be observed at least twice: m ����ZKHUH�m denotes the number of replicates 

at the center of the local area. The multivariate statistic defined by Roy, Gnanadesikan, 

and Srivastava (1971, p. 35)—DOVR�VHH�$QJ Q�DQG�.Oeijnen (2004), Dykstra (1959) and 

Khuri (1996, p. 385)— requires m ��z + 1 to obtain a non-singular estimated covariance 

matrix based on replications (so if z = 1, then the multivariate statistic requires the same 

m as the univariate). For example, in the synthetic example we have z = 3 responses, so 

we take m = 4 observations at the local center point; in the inventory illustration we have 

z = 2 so m = 3 (Kleijnen (1993) presents a case study with 2 response types and as many 

as 14 inputs, so m would have to be 3 at least). 

The lack-of-fit test compares two variance estimators:  

(i) one estimator based on the residuals ( ’’
ˆ

hh yw − ) with ’hw  defined in (1) and 

’’
ˆˆ

hh Xy = , and  

(ii) one estimator based on replication. 
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Obviously, only the first estimator depends on the polynomial (regression metamodel) 

that is selected to approximate the true I/O function implied by the underlying simulation 

model. 

The Mean Squared Residual (MSR) estimator of the covariance matrix ),( ’’’ hh wwcov  

is 

 

( ) 1)...,0,(
)ˆ()ˆ(

),(ˆ ’’’’’’
’’’ −=

−
−−= zh’’h’,

qN
w hh

T

hh
hhresiduals

ywyw
wvoc  (4) 

 

where ∑ == n

i imN
1

 denotes the total number of simulation runs with im  denoting the 

number of replicates for scenario i, and ’’
ˆˆ hh Xy =  is the vector with the N regression 

predictors of simulation responses ’hw  for the N scenarios i (obviously, replicated 

scenarios have the same predictor because they have the same input). All N  scenarios use 

different, non-overlapping PRN to make the MSR unbiased; i.e., we do not use Common 

Random Numbers (CRN). We select all im  equal to one—except for the center point, 

which has m ��z + 1 replicates. 

We now consider two cases of (4): 

(i) In case of a specific response ’’’ hh = , (4) gives (say) 2
’’;’ ˆˆ hhh σσ = , which is the classic 

MSR for that response; i.e., it estimates the variance of simulation response ’hw . 

(Remember: this variance is assumed to be constant within the local area.) 

(ii) In case of two different responses ’’’ hh ≠ , (4) estimates the covariance between the 

responses ’hw  and ’’hw . (This covariance is again assumed to be constant within the local 

area.) This covariance is used by the multivariate F-statistic defined by Roy et al. (1971), 

but not by the classic univariate F-statistic. The latter statistic is simpler, requires fewer 

replications, and may be combined with Bonferroni’s inequality to hedge against non-

zero covariances—albeit that the use of this inequality makes the test ‘conservative’; i.e., 

the test has a smaller type-I error rate than prespecified. (We shall also use these 

covariances to estimate the covariances between the estimated gradients of different 

responses; see (7).) 
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The estimator based on replication of the center point is 

 

( )
1

))((
),(ˆ 1 ’’;’’’;’

’’’ −
−−

= ∑ =

m

wwww
ww

m

r hrhhrh

hhreplicatesvoc     (5) 

 

where rhw ;’  denotes response ’h  of replication r—with r = 1, …, ,m—of the (local) center 

point, and ’hw  denotes the average of these m responses ; we suppress the subscript for 

the scenario.  

 The classic (univariate) lack-of-fit test is 

 

∑ ∑
∑
= =

=
−− −−

−−
= n

i hirhi

m

r

n

i hihii

nNqn
nNww

qnywm
hF

i

1

2
’;;’;1

1

2

’;’;

; )/()(

)/()ˆ(
)'(       (6) 

 

where rhiw ;’;  denotes response ’h  in replication r of scenario i; see Myers and 

Montgomery (1995, p. 52). 

 If this statistic is significant (using Bonferroni’s inequality), then the MSR 

estimator in (4) overestimates the true variance. For example, if the true response 

variance is zero (as in deterministic simulation), then (4) still gives a positive variance 

estimate in case the polynomial does not fit perfectly. 

 If we find significant lack of fit, we have two options: 

(i) Decrease the local area; for example, halve each factor’s range.  

(ii) Increase the order of the polynomial; for example, switch from a first-order to a 

second-order polynomial. 

If we do not find significant lack of fit, then we will still base our bootstrap on the 

replicates because the MSR estimator may be inflated by undetected bias (the lack-of-fit 

test has small power if the number of replicates is small). 

 Note: We might use CRN, to reduce the noise of the estimated gradients. 

Unfortunately, we must then estimate the covariances between ih ;’w  and ’;’’ ihw  (with 

’;’’ ihw denoting response ’’h  at scenario ’i , and ’i  = 1, …, n). This leads from the zz ×  
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covariance matrix in (5) to a znzn×  covariance matrix; its estimation requires many 

more replicates. We leave this CRN issue for future research. 

Note: In practice, the definition of a ‘replicate’ may be ambiguous in steady-state 

simulations. In such simulations, practitioners often make a single ‘long’ run, and 

partition this run into m subruns to compute the estimated covariances through (5). In 

both steady-state simulations and terminating simulations, the number of required 

replicates may exceed the minimum value required for a non-singular estimated 

covariance matrix—in case of a low signal/noise )var(/)( wwE  in the simulation at 

hand. In such a case, additional replicates are required to estimate the gradients with 

acceptable accuracy. We shall return to this issue in the synthetic example and the 

inventory simulation. 

We use these estimated (co)variances of the simulation outputs—defined in (4)—

to estimate the covariance matrix of the regression parameters estimated through (3): 

 

1...,0,with)(),(ˆ)ˆ,ˆ(ˆ 1

’’’’’’ −=⊗= − zh’’h’,ww hhreplicateshh XXvocvoc T   (7) 

 

where ),(ˆ
’’’ hhreplicates wwvoc is the zz ×  matrix defined in (5); 1)( −XX T  is a qq ×  matrix 

following from the experimental design D
~

 defined below (3) and the first-order or 

second-order polynomial fitted locally; ⊗  denotes the Kronecker product, so 

)ˆ,ˆ(ˆ ’’’ hhvoc  is a zqzq×  matrix formed from (4) by multiplying each of its elements by 

the entire matrix 1)( −XX T (also see Porta Nova and Wilson 1989). 

 We discuss the following three cases of (7), assuming a first-order polynomial 

approximation for illustration purposes. 

(i) The first (k + 1) elements on the main diagonal of )ˆ,ˆ(ˆ ’’’ hhvoc  are the estimated 

variances of the estimated main effects—plus the dummy factor corresponding with the 

intercept—on the goal response 0w ; the next (k + 1) elements are the estimated variances 

of the estimated factor effects on response 1w ; and so on. 
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(ii) If ’’’ hh = , then (7) concerns the block diagonal. Now (7) estimates the 

)1()1( +×+ kk  (co)variances between the estimated effects of different factors on a 

specific output, ’hw . These effects are correlated—unless the design is orthogonal so 

1)( −XX T  is diagonal. 

(iii) If ’’’ hh ≠ , then (7) estimates the )1()1( +×+ kk  covariances between the estimated 

effects on the two simulation outputs ’hw  and ’’hw . (If the design matrix is orthogonal, 

then a specific factor still has correlated estimated effects on different responses—

because these responses are correlated whenever they are generated by the same scenario. 

For example, in Section 5, we shall use an orthogonal design for k = 2 factors to generate 

z = 3 responses per scenario. The estimated effects of the first factor—denoted by the 

subscript 1— on the first two responses—denoted by the subscripts 0=h’  (goal) and 

1’’ =h  (constraint 1) have an estimated covariance )ˆ,ˆv(ôc 1;11;0  equal to 4/ˆ 1;0σ . 

 

4. Testing the KKT conditions  

  

The main goal of this paper is to derive a small-sample procedure to test whether the 

KKT conditions hold for the ‘current’ solution of problem (1); examples of such a 

solution are the points labeled A through D in Figure 1. We therefore test whether the 

following three null-hypotheses hold. 

(i) First we test whether the current solution is feasible and whether at least one 

constraint is binding. Therefore we compare the z –1 simulation responses hw  (h = 1, …, 

z –1) with their bounds ha  defined in (1). We test the center point of the current local 

area, because that point is more representative than the (extreme) scenarios of the R-3 

design or the non-center points of the CCD; moreover, we avoid the problem of multiple 

tests (which we could have solved through Bonferroni’s inequality—at the expensive of 

conservative test results). So we test the following null-hypothesis, which implies zero 

slack for constraint h: 

 

hh aw == ))
~

(E(:H (1)

0 0d  (h = 1, …, z –1) (8)   
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where we use an equality sign instead of the ≥  sign in (1)—for reasons discussed at the 

end of subsection 4.1. 

(ii) We replace all deterministic quantities in the original KKT conditions (2) by their 

(random) estimators; i.e., we test 

 

)ˆˆ()ˆ(:H 00;0

(2)

0 B J;-EE =− .                           (9) 

 

(iii) We test that ˆ , the Lagrange multipliers estimated in (9), satisfy  

 

0)ˆE(:H (3)

0 ≥  (10)   

 

as discussed below (2). 

 Next we shall discuss how we test these three hypotheses sequentially. 

 

4.1 Student t test for binding constraints 

 

To test the hypothesis in (8), we use the classic Student test:  

 

m

aw
t

h

hh
m

/ˆ

)
~

(
1 σ

−==−

0d
 (11)   

where both the numerator and the denominator use the m replicated simulation outputs at 

the center point (so hσ̂  is the ‘pure error’ standard deviation following from equation 5). 

To save simulation runs, a local experiment should start at its center point, 

including replicates. If it turns out that either no constraint is binding or at least one 

constraint is violated, then the other hypotheses need not be tested so the remainder of the 

design is not simulated.  

We might replace the t statistic defined in (11) by an F statistic using 

1;1

2

1 −− = mm Ft . However, the t statistic enables us to use two different values for the type-I 
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errors corresponding with the two tails of the Student distribution, so we may obtain the 

following three different results: 

(i) When the t statistic in (11) gives a significant positive value, we conclude that the 

constraint for output h is not binding. If we find that none of the constraints is binding, 

we conclude that the optimal solution is not yet found; i.e., we assume that at the 

optimum at least one constraint is binding. In this case, the current local area gives 

feasible solutions, and the search for better solutions continues—applying one of the 

simulation-based optimization methods mentioned in Section 1.  

(ii) When we find a significant negative value, we conclude that the current local area 

does not give feasible solutions; i.e., the optimal solution is not yet found. The search 

should back up into the feasible area. 

(iii) When we find a non-significant value, we conclude that the current local area 

gives feasible solutions, and that the constraint for output h is binding. We include the 

gradient of this response in JB defined below (2). And we proceed to test whether the 

optimal solution is now found—as follows. 

 

4.2 Bootstrap test of KKT conditions 

 

To test the two related hypotheses in (9) and (10), we propose bootstrapping. There are 

two bootstrap types (Efron and Tibshirani 1993): 

(i) Parametric: this bootstrap type assumes (for example) normally distributed 

observations. 

(ii) Distribution-free: this type does not assume (say) normality—instead it resamples 

the original data. 

We cannot apply (ii), because all points—except for the center point—have a single 

simulation output so resampling would always give the same observation per scenario. 

Therefore, we apply (i); i.e., we estimate the parameters of the multivariate normal 

distribution that plays a role (see equation 14 below). These estimated parameters are 

(indirectly) computed from the simulation I/O data—also see Figure 2—so the bootstrap 



 17

is called data-driven. (Moreover, our normality assumption would simplify comparison 

with the asymptotic tests discussed in Section 1—if readers wish to do so.) 

 

Insert Figure 2: I/O of three models: simulation, regression, bootstrap 

 

 This figure illustrates that we treat the simulation model as a black box (also see 

Section 1). Our regression model uses the I/O of the simulation model as input, and 

estimates the gradients of the goal response (index 0) and the constrained responses, 

including the binding constraints (index J). 

The null-hypothesis in (9) states that the goal gradient is a linear combination of 

the gradients of the binding constraints. Obviously, we can always compute such a linear 

combination through OLS: 

 

BBBBB ˆˆˆˆ)ˆˆ(ˆˆ̂
;00;0;0

1

;0;0;00;0 J

T

JJ

T

JJ −−−
−

−−−− ==      (12) 

 

where in (3) (the formula for the OLS estimator applied to the simulation I/O data) we 

replace the deterministic explanatory variable X by the random explanatory variable 

J;0
ˆ

−B , which makes (12) a non-linear function of the multivariate Gaussian variable 

)ˆ,ˆ( *

;0

*

0;0 Jvec −− Bβ ; also see (14) below. It is well known that non-linear statistics can be 

handled through bootstrapping. Altogether, (12) uses the following symbols: 

J;-0B̂ : Jk × matrix of estimated gradients of the J binding constraints (each gradient has 

k components because there are k inputs; gradients follow from the simulation I/O data 

),( wX  via (3); all z – 1 constraints are tested in the preceding subsection;  

0;0
ˆ

− : goal gradient; see (3) with h’= 0; 

0;0

ˆ̂
− : OLS estimator of 0;0

ˆ
−  as a linear combination of the gradients of the binding 

constraints; 

ˆ : estimate of the Lagrange multipliers  of the KKT conditions in (2). 
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Figure 3 illustrates that the OLS estimator 0;0

ˆ̂
−  projects 0;0

ˆ
−  onto the subspace 

formed by J;0
ˆ

−B ; part A corresponds with the optimal point A in Figure 1, whereas part 

B corresponds with (say) point B in that figure (the remaining vectors in Figure 3 will be 

discussed below).  

 

 Insert Figure 3: Example of gradients of goal and binding constraint 

 

A classic statistic to measure the accuracy of the linear model is the k-

dimensional vector of residuals  

 

0;00;00;0

ˆ̂ˆ)ˆ̂(ˆ −−− −== ee  .      (13) 

 

These residuals )
ˆ̂

( 0;0−e —denoted by ê  in Figure 3—should not be confused with the 

fitting errors (say) )ˆ( ye  when estimating the simulation output w through ŷ using either 

a first-order or a second-order polynomial; see the numerator in (4). 

The question now is: what is an acceptable value for the residuals )
ˆ̂

( 0;0−e  

defined in (13), accounting for the randomness in the simulation output—which 

determines the randomness in the estimated gradients (again see Figure 3)?  

To answer this question, we ‘simulate’ gradient values that agree with the 

observed randomness—quantified through the estimated covariance matrix of the 

estimated gradients in (7). To generate these values, we sample—via the Monte Carlo 

method—from the relevant distributions; i.e., we apply parametric bootstrapping. This 

bootstrap procedure consists of the following steps, where we use the standard notation 

for bootstrapped (sampled, simulated) values, namely the superscript *. 

Step 1: We sample the bootstrap values (say) )ˆ,ˆ( *

;0

*

0;0 Jvec −− Bβ : 
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)))ˆ,ˆ((ˆ),ˆ,ˆ(()ˆ,ˆ( ;00;0;00;0

*

;0

*

0;0 JJJ vecvecNvec −−−−−− ∈ BvocBB βββ     (14) 

 

where we define the parameters of this multivariate normal distribution as follows: 

)ˆ,ˆ( ;000 J;vec −− Bβ : vector with k + kJ  elements formed by ‘stapling’ (stacking) the k 

elements of the goal gradient, followed by the  J vectors of the corresponding Jk ×  

matrix J;0
ˆ

−B (also see equation 12); 

))ˆ,ˆ((ˆ
0;0 Jvec Bvoc −β : )()( kJkkJk +×+  matrix of estimated (co)variances of the 

estimated gradients of the goal response and the binding constraints; these (co)variances 

are computed from (7). 

Figure 3 shows one bootstrapped value for *

0;0
ˆ

−β  and *
;0

ˆ
J−B  (besides the original values), 

for the points A and B in Figure 1. 

Step 2:  We compute the OLS estimate of the bootstrapped goal gradient, using the 

bootstrapped gradients of the binding constraints as explanatory variables; i.e. we use 

(12) with 0;0
ˆ

−  replaced by *

0;0
ˆ

−  and J;0
ˆ

−B  by *

;0
ˆ

J−B  so (12) results in *

0;0

ˆ̂
−  and *ˆ . 

  We update a variable (say) *c  that counts the number of times any of the J 

bootstrapped Lagrange multipliers *ˆ  is negative (after we have executed our bootstrap 

procedure—say—1000 times, we test whether this counter is so big that we should reject 

the hypothesis in equation 10; see below). 

 Using *

0;0

ˆ̂
− (OLS estimate of bootstrapped goal gradient), we compute the 

bootstrapped error through (13)  with 0;0
ˆ

−  replaced by *

0;0
ˆ

−  and 0;0

ˆ̂
− by *

0;0

ˆ̂
−  so (13) 

results in the bootstrapped residuals, **

0;0
ˆ)ˆ̂( ee ≡− ; also see Figure 3.  

We emphasize that *ˆ
JB  may be a square PDWUL[��IRU�H[DPSOH�$QJ Q�HW�DO������2) 

have two binding constraints so *ˆ
JB  has two columns, and two inputs so *ˆ

JB is two by 

two. A square non-singular matrix *ˆ
JB  implies that 0e =*ˆ  and the projection of *

0;0
ˆ

−  is 

not onto a proper subspace (i.e., a square matrix *ˆ
JB  implies 2R  = 1 where 2R  denotes the 
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coefficient of determination). In other words, a square non-singular *ˆ
JB  implies that the 

random KKT problem reduces to a deterministic problem; for solving such problems we 

refer to the literature on deterministic nonlinear programming, such as Gill et al. (2000). 

To avoid such ‘degeneration’ in our numerical example (SectiRQ�����ZH�IROORZ�$QJ Q�HW�

DO���������DQG�FKDQJH�WKH�SDUDPHWHUV�LQ�$QJ Q�HW�DO���������VXFK�WKDW�WKHUH�LV�D�VLQJOH�

binding constraint at the optimum—involving two inputs. (Kleijnen (1993) presents a 

case study with k = 14 inputs that control a decision support system for production 

planning by a Dutch steel tube manufacturer, which has z = 2 outputs so in this practical 

example *ˆ
JB  is indeed not a square matrix.) 

Step 3:  We repeat steps 1 and 2 (say) R times (for example, R = 1000)—R is known as 

the bootstrap sample size. This gives R observations on **

0;0
ˆ)ˆ̂( ee ≡− , denoted  as *ˆ

re  (r = 

1, …., R). In addition, step 2 gives c—which counts the number of negative Lagrange 

multipliers *ˆ . We point out that it is computationally efficient to replace R = 1000 by R 

= 999; see Kleijnen, Cheng, and Bettonvil (2001). 

Note: This step’s computational time is negligible compared with the computer 

time needed for the generation of the expensive simulation output ’hw , used in Section 3 

(see again Figure 3.) 

 Step 4: From Step 3 we compute (say) *ˆ
jF , the EDF per input j of the 

bootstrapped residual; i.e., we sort the results from Step 3 per input, which results in the 

order statistics *

)(;
ˆ

rje  (j = 1, …, k ; r = 1, …, R ) where the subscript (.) is the standard 

symbol for order statistics. Besides, we compute the fraction Rc /*  of negative Lagrange 

multipliers. 

 Step 5: We estimated the two-sided α−1  bootstrap confidence interval per input 

from  
*

)2/(;
ˆ αRje , which denotes the lower )2/( kα quantile of the EDF computed in step 4 

where the bottom or floor function .  implies that we (rather arbitrarily) round to the 

next integer. (Besides this simple confidence interval, Efron and Tibshirani (1963) and 

Hall (1987)  present several alternatives.) 
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We reject (2)

0H  defined in (9) if any of these k confidence interval does not cover 

zero, we apply Bonferroni’s inequality to test whether the residuals deviate significantly 

from zero.  We expect that in Figure 3 we tend to ‘accept’ this null-hypothesis in the 

optimal point A, whereas in point B we tend to reject. 

Note: Bonferroni’s inequality provides simple but conservative tests. 

Alternatively, we could use Tukey’s depth in Step 5 to compute a confidence region for 

all inputs simultaneously; see Yeh and Singh (1997). This, however, requires much more 

computational effort. In particular, computing Tukey’s depth for dimensions higher than 

3 (in our case, when the number of inputs k is larger than 3) is still a hard computational 

problem (see Rousseeuw and Struyf, 1998). 

We reject the other null-hypothesis, (3)

0H  defined in (10) if Rc /* —the fraction of 

negative bootstrapped Lagrange multipliers also computed in Step 4—is ‘significantly’ 

large. We point out that a Lagrange multiplier that is only ‘slightly’ larger than zero, has 

‘nearly’ 50% probability of generating negative values if its distribution is symmetric. 

Therefore we use the binomial distribution to test whether the fraction Rc /*  is 

significantly larger than 50%. We approximate this distribution through the normal 

distribution with mean 0.50 and variance (0.50×0.50)/R. We expect that in point D of 

Figure 1 we reject this null-hypothesis, whereas in points A, B, and C we do not. 

Note: If we ignored the random character of the estimated gradients of the binding 

constraints, then an alternative test—assuming normally distributed simulation outputs— 

would be the classic F-test (see any textbook on linear regression analysis). The latter test 

is an exact, small-sample test, comparing 

(i) the Sum of Squared Residuals, )ˆ()ˆ(' 0;00;0 −−= eeSSR , of the so-called full model; 

(ii) the SSR of the reduced model that eliminates as explanatory variables all those 

binding constraints that have negative . 

 

5. Synthetic example 
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To test our statistical procedure, we wish to guarantee that all its assumptions hold (in 

future research, we may test the robustness of our procedure). The two main assumptions 

are  

(i) the simulation outputs w are multivariate normal, and  

(ii) the polynomials give adequate fit to the true simulation I/O functions. 

Sub (i): In the inventory simulation of the next section, we should make the simulation 

runs ‘long enough’ to obtain normally distributed responses. Unfortunately, the runs 

might then be extremely long, so we might need much computer time. Moreover, such 

runs do not guarantee normality: when exactly does asymptotic normality hold for a time 

series average? 

Sub (ii): We know that practical simulation models (such as queueing and inventory 

simulations) imply imperfect fit of first-order and second-order polynomials; such low-

order polynomials may be ‘adequate’ if the local area is small ‘enough’—given the 

magnitude of the noise. 

Therefore, we use the same synthetic example as the one in Angün et al. (2004); see 

again Figure 1. We assume the following true I/O functions: the outputs w are 

multivariate normal, with means such that ( )( ) 1) ..., 0,(  E −= zh
h

w d  are second-order 

polynomials in the two inputs d; the covariance matrix follows below. We select the 

coefficients of these polynomials such that only one of the two constraints is binding at 

the true optimum (also see the discussion on square matrices at the end of step 2 in 

Subsection 4.2). Given these assumptions, we must select specific values for these 

coefficients. We select these values rather arbitrary, but we do not try to select values that 

favor the performance of our procedure (actually, we would not know how to select 

favorable values). Our choices imply that the general problem (1) reduces to 

 

Minimize ( )0
2

2
2

1 8)()8(E edd +++−   

subject to ( ) 43)(E 121
2
2

2
1 ≤+++− edddd  (15) 

 ( ) 91.061)(3E 2
2

2
2

1 ≤+++ edd   

 

where all additive noises e are multivariate normal with zero means. 
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 Obviously, (15) implies that the unconstrained minimum would occur at the input 

combination d  = T)8,8( − . It is easy to derive analytically that the constrained minimum 

occurs at (approximately) od  = T)9892.1,5328.2( − ; see point A in Figure 1. 

 To generate data for the example in (15), we must select values for ),( ’’’ hh wwcov  = 

),( ’’’ hh eecov ��ZKLFK� FKDUDFWHUL]HV� WKH� QRLVH��8QOLNH�$QJ Q� HW� DO�� ��������ZH� DVVXPH� QR�

replicates except for a few replicates at the local center. But this assumption implies that 

we cannot increase the number of replicates to restrict the noise (therefore we do not 

VHOHFW�WKH�YDOXHV�WKDW�$QJ Q�HW�DO��VHOHFW����2XU� ),( ’’’ hh wwcov  determines the signal/noise 

ratio, )ˆvar(/ ββ —once we have selected the range of the local area; also see the 

(co)variance formula (7). Two conflicting arguments apply—one mathematical and one 

statistical (also see Safizadeh 2002): 

(i) the smaller the range of the local area, the better the local low-order approximation 

(Taylor series argument); 

(ii)  the larger this range, the higher the signal/noise ratio; i.e., the smaller the noise, 

)ˆvar(β . 

Inspired by $QJ Q�HW�DO����������ZH�VWDUW�ZLWK�the following standard deviations for the 

simulation responses in all local areas: 1,0 =  0.15,1 =  0.4,2 =  and correlations 

(say) 1 0; = 0.6 2 0; = 0.3, and 2 1; = -0.1. We select the size of the local area rather 

arbitrarily, after some trial-and-error (also see the discussion of Table 1 below). These 

choices turn out to give reasonable signal/noise values. In practice, too much signal 

reduces the problem type defined in (1) to a deterministic problem; too little signal 

implies that the analysts had better thrown a coin—rather than spend much time on 

developing a simulation model. (In deterministic optimization, the users also select the 

size of the so-called ‘trust region’ subjectively; see Conn, Gould, and Toint 2000.) 

 To estimate our procedure’s power function, we apply our procedure in four local 

areas, each with a center point corresponding with the four points A through D in Figure 

1: 

(A) The approximately optimal point (2.53, -1.99)  



 24

At this point, our test procedure should reject the null-hypothesis (9) and (10) 

respectively, with probability only α  (type-I error rate). We select α  �������DV�$QJ Q�HW�

al. (2004) do; the observed value may be denoted by α̂ ; it is binomially distributed. Note 

that our multi-stage procedure fails if it rejects the null-hypothesis stating that the 

estimated slack of constraint #2 (involving 2w ) is zero; see (8). 

(B) A point ‘near’ the optimum, and with the same binding constraint as point A 

At this point, our procedure should reject the null-hypothesis (9) or (10), with probability 

higher than α ; i.e., our procedure should show increasing power as the point tested 

moves away from the true optimum. Our procedure should still ‘accept’ the null-

hypothesis in (8) implying a binding constraint #2. 

(C) A point ‘far away’ from the optimum, and with the same binding constraint 

Our procedure should now reject the null-hypothesis (9) and (10), with a probability 

higher than case B’s probability. 

(D) A point ‘far away’ from the optimum, and with a different binding constraint 

Our procedure should now reject the null-hypothesis (9) and (10), with a probability 

higher than the case (B) probability. Our procedure should ‘accept’ the null-hypothesis of 

a binding constraint #1 (not #2; see case B). 

The classic design for the fitting of a second-order polynomial (to the simulation’s 

I/O data) is a CCD (first-order polynomials will be discussed at the end of this section). 

This example has two simulation inputs so k = 2. Hence, the number of parameters in the 

regression metamodel that approximates the example’s I/O function is q = 6. So the CCD 

consists of the two-level full factorial , which has 22 factor combinations, augmented with 

a one-factor-at-a-time design with two values c and –c with c = 2  (again see Myers and 

Montgomery 1995, p. 298), and the center point replicated m = 4 times (because of the 

condition m ��z + 1 with z denoting the number of simulation responses, so in this 

example  z = 3; see equation 15).  Altogether, the CCD uses n = 9 combinations of the k = 

2 inputs to estimated the q = 6 parameters of the second-order polynomial approximation 

(so the CCD is definitely not saturated). 

First, our procedure tests whether the z –1 = 2 constraints are binding at the local 

center. Next it tests whether a second-order polynomial—based on the CCD—is an 

adequate approximation. If these two tests are passed, then our procedure tests whether 
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the goal gradient can be adequately approximated as a linear model of the binding 

constraint (the CCD gives the estimated gradients of the objective simulation response 

0w  and the constrained simulation responses 1w  and 2w ; because a single constraint is 

binding, the goal gradient with its k = 2 components should be estimated as a linear 

function of the binding constraint’s gradient; this estimate uses OLS and gives k = 2 

residuals for the components of the goal gradient; see equation 13). If this test is passed, 

then the Lagrange multipliers are tested for their signs.  

To get an accurate estimate of the power of our procedure, we run 1000 macro-

replicates of our example (i.e., we take 1000 sampled vectors of the simulation output w 

per input combination, estimate 1000 gradients per response, obtain R = 999 bootstrap 

samples per gradient, etc.). This gives Table 1, which displays experimental results for 

each of the four locations (labeled A through D) and the following two factors: 

(i) Local area size: When this area is ‘large’, the four local points corresponding with 

the 22 design change the center point by 0.1. In the ‘small’ area, they change the size by 

0.01. 

(ii) Noise:  A ‘small’ noise means that the standard deviations are only 10% of the 

‘large’ standard deviations that were specified above ( 1,0 =  0.15,1 =  2 = 0.4). 

We explain the numbers in Table 1 as follows, starting with point A’s upper-left 

element, and proceeding with the other elements in the same row. 

69/1000 = 0.07: Our number of macro-replicates is 1000. The first stage of our 

procedure uses the Student t test defined in (11) to test the null-hypothesis in (8), which 

states that at least one constraint is binding (we know that constraint 2 is binding). This 

hypothesis is rejected for 69 macro-replicates. The footnote in Table 1 details that of 

these 69 macro-replicates, 42 macro-replicates rejected the null-hypothesis because the 

first constraint was found to be ‘inactive’ (the slack is positive; we know this is true) and 

the second constraint was violated (negative slack; we know the slack is zero), and the 

remaining (69 – 42 =) 27 replicates rejected the null-hypothesis because both constraints 

are found to be inactive. 

The other elements in this row give similar numerical results; i.e., the 

conservative Bonferroni inequality explains why the observed type-I error rate is slightly 
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smaller than the nominal value, 0.10. The other points (B, C, D) have a row with similar 

results. 

Note: For stages 1 and 2, we obtain identical results for large and small local 

areas, because we use CRN—which result in perfect correlation coefficient of +1 (in our 

artificial example, the PRN cannot get out of step, whereas in our inventory simulation 

the synchronization of the PRN may be problematic 

79/931 = 0.08: The number of macro-replicates that remains after stage 1 is (1000 

– 69 =) 931. Stage 2 uses the classic lack-of-fit F test defined in (6), to test the null-

hypothesis asserting the adequacy of the second-order polynomial fitted locally (based on 

the I/O ‘simulation’ data with input data specified by a CCD). Because our problem has 

multiple simulation responses, we again use Bonferroni’s inequality, which explains that 

α̂  is lower than the prespecified rate, α  = 0.10. 

Note: We also applied the multivariate lack-of-fit test of Roy et al. (1971). This 

test, however,  gave too many rejections; for example, we obtain α̂  = 0.22. More 

research would be needed to find out why this happens.  

We get similar results for the F lack-of-fit test in the other cases: see the elements 

in the same row as 79/931, and the other points (B, C, D). 

 106/852 = 0.12: The number of macro-replicates that remains after stage 2 is (931 

– 79 =) 852. Stage 3 uses bootstrapping to test whether the estimated goal gradient can be 

adequately expressed as a linear function of the estimated gradient of the binding 

constraint. Because our problem has multiple simulation inputs (k = 2), we again apply 

Bonferroni’s inequality. We obtain α̂  = 0.12, which is slightly higher than the 

prespecified 0.10. Two other cases give similar results, but one case give α̂  = 0.02. 

The sub-optimal points (B, C, D) give good results (good power)—except for the 

case of a small local area with large noise, but then stage 4 rejects the sign of the 

Lagrange multipliers (see next paragraph). 

0/746 = 0.00: The number of macro-replicates of stage 3 is (852 – 106 =) 746. Stage 4 

tests whether the ‘adequate’ linear function of stage 3 has positive bootstrapped Lagrange 

multipliers *̂λ . None of these macro-replicates gives a negative multiplier—which is not 

surprising, given the true gradients at point A in Figure 1—except for the case of a small 
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local area with large noise (in the latter case the linear model for the goal gradient may 

have any sign for its fitted parameters *̂λ ). 

 For the points B and C we obtain results that are very similar to point A. For point 

D (very far away from the optimum) the Lagrange multipliers often have the wrong 

sign—which is not surprising given the true gradients at this point. (D has a different 

simulation response—namely, response 1—resulting in a binding constraint; see the 

footnote.) 

 We emphasize that the results of stages 3 and 4 should be interpreted together:  

(i) If stage 3 rejects the linear model for the goal gradient, then no macro-replicates 

are left in stage 4 to test the signs of the Lagrange multipliers. 

(ii) If stage 3 accepts the linear model for the goal gradient (in case the noise is 

large), then stage 4 often rejects the signs of the Lagrange multipliers (the estimated 

gradients of the goal and the binding constraint show so much noise that they may point 

in the same direction or not). 

Table 1 suggests the following conclusions: 

(i) Both the t test for the identification of the binding constraints, and the lack-of-fit 

F test perform well—independent of the distance from the optimum, the size of the local 

area, and the magnitude of the noise. 

(ii) The farther away from the optimum, the higher the probability of rejecting the 

model that expresses the estimated goal gradient as a linear function of the estimated 

gradient of the binding constraint identified sub (i). That (type-I error) probability is 

acceptable at the optimum itself. However, cases with a small signal and a large noise 

often do not reject that linear model; fortunately, these cases often give the wrong 

(negative) signs for the estimated Lagrange multipliers. 

 

Insert Table 1: Fraction of rejected macro-replicates … 

 

 Finally, we investigated the consequences of fitting first-order polynomials 

(instead of second-order polynomials) to the simulation’s I/O data. Such polynomials 

have only q =  k + 1 parameters, so they require fewer input combinations to be 

simulated; i.e. an R-3 design instead of a CCD suffices. In our example with only k = 2 
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simulation inputs, our procedure simulates the 22 combinations plus the center point, 

which is still replicated m = 4 (> r, number of simulation responses) times. Hence, n = 5 

and q = 3 so a lack-of-fit F test is possible. 

 We experiment with the same cases as in Table 1. We obtain results that are 

similar to the results in Table 1, except for the case of large local area with small noise. In 

the latter case, the lack-of-fit test rejects the polynomial approximation more often; for 

example, in point A the lack-of-fit test of the first-order approximation gives α̂  = 

(200/927 =) 0.22, whereas Table 1 shows α̂  = (77/908 =) 0.08 for the second-order 

approximation (which we know is perfect for this artificial example). To save space we 

do not present further details. 

 

6. Illustration: (s, S) inventory with a service level constraint 

 

We further illustrate our procedure by applying it to a well-known (random) discrete-

event dynamic system (DEDS) simulation, namely the (s, S) inventory system with 

random lead times and a service level constraint investigated by Bashyam and Fu (1998). 

So—unlike most authors on inventory models—Bashyam and Fu assume a service 

constraint (instead of a penalty cost for backorders, which implies unconstrained 

optimization). Moreover, they allow the supplier’s orders to cross in time (they assume 

Poisson lead times with mean 6). For completeness’ sake we add that they assume 

periodic review.  

 Bashyam and Fu’s goal is to find the optimal reorder level s and order-up-to level S 

(so equation 1 has k = 2 inputs, 1d  and 2d ). Further, w1 in (1) becomes the fill rate; i.e., 

the fraction of demand directly met from inventory at hand; we focus on a target fill rate 

of 0.99.  Hence, the z = 2 responses are the steady-state fill rate and the steady-state 

expected costs (namely, order setup plus holding costs; order set-up costs K are 36 and 

holding costs h are 1, unit cost u are 2). Supplier orders arrive at the beginning of a 

review period. Review is at the end of the period. Customer’s demand occurring during 

the period is IID, namely exponential with mean 100. The simulation starts with an 

inventory at S (order up-to level).  
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 Bashyam and Fu define an auxiliary variable Q = S – s to estimate the optimal values 

for s and S (= s + Q); the (re)order quantity, however, is not a fixed quantity but varies 

with the actual ‘inventory position’, defined as stock on hand, minus customer 

backorders, plus outstanding supplier orders. 

 Bashyam and Fu apply perturbation analysis to estimate the gradients of the costs and 

fill rate with respect to s and Q, and the feasible directions method from nonlinear 

programming to search for the optimum. We, however, apply regression analysis (in the 

spirit of RSM) to estimate these gradients, for several combinations of s and Q. We refer 

WR�$QJ Q�HW�DO���������IRU�GHWDLOV�RQ�KRZ�560�PD\�JHW�WR�WKHVH�FRPELQDWLRQV��WKH�VHDUFK�

for these combinations is not the focus of our current research. We try several 

combinations including Bashyam and Fu’s estimated optimal combination of s and S. 

 Bashyam and Fu estimate the true optimum by means of a brute force search 

consisting of 30,000 periods simulated, replicated 10 times. Their estimate is s = 1435 

and Q = 85 or S = 1520. We take their estimate as the analogue of point A in Figure 1. To 

save computer time, we simulate only 1000 periods, instead of the 20000 periods that 

Bashyam and Fu simulate in their sophisticated optimization method (they simulate 

30000 periods in their brute force method). We select a local area with a range of 10 for 

both inputs, s and S. We generate 1000 macro-replicates. This gives that all 1000 macro-

replicates result in an inactive service constraint! The estimated cost is 1022.10. 
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 Therefore we repeat our experiment switching to s = 1040 and S = 1065, which are 

values that Bashyam gave us in private communication. Now our estimated costs are 

613.71 (which is lower than the 1022.10 obtained for the preceding combination). The 

service constraint  is violated 107 times; this constraint is inactive 4 times—altogether 

111/1000 = 0.11 of the macro-replicates proceeds to fit a second-order polynomial (we 

skipped the first-order polynomial in this illustration). This polynomial is rejected 

52/(1000 – 111) = 52/889 = 0.06, which is acceptable given the conservative 

Bonferroni’s inequality applied to the two polynomials (z = 2 simulation responses). The 

OLS model expressing the goal gradient as a linear function of the service constraint 

gradient, gives a rejection rate of 59/((889 – 52) = 59/837 = 0.07. The ‘accepted’ models 

have the wrong signs for the Lagrange multipliers in 80/(837 – 59) = 80/778  = 0.10. So 

we conclude that our procedure has an acceptable probability of accepting this (s, S ) 

combination as being optimal. 

 We do not search for suboptimal combinations that lie on the fill rate constraint, since 

such a search seems a project in itself. Moreover, all that this search can give is 

combinations that should be rejected more frequently than the optimal combination; and 

the artificial example has already clearly shown that our procedure does have increasing 

power as the combinations move away from the optimum. 

 Note: Safizadeh (2002) investigates the local area size in RSM, using a similar 

inventory simulation (but he assumes a shortage cost instead of a fill rate constraint). He 

experiments with a range of 4, 10, and 20 respectively—for the two inputs, starting with 

the center point T175) (175, . He simulates a warm-up period of 30 followed by 5000 

time periods—which determine the resulting noise. He recommends small ranges—but 

he applies CRN, whereas we use independent PRN.  

 

7. Conclusions and further research 

 

The literature on simulation-optimization offers many heuristic search methods. We 

derived a stopping rule for such methods, supposing that the search has lead to some local 

area. 
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The analysts should start with the simulation of the input combination specified 

by the center of the local area. Replicating this combination m = r + 1 times, they can use 

the t statistic to test whether any constraint is binding (stage 1 of our procedure). 

If a binding constraint is found, then the analysts may start with a first-order 

polynomial approximation of the simulation’s I/O function in the local area and use the F 

lack-of-fit test (stage 2 of our procedure). 

If this test does not reject this approximation, then the analysts may estimate the 

gradients from these r polynomials; otherwise, the analysts can switch to a second-order 

polynomial approximation, and augment the R-3 design to a CCD. Using either a first-

order or a second-order polynomial approximation, the analysts use the corresponding 

estimated gradients to bootstrap the gradients of the goal function and the binding 

constraint(s). This bootstrap enables testing whether the goal gradients can be adequately 

approximated by a linear function—estimated through OLS—of the binding constraint 

gradients (stage 3 of our procedure test whether the bootstrapped residuals of this OLS 

model are zero).  

Finally, if this approximation is adequate, then the Lagrange multipliers—

estimated through OLS—should be non-negative (tested in stage 4). 

 In future research, we may apply our procedure to realistic simulation models; for 

example, the call center model in Kelton, Sadowski, and Sadowski  (2002), which is so 

complicated that it is eliminated in the latest edition, Kelton, Sadowski, and Sturrock  

(2004). 

 Further, CRN might be applied to improve the accuracy of the estimated 

gradients. Unfortunately, CRN requires many more replicates to estimate the covariance 

matrix for the simulation responses; also see Kleijnen (1992). 

 We also tried to measure the accuracy of the linear model that expresses the goal 

gradients in the binding constraints’ gradients through the SSR (also see the Note at the 

end of Section 4). If this model is adequate, then this SSR is still higher than zero 

(whereas the expected residuals are zero). Mysteriously, our experiments with the 

artificial example gave much to high estimated type-I error rates. This deserves further 

research. 
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In the various stages of our procedure, we use Bonferroni’s inequality, which 

provides simple but conservative tests. Future work could focus on using the notion of  

data depth in stage 3 of our method.  

Finally, we may test second-order optimality conditions (besides the first-order 

KKT conditions).  
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Table 1: Fraction of rejected macro-replicates 

in four local areas centered around A, B, C, and D in Figure 1; α  = 0.10  

A: (2.53,-1.99) large local region small local region 

 large noise small noise large noise small noise 

binding constraints   69/1000 = 0.07 1   92/1000 = 0.09 2 69/1000 = 0.07 1 92/1000 = 0.09 2 

polynomial fit 79/931 = 0.08 77/908 = 0.08 79/931 = 0.08 77/908 = 0.08 

linear KKT model    106/852 = 0.12 107/831 = 0.13 16/ 852 = 0.02 98/831 = 0.12 

positive *̂λ      0/7346 = 0.00       0/724 = 0.00 550/836 = 0.66 0/733 = 0.00 

 
1 42 times: first constraint inactive, second constraint violated 

  27 times:  both constraints inactive 
2 26 times: first constraint invalid, second constraint violated 

  66 times: both constraints inactive 

 

B: (2.00,-2.35 large local region small local region 

 large noise small noise large noise small noise 

binding constraints   67/1000 = 0.07 1 101/1000 = 0.10 2 67/1000 = 0.07 1 101/1000 = 0.10 2 

polynomial fit 81/933 = 0.09 79/899 = 0.09 81/933 = 0.09 79/899 = 0.09 

linear KKT model    232/852 = 0.27 820/820 = 1.00 17/ 852 = 0.02 210/820 = 0.26 

positive *̂λ      0/620 = 0.00   0/0  541/852 = 0.63 0/610 = 0.00 

 
1 40 times: first constraint inactive, second constraint violated 

  27 times:  both constraints inactive 
2 16 times: first constraint invalid, second constraint violated 

  85 times: both constraints inactive 
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C: (3.00,-1.10 large local region small local region 

 large noise small noise large noise small noise 

binding constraints   75/1000 = 0.08 1 82/1000 = 0.08 2 75/1000 = 0.08 1 82/1000 = 0.08 2 

polynomial fit 73/925 = 0.08 77/918 = 0.08 73/925 = 0.08 77/918 = 0.08 

linear KKT model    548/852 = 0.64 841/841 = 1.00 17/ 852 = 0.02 538/841 = 0.64 

positive *̂λ      4/304 = 0.01   0/0 598/835 = 0.72 2/303 = 0.01 

 
1 49 times: first constraint inactive, second constraint violated 

  26 times:  both constraints inactive 
2 66 times: first constraint invalid, second constraint violated 

  16 times: both constraints inactive 

 

D: (1.00,-1.00 large local region small local region 

 large noise small noise large noise small noise 

binding constraints   67/1000 = 0.07 1 67/1000 = 0.07 1 67/1000 = 0.07 1 67/1000 = 0.07 1 

polynomial fit 81/933 = 0.09 81/933 = 0.09 81/933 = 0.09 81/933 = 0.09 

linear KKT model    847/852 = 0.99 852/852 = 1.00 33/ 852 = 0.04 847/852 = 0.99 

positive *̂λ      5/5 = 1.00   0/0 735/819 = 0.90 5/5 = 1.00 

 
1 44 times: first constraint violated, second constraint inactive 

  23 times:  both constraints inactive 
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Figure 1: An example of a constrained nonlinear random optimization problem 
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Figure 2: I/O of three models: simulation, regression, bootstrap
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Figure 3: Example of gradients of goal and binding constraint;  

part A (respectively B) corresponds with point A (respectively B) in Figure 1;  

original and bootstrapped (drawn and dotted lines) 


