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Abstract

This paper provides a framework for implementing and comparing several solution concepts
for transferable utility cooperative games. We construct bidding mechanisms where players
bid for the role of the proposer. The mechanisms differ in the power awarded to the
proposer. The Shapley, consensus and equal surplus values are implemented in subgame
perfect equilibrium outcomes as power shifts away from the proposer to the rest of the
players. Moreover, an alternative informational structure where these solution concepts
can be implemented without imposing any conditions of the transferable utility game is
discussed as well.
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1 Introduction

Cooperation among individuals, firms or countries generates benefits to be shared and costs

to be imputed. The analysis of these problems proceeded both axiomatically, studying the

implications of normative issues and strategically, deriving the likely outcomes of maxi-

mizing behavior by the parties involved. The merging of both approaches lies at the core

of the Nash program (Nash (1953)) calling for a non-cooperative (strategic) foundation to

cooperative (normative) solution concepts.

We provide a non-cooperative foundation to several cooperative solution concepts by

using a class of bidding mechanisms that differ in the power awarded to the proposer

chosen through a bidding process. The mechanisms constructed are related to the bidding

mechanisms first constructed by Pérez-Castrillo and Wettstein (2001, 2002). The bidding

for the role of the proposer is the same as in the previous mechanisms, however the role

itself varies from one mechanism to another. Whereas previously the proposer was the only

player allowed to make offers and once declined she was removed from the game, we now

allow for a second round of offers. In this manner we are able to implement a continuum

of cooperative solution concepts.

We construct explicit mechanisms implementing the Shapley value (Shapley (1953)),

the equal surplus value (cf. Driessen and Funaki (1991) and Moulin (2003)) and the

consensus value (Ju et. al. (2004)). In all mechanisms, the players first participate in a

bidding procedure to determine a proposer. The proposer announces an offer to all the

other players. If the offer is accepted, the proposer pays out according to it and collects

the value generated by the grand coalition. If the offer is rejected the other players engage

again in the same game. The difference between the mechanisms is in what happens when

the other players have finished the game. In all the mechanisms we construct the proposer

and the other players have the right to make, accept and reject a second set of offers.

The precise rules as to who makes the offer and who has a right to reject or accept vary

according to the solution implemented.

The Shapley value is implemented when the proposer chosen first can make a second

offer to the other players. The equal surplus value emerges as an equilibrium outcome when

the other players can make the proposer (who was “left out”) an offer to join them. The

consensus value is the equilibrium outcome when the proposer and the rest of the players

bid for the right to make another offer.

This option of “re-entering” the game after being rejected is very reasonable. Even in

the absence of such an explicit option, players in any “real-life” situation may try to exercise

it through a mutual agreement. This argument leads to the study of implementation with

renegotiation (Maskin and Moore (1999) and Baliga and Brusco (2000)). Clearly, suitably
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modified versions of the general constructions in these papers as well as those in the usual

implementation literature using sequential mechanisms (Moore and Repullo (1988) and

Maniquet (2003)) would provide a non-cooperative foundation to the solution concepts we

discuss. However, these mechanisms appropriate for general environments would be highly

complex, requiring the transmission of large amounts of information, compared to our, as

well as, previous mechanisms constructed to realize cooperative solution concepts.

Furthermore, we offer an alternative specification of the cooperative environment, where

a coalition can, if necessary, prove what is the amount it can generate for its members to

share. One such instance is the situation where the players have to share among themselves

a given estate with well documented claims on the part of every coalition. In this setting

we show that suitably defined generalized bidding mechanisms implement the solution

concepts, previously discussed, for any transferable utility (TU) game.

Several previous papers have indeed dealt with providing non-cooperative foundations

to cooperative solution concepts. Gul (1989, 1999) suggested a bargaining procedure that

leads to the Shapley value. Hart and Mas-Collel (1996) constructed a bargaining proce-

dure that leads to the Shapley value in TU games and the Nash bargaining solution for

pure bargaining problems. Krishna and Serrano (1995) provided further results regarding

this procedure. Hart and Moore (1990), Winter (1994), and Dasgupta and Chiu (1998)

constructed games that lead to the Shapley value.1 Vidal-Puga and Bergantiños (2003)

introduced a coalitional bidding mechanism, as an extension of the bidding mechanism

defined by Pérez-Castrillo and Wettstein (2001), and implemented the Owen value (1977).

By considering the possibility of the breakdown of negotiations when rejecting an offer, Ju

et. al. (2004) designed a two-level bidding mechanism and provided an implementation of

the consensus value.

The generalized bidding approach, using the same basic game with different “end-

games” appended to it to implement a variety of values, highlights the different “non-

cooperative” rationales underlying the various values. This approach provides a structured

algorithm to design mechanisms for implementing cooperative solution concepts. It should

be noted that the generalized bidding mechanisms introduced in this paper yield the actual

values implemented rather than implementing them in expected terms.

Moreover, this approach can be used to implement solution concepts in other coopera-

tive environments such as partition function form games, games with a coalition structure

and primeval games (cf. Ju and Borm (2005)). Being able to apply the same extensive

1An extensive discussion of these implementations of the Shapley value can be found in Pérez-Castrillo
and Wettstein (2001) which offers an implementation of the Shapley value via a bidding mechanism. For
the implementations of other cooperative solutions and a general view of the research area, we refer to
Serrano (2005).
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form to varied domains of cooperative games is one of the objectives of the Nash program

as stated in Hart and Mas-Colell (1996) and Serrano (2005).

In the next section, we present the environment and the solution concepts to be im-

plemented. In Section 3, we describe the basic mechanism and show that suitably defined

variants of it implement the different value concepts. Section 4 presents the alternative in-

terpretation of the environment and the modified mechanisms. The last section concludes

by discussing several possible extensions and applications of the approach, which suggests

further directions of research.

2 The cooperative model and the values

We denote by N = {1, ..., n} the set of players, and let S ⊆ N denote a coalition of

players. A cooperative game in characteristic form is denoted by (N, v) where v : 2N → R
is a characteristic function satisfying v(∅) = 0. Throughout the paper, |S| denotes the

cardinality of S, and in particular, when no confusion arises, let |N | = n. For a coalition

S, v(S) is the total payoff that the members in S can obtain if S forms. For notational

simplicity, given i ∈ N , we use v(i) instead of v({i}) to denote the stand-alone payoff of

player i. A value is a mapping f which associates with every game (N, v) a vector in Rn.

A value determines the payoffs for every player in the game.

Given a cooperative game (N, v) and a subset S ⊆ N , we define the subgame (S, v|S)

by assigning the value v|S(T ) ≡ v(T ) for any T ⊆ S.

We denote by φ the Shapley value for game (N, v) which is defined by

φi(N, v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

for all i ∈ N . It is the unique value that satisfies efficiency, additivity, symmetry and the

null player property.

The equal surplus value, denoted by φes, is a more straightforward value and allocates

to each player, besides her stand-alone payoff generated by her singleton coalition, an equal

share of the surplus (in excess of the sum of all players’ stand-alone payoffs) generated by

the grand coalition. Formally, it is defined by

φes
i (N, v) = v(i) +

1

n

(
v(N)−

∑
j∈N

v(j)

)

for all i ∈ N . The equal surplus value fails to satisfy the null player property. However, this
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solution concept can be well motivated from an egalitarian perspective. For axiomatizations

of the equal surplus value, we refer to van den Brink and Funaki (2004).

Ju et. al. (2004) proposed a recursive two-sided negotiation procedure to establish

cooperation and share the payoff of the grand coalition. This procedure leads to a new

value, the consensus value, denoted by ψ. It is shown that the consensus value equals the

middle point between the Shapley value and the equal surplus value. That is,

ψi(N, v) =
1

2
φi(N, v) +

1

2
φes

i (N, v)

for all i ∈ N . The consensus value is the unique solution concept that satisfies efficiency,

additivity, symmetry and the neutral null player property. Alternative characterizations

for this value using an equal welfare loss property or by means of individual rationality

and a type of monotonicity can be found in Ju et. al. (2004) and van den Brink et. al.

(2005), respectively.

From a cooperative (normative) point of view, the applications and suitability of these

solution concepts in different contexts can be further elaborated on based upon the four

fundamental principles of distributive justice discussed in Moulin (2003): compensation,

reward, exogenous rights, and fitness.

3 The generalized bidding mechanisms

In this section, we construct the family of bidding mechanisms that will implement the var-

ious cooperative solutions. These mechanisms provide a convenient benchmark to evaluate

and compare these values from a non-cooperative perspective.

The basic bidding mechanism can be described informally as follows: At stage 1 the

players bid to choose a proposer. Each player bids by submitting an (n − 1)-tuple of

numbers (positive or negative), one number for each player (excluding herself). The player

for whom the net bid (the difference between the sum of bids made by the player and the

sum of bids the other players made to her) is the highest, is chosen as the proposer. Before

moving to stage 2, the proposer pays to each player the bid she made. So in this stage, the

net bids are used to measure players’ willingness to become the proposer. As a reward to

the chosen proposer for her effort (represented by her net bid), she has the right to make

a scheme how to split v(N) among all the players at the next stage.

At stage 2 the proposer offers a vector of payments to all other players in exchange for

joining her to form the grand coalition. The offer is accepted if all the other players agree.

In case of acceptance the grand coalition indeed forms and the proposer receives v(N) out

4



of which she pays out the offers made. In case of rejection the proposer “waits” while all

the other players go again through the same game.

The mechanism described thus far implements the Shapley value2 as shown in Pérez-

Castrillo and Wettstein (2001). We now add further bidding stages in case of rejection

to the mechanism to obtain what we term a generalized bidding mechanism. In these

additional stages the first proposer (in fact, the rejected proposer) and the proposer chosen

among the remaining players (when an agreement is reached within themselves) bid and

accept further offers (note that these stages are also present in the game played by any

remaining group of players).

The first variant implementing the Shapley value has the first proposer (denoted for

simplicity by a) make an offer to the proposer chosen among the remaining players (denoted

for simplicity by b). The offer is for a to form the grand coalition rather than b. If the offer

is accepted the grand coalition forms, a receives v(N) and pays the offer, b receives the

offer from a and pays all the commitments made by him, and all the other players receive

what they were promised. In this variant a retains the right to make offers.

The second variant implementing the equal surplus value has b make an offer to a. If

the offer is accepted the grand coalition forms, a receives the offer, b receives v(N) and

pays the offer to a as well as what he owes to the remaining players. In this variant a loses

the right to make offers.

In the third variant implementing the consensus value a and b bid for the right to make

an offer. If a wins the game proceeds as in the first variant and if b wins the second variant

goes into effect.

We now formally describe the bidding games and start by describing the mechanism

implementing the Shapley value.

Mechanism A1. If there is only one player {i}, she simply receives v(i). When there are

two or more players, the mechanism is defined recursively. Given the rules of the mecha-

nism for at most n− 1 players, the mechanism for N = {1, . . . , n} proceeds in five stages.

Stage 1: Each player i ∈ N makes n − 1 bids bi
j ∈ R with j 6= i. Hence, at this stage, a

strategy for player i is a vector (bi
j)j 6=i.

For each i ∈ N , define the net bid to player i by Bi =
∑

j 6=i b
i
j −

∑
j 6=i b

j
i . Let i∗ =

argmaxi(B
i) where an arbitrary tie-breaking rule is used in case of a non-unique maxi-

mizer. Once the winner i∗ has been chosen, player i∗ pays every player j ∈ N\{i∗}, bi∗
j .

2In the case where the rejected proposer gets her stand-alone payoff instead of “waiting”.
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Stage 2: Player i∗ makes a vector of offers xi∗
j ∈ R to every player j ∈ N\{i∗}.

Stage 3: The players other than i∗, sequentially, either accept or reject the offer. If at least

one player rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is accepted, which means that all players agree with the proposer on the scheme

of sharing v(N), then each player j ∈ N\{i∗} receives xi∗
j at this stage, and player i∗ receives

v(N)−∑
j 6=i∗ xi∗

j . Hence, the final payoff to player j 6= i∗ is xi∗
j +bi∗

j while player i∗ receives

v(N)−∑
j 6=i∗ xi∗

j −
∑

j 6=i∗ bi∗
j .

If the offer is rejected, all players other than i∗ proceed to play a similar game with one

player less, i.e., with the set of players N\{i∗}, bargaining over a “conditional” pie, the

size of which is determined in the following stages of the game (in this mechanism the size

of this pie in any subgame perfect equilibrium is v(N\{i∗}). Once the players in N\{i∗}
have reached an agreement (e.g., the offer made by a proposer j∗ chosen among the set

of players N\{i∗} is immediately accepted by all players in N\{i∗, j∗}, or reuniting these

players by renegotiation as shown below at stages 4 and 5) so that the coalition N\{i∗}
forms and a payoff scheme (y3

j )j 6=i∗ , where the superscript 3 denotes stage 3, is “condition-

ally generated”, the game moves to stage 4. In case no agreement is reached by N\{i∗}
and thereby coalition N\{i∗} does not emerge, player i∗ loses the option of renegotiating

with N\{i∗} and is indeed left alone and gets her stand-alone payoff v(i∗) at this stage.

Stage 4: Player i∗ makes an offer x̃i∗
j∗ in R, to the proposer j∗ chosen among the set of

players N\{i∗}. (The offer is to let i∗ form the grand coalition instead of player j∗.)

Stage 5: Player j∗ accepts or rejects the offer. If the offer is accepted then at this stage

each player k ∈ N\{i∗, j∗} receives y3
k, player j∗ receives x̃i∗

j∗ −
∑

k∈N\{i∗,j∗} y3
k, and player

i∗ receives v(N)− x̃i∗
j∗ . Hence, the final payoff to player k ∈ N\{i∗, j∗} is y3

k + bi∗
k ; player j∗

receives x̃i∗
j∗ −

∑
k∈N\{i∗,j∗} y3

k + bi∗
j∗ , player i∗ receives v(N)− x̃i∗

j∗ −
∑

j 6=i∗ bi∗
j . If the offer is

rejected each player j 6= i∗ finally receives y3
j + bi∗

j and player i∗ receives v(i∗)−∑
j 6=i∗ bi∗

j .

We will show that for any zero-monotonic game (N, v) (i.e., v(S) ≥ v(S\{i}) + v({i})
for all S ⊆ N and i ∈ S), the subgame perfect equilibrium (SPE) outcomes of Mechanism

A1 coincide with the payoff vector φ(N, v) as prescribed by the Shapley value.

Theorem 3.1 Mechanism A1 implements the Shapley value of a zero-monotonic game

(N, v) in SPE.

6



Proof.

Let (N, v) be a zero-monotonic game. The proof proceeds by induction on the number of

players n. It is easy to see that the theorem holds for n = 1. We assume that it holds for

all m ≤ n− 1 and show that it is satisfied for n.

First we show that the Shapley value is an SPE outcome. We explicitly construct an SPE

that yields the Shapley value as an SPE outcome. Consider the following strategies:

At stage 1, each player i ∈ N , announces bi
j = φj(N, v) − φj(N\{i}, v|N\{i}) for every

j ∈ N\{i}.
At stage 2, a proposer, player i∗, offers xi∗

j = φj(N\{i∗}, v|N\{i∗}) to every j ∈ N\{i∗}.
At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

φj(N\{i∗}, v|N\{i∗}) and rejects any offer strictly less than φj(N\{i∗}, v|N\{i∗}).
At stage 4, player i∗ makes an offer x̃i∗

j∗ = v(N\{i∗}) to any selected proposer j∗ ∈
N\{i∗}.

At stage 5, player j∗, the proposer of the set of players N\{i∗}, accepts any offer greater

than or equal to v(N\{i∗}) and rejects any offer strictly less than it.

Clearly these strategies yield the Shapley value for any player who is not the proposer,

since the game ends at stage 3 and bi∗
j + xi∗

j = φj(N, v), for all j 6= i∗. Moreover, given

that following the strategies the offer is accepted by all players, the proposer also obtains

her Shapley value.

Note that all net bids equal zero by the balanced contribution property for the Shapley

value (Myerson (1980)).

To show that the previous strategies constitute an SPE, note first that the strategies at

stages 2, 3, 4, and 5 are best responses: In case of rejection at stage 3 proposer i∗ can

obtain v(N)− v(N\{i∗}) in the end (it pays her to make an offer that is accepted at stage

4, by zero-monotonicity), and all other players play the bidding mechanism with player

set N\{i∗} and payoff v(N\{i∗}). By the induction hypothesis, we have the Shapley value

as the outcome of this game. That is, each player j ∈ N\{i∗} gets φj(N\{i∗}, v|N\{i∗}).
Consider now the strategies at stage 1. If player i∗ increases her total bid, then she will

be chosen as the proposer with certainty, but her payoff will decrease. If she decreases her

total bid another player will propose and player i∗’s payoff would still equal her Shapley

value. Finally, any change in her bids that leaves the total bid constant will influence the

identity of the proposer but will not affect player i∗’s payoff.
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The proof that any SPE yields the Shapley value proceeds by a series of claims.

Claim (a). In any SPE, at stage 5, any player j∗ (the proposer from the set of players

N\{i∗}), accepts any offer greater than or equal to v(N\{i∗}) and rejects any offer strictly

less than it. Hence in any SPE at stage 4, the proposer i∗ will offer any player j∗ exactly

the amount v(N\{i∗}).

This claim can be readily verified due to zero-monotonicity.

Claim (b). In any SPE, at stage 3, all players other than the proposer i∗ accept the offer

if xi∗
j > φj(N\{i∗}, v|N\{i∗}) for every j 6= i∗. Otherwise, if xi∗

j < φj(N\{i∗}, v|N\{i∗}) for

at least some j 6= i∗, then the offer is rejected.

Note that if an offer made by the proposer i∗ is rejected at stage 3, all other players,

N\{i∗}, by Claim (a), will get exactly v(N\{i∗}). Consequently, in case of rejection at

stage 3, by the induction hypothesis, the payoff to a player j 6= i∗ is φj(N\{i∗}, v|N\{i∗}).
We denote the last player that has to decide whether to accept or reject the offer by β. If

the game reaches β, i.e., there has been no previous rejection, her optimal strategy involves

accepting any offer higher than φβ(N\{i∗}) and rejecting any offer lower than φβ(N\{i∗}).
The second to last player, denoted by β − 1, anticipates the reaction of player β. So,

β − 1 will accept the offer when the game reaches him with xi∗
β−1 > φβ−1(N\{i∗}) and

xi∗
β > φβ(N\{i∗}). If xi∗

β−1 < φβ−1(N\{i∗}) and xi∗
β > φβ(N\{i∗}), player β − 1 will reject

the offer. If β − 1 observes xi∗
β < φβ(N\{i∗}), he will be indifferent to accepting or re-

jecting any offer xi∗
β−1. Following this argument till the first player, Claim (b) is constructed.

Claim (c). If v(N) > v(N\{i∗}) + v(i∗), for the game that starts at stage 2 there ex-

ist two types of SPE. Firstly, an obvious SPE is as follows: At stage 2, player i∗ offers

xi∗
j = φj(N\{i∗}, v|N\{i∗}) to all j 6= i∗; at stage 3, every player j 6= i∗ accepts any offer

xi∗
j ≥ φj(N\{i∗}, v|N\{i∗}) and rejects the offer otherwise. Secondly, any set of strategies

where, the proposer offers, at stage 2, xi∗
j ≤ φj(N\{i∗}, v|N\{i∗}) to some players j 6= i∗ and

at stage 4 offers yi∗
j∗ = v(N\{i∗}) to j∗, and at stage 3, any player j ∈ N\{i∗} rejects any

offer xi∗
j < φj(N\{i∗}, v|N\{i∗}) and at stage 5 the representative j∗ for N\{i∗} accepts any

offer greater than or equal to v(N\{i∗}), also constitutes an SPE. There could be no other

equilibrium: it cannot be that an offer is rejected at stage 3 and, furthermore, the offer

made at stage 4 is also rejected. If this were to happen, the player who made an offer at

stage 4 can obtain, due to zero-monotonicity, a better outcome by making instead an offer
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that must be accepted. If v(N) = v(N\{i∗}) + v(i∗), there exist another type of SPE in

addition to the above two types. Any set of strategies where, the proposer offers, at stage

2, xi∗
j ≤ φj(N\{i∗}, v|N\{i∗}) to some players j 6= i∗ and at stage 4 offers x̃i∗

j∗ ≤ v(N\{i∗})
to j∗, and at stage 3, any player j ∈ N\{i∗} rejects any offer xi∗

j ≤ φj(N\{i∗}, v|N\{i∗}) and

at stage 5 the representative j∗ for N\{i∗} rejects any offer less than or equal to v(N\{i∗}),
constitutes an SPE as well.

One can readily see that the proposed strategies constitute SPE by checking that the

proposer has no incentive to increase any offer, given that all offers are no lower than

φj(N\{i∗}) for all j 6= i∗, to a level higher than φk(N\{i∗}) to any particular player

k 6= i∗, and verifying that in all the SPE of this subgame the final payoffs to the proposer

i∗ and every other player j 6= i∗ are v(N)−v(N\{i∗})−∑
j∈N\{i∗} bi∗

j and φj(N\{i∗})+bi∗
j ,

respectively.

Claim (d). In any SPE, Bi = Bj for all i, j ∈ N , and hence Bi = 0 for all i ∈ N .

Denote Ω = {i ∈ N |Bi = maxj∈N(Bj)}. If Ω = N the claim is satisfied since
∑

i∈N Bi = 0.

Otherwise, we can show that any player i in Ω has the incentive to change her bids so as to

decrease the sum of payments in case she wins. Furthermore, these changes can be made

without altering the set Ω. Hence, the player maintains the same probability of winning

and obtains a higher expected payoff. Take some player j /∈ Ω. Let player i ∈ Ω change

her strategy by announcing b′k
i = bi

k + ε for all k ∈ Ω\{i}, and b′j
i = bi

j − |Ω|ε for j, and

b′l
i = bi

l for all l /∈ Ω ∪ {j}. Then, the new net bids are B′i = Bi − ε, B′k = Bk − ε for all

k ∈ Ω\{i}, B′j = Bj + |Ω|ε and B′l = Bl for all l /∈ Ω ∪ j. If ε is small enough so that

Bj + |Ω|ε < Bi − ε, then B′l < B′i = B′k for all l ∈ Ω (including j) and for all k ∈ Ω.

Therefore, Ω does not change. However,
∑

h6=i b
i
h − ε <

∑
h6=i b

i
h.

Claim (e). In any SPE, each player’s payoff is the same regardless of whom is chosen as

the proposer.

This claim can be readily proved by contradiction. If some player can get extra payoff

given a specific identity of the proposer, then this player will have incentive to adjust her

bids accordingly, which contradicts Claim (d).

Claim (f) In any SPE, the final payment received by each of the players coincides with

each player’s Shapley value.
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We know that if player i is the proposer, her final payoff will be v(N)−v(N\{i})−∑
j 6=i b

i
j.

In case of player j 6= i becoming the proposer, player i’s final payoff will be φi(N\{j})+bj
i .

We can now proceed as in Pérez-Castrillo and Wettstein (2001) to show that each player’s

payoff coincides with her Shapley value.

In order to arrive at the Shapley value the proposer chosen through bidding at stage 1

has the power to make another offer, following the rejection of her initial offer, before the

conclusion of the game. An equally plausible scenario is that the proposer chosen at stage

1 forfeits the right to make another offer once rejected. It is the proposer chosen in the

following stage who has the right to make a second offer before the game ends. Hence we

have a new generalized bidding mechanism, described in what follows, which is shown to

implement the equal surplus value.

Mechanism A2. Stages 1, 2 and 3 are the same as in Mechanism A1 up to the point

where an offer is rejected. When an offer made at stage 3 is rejected, all players other than

i∗ proceed to play the same game where the set of players is N\{i∗} and they bargain over

a “conditional” pie, the size of which is determined in the last stage of the game (in this

mechanism the size of this pie in any subgame perfect equilibrium is v(N)− v(i∗)). Once

the players in N\{i∗} have reached the “stage 3 conditionally generated” (y3
j )j 6=i∗ payoff

scheme which also implies that the coalition N\{i∗} forms, the game moves to stage 4.

Otherwise, the game stops and proposer i∗ obtains v(i∗) at this stage.

Stage 4: Player j∗, the proposer chosen among the set of players N\{i∗} makes an offer

x̃j∗
i∗ in R, to player i∗. (The offer is to pay i∗ this amount for joining in to form the grand

coalition).

Stage 5: Player i∗ accepts or rejects the offer. If the offer is accepted then at this stage

each player k ∈ N\{i∗, j∗} receives y3
k, player j∗ receives v(N)− x̃j∗

i∗ −
∑

k∈N\{i∗,j∗} y3
k, and

player i∗ receives x̃j∗
i∗ . Hence, the final payoff to player k ∈ N\{i∗, j∗} is y3

k + bi∗
k ; player

j∗ receives v(N)− x̃j∗
i∗ −

∑
k∈N\{i∗,j∗} y3

k + bi∗
j∗ , player i∗ receives x̃j∗

i∗ −
∑

j 6=i∗ bi∗
j . If the of-

fer is rejected each player j 6= i∗ finally receive y3
j +bi∗

j and player i∗ receives v(i∗)−∑
j 6=i∗ bi∗

j .

Theorem 3.2 Mechanism A2 implements the equal surplus value of a zero-monotonic

game (N, v) in SPE.

10



Proof.

The proof is similar to that of Theorem 3.1. The differences are in the construction of the

SPE strategies and in Claim (f). Hence, we explicitly construct an SPE that yields the

equal surplus value as an SPE outcome and show that the counterpart of Claim (f) (that

payoffs must coincide with the equal surplus value) holds as well.

To constuct an SPE, consider the following strategies.

At stage 1, each player i ∈ N , announces bi
j = φes

j (N, v) − φes
j (N\{i}, v−i),3 for every

j ∈ N\{i}.
At stage 2, a proposer, player i∗, offers xi∗

j = φes
j (N\{i∗}, v−i∗) to every j ∈ N\{i∗}.

At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

φes
j (N\{i∗}, v−i∗) and rejects any offer strictly less than φes

j (N\{i∗}, v−i∗).

At stage 4, a proposer within N\{i∗}, player j∗ makes an offer x̃j∗
i∗ = v(i∗) to i∗.

At stage 5, player i∗, the “waiting” proposer for the set of players N , accepts any offer

greater than or equal to v(i∗) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the equal surplus value for any player and

constitute an SPE.

To show that in any SPE the final payment received by each of the players coincides with

each player’s equal surplus value, we note that if i is the proposer, her final payoff will be

v(N) − (v(N) − v(i)) − ∑
j 6=i b

i
j, whereas if j 6= i is the proposer, i will get final payoff

φes(N\{j}, v−j) + bj
i = (v(i) +

v(N)−v(j)−∑
k 6=j v(k)

n−1
) + bj

i . Hence the sum of the payoffs to

player i over all possible choices is (recall that all net bids are zero)

v(N)− (v(N)− v(i))−
∑

j 6=i

bi
j +

∑

j 6=i

(
v(i) +

v(N)− v(j)−∑
k 6=j v(k)

n− 1
+ bj

i

)

= nv(i) +

(
v(N)−

∑

l∈N

v(l)

)

= n · φes
i (N, v).

Since the payoffs are the same regardless of who is the proposer (by the same reason as

discussed in Claim (e) of the proof for Theorem 3.1) we see that the payoff of each player

in any equilibrium must coincide with the equal surplus value.

3The game (N\{i}, v−i) is defined by v−i(N\{i}) = v(N)−v(i) and v−i(S) = v(S), for any S ⊂ N\{i}.
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The Shapley and equal surplus values resulted from a “zero-one” decision, either the

first stage proposer or the subsequently chosen proposer have the right to make a second

offer. It is also of interest to know what happens if the power to make a second offer is

somehow shared between the two. One could randomize giving each an equal probability

to have the right to make another offer. Alternately the two could bargain via a Rubinstein

alternating offer game (Rubinstein (1982)). We adopt again a bidding approach letting the

two bid for the right to make a further offer. The mechanism is formally described in what

follows and is shown to implement the consensus value.

Mechanism A3. The rules of stages 1, 2 and 3 are as before except that, at stage 3,

due to the changes in the subsequent stages, in case of rejection the conditional pie being

bargained over within N\{i∗} is v(N\{i∗})+ v(N)−v(N\{i∗})−v(i∗)
2

. We now describe the game

from stage 4 onwards.

Stage 4: When an offer made by i∗ has been rejected at stage 3, player j∗, the proposer

chosen among the set of players N\{i∗} and player i∗ bid for the right to take the role

of the proposer (the game played, in fact, coincides with the stage 1 game with n = 2).

Player i∗ and player j∗ simultaneously submit bids b̃i∗
j∗ and b̃j∗

i∗ in R. The player with the

larger net bid pays the bid to the other player and assumes the role of the proposer. In

case of identical bids the proposer is chosen randomly.

Stage 5: Depending on whether the proposer is i∗ or j∗, the game proceeds as in Mechanism

A1 (when i∗ is the proposer) or Mechanism A2 (when j∗ is the proposer). The payoffs are

adjusted to take into account the bidding at stage 4.

Theorem 3.3 Mechanism A3 implements the consensus value of a zero-monotonic game

(N, v) in SPE.

Proof.

The proof is again similar to that of Theorem 3.1. The differences are once more in the

construction of the SPE strategies and in Claim (f). Hence, we explicitly construct an SPE

that yields the consensus value and show that the Claim (f) (that payoffs must coincide

with the consensus value) also holds.

To construct an SPE yielding the consensus value consider the following strategies.

12



At stage 1, each player i ∈ N announces bi
j = ψj(N, v) − ψj(N\{i}, v̂−i),4 for every

j ∈ N\{i}.
At stage 2, a proposer, player i∗, offers xi∗

j = ψj(N\{i∗}, v̂−i) to every j ∈ N\{i∗}.
At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

ψj(N\{i∗}, v̂−i∗) and rejects any offer strictly less than ψj(N\{i∗}, v̂−i∗).

At stage 4, player i∗ announces b̃i∗
j∗ = v(N\{i∗}) + v(N)−v(N\{i∗})−v(i∗)

2
− v(N\{i∗}) =

v(N)−v(N\{i∗})−v(i∗)
2

while player j∗ announces b̃j∗
i∗ = v(i∗) + v(N)−v(i∗)−v(N\{i∗})

2
− v(i∗) =

v(N)−v(i∗)−v(N\{i∗})
2

.

At stage 5, player i∗ makes an offer x̃i∗
j∗ = v(N\{i∗}) to j∗ and player i∗ makes an

offer x̃j∗
i∗ = v(i∗) to i∗. Moreover, i∗ accepts any offer greater than or equal to v(i∗) and

rejects any offer strictly less than it. Similarly, j∗ accepts any offer greater than or equal

to v(N\{i∗}) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the consensus value for any player and

constitute an SPE.

To show that in any SPE each player’s final payoff coincides with her consensus value, we

note that if i is the proposer her final payoff is given by v(N)−(v(N\{i})+v(N)−v(N\{i})−v(i)
2

)−∑
j 6=i b

i
j whereas if j 6= i is the proposer, the final payoff of i is ψi(N\{j}, v̂−j) + bj

i .

Hence the sum of payoffs to player i over all possible choices of the proposer is (note that all

net bids are zero, which can be proved by the equal welfare loss property of the consensus

value (Ju et. al. (2004)))

v(N)−
(

v(N\{i}) +
v(N)− v(N\{i})− v(i)

2

)
−

∑

j 6=i

bi
j +

∑

j 6=i

(
ψi(N\{j}, v̂−j) + bj

i

)

=
v(N)− v(N\{i}) + v(i)

2
+

∑

j 6=i

(
1

2
φi(N\{j}, v̂−j) +

1

2
φes

i (N\{j}, v̂−j)

)

=
v(N)− v(N\{i}) + v(i)

2
+

1

2

∑

j 6=i

(
φi(N\{j}, v|N\{j}) +

v(N)−v(N\{j})−v(j)
2

n− 1

)

+
1

2

∑

j 6=i

(
v(i) +

v(N)+v(N\{j})−v(j)
2

−∑
k∈N\{j} v(k)

n− 1

)

=
1

2

(
v(N)− v(N\{i}) +

∑

j 6=i

φi(N\{j}, v|N\{j})
)

+
1

2

(
nv(i) +

(
v(N)−

∑

l∈N

v(l)

))

4The game (N\{i}, v̂−i) is formally defined by v̂−i(N\{i}) = v(N\{i}) + v(N)−v(N\{i})−v(i)
2 and

v̂−i(S) = v(S), for all S ⊂ N\{i}.
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= n

(
1

2
φi(N, v) +

1

2
φes

i (N, v)

)

= nψi(N, v).

Since the payoffs are the same regardless of who is the proposer, the payoff of each player

in any equilibrium must coincide with the consensus value.

As discussed earlier Mechanism A3 requires both proposers to compete for the right

to make a further proposal and a priori both have equal power. However, what happens

if the mechanism treats the players asymmetrically: bids made by one player are “worth

more” than those made by the other. Such a mechanism implements the α-consensus value

(cf. Ju et. al. (2004)) of a zero-monotonic game in SPE.

The mechanisms constructed can be adapted in several ways. One option is to vary the

treatment of a proposer in case she makes an offer that is rejected. We could make it less

attractive to make an offer that is rejected, steering the players to end the game sooner

rather than later. In the mechanisms to implement the Shapley value, the new rule would

allow for any arbitrary payoff θi∗ ≤ v(i∗) to be given to the proposer i∗ at stage 5 in case

no agreement is reached, whereas the rest of the players still obtain v(N\{i∗}) if coalition

N\{i∗} forms. The difference between v(i∗) and θi∗ may be interpreted as a punishment.

This mechanism would encourage the players to make acceptable offers and lead to larger

coalitions similar to Moldovanu and Winter (1994) where it is stated that “we assume that

each player prefers to be a member of large coalitions rather than smaller ones provided

that he earns the same payoff in the two agreements” and Hart and Mas-Colell (1996)

“both proposers and respondents break ties in favor of quick termination of the game”.

The extreme case is where the proposer receives zero in case an offer is rejected and

stages 4 and 5 are the same as in Mechanism A2. This mechanism implements the egali-

tarian solution.5 Moreover, one can implement any convex combination of the egalitarian

solution and the Shapley value using a construction similar to that implementing the α-

consensus value.

4 Implementation in “better informed” environments

In the previous section the players were fully informed as regards the characteristic function

v, whereas the “designer” of the mechanism had no knowledge of what different coalitions

5For a TU game (N, v), the egalitarian solution, denoted by φeg, is defined by φeg
i (N, v) = v(N)

n for all
i ∈ N .
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can achieve. In this section we adopt a different informational structure. This serves two

purposes. The first is that it provides a much wider scope for applying our mechanisms

and shows how they can be easily adapted to handle versatile environments. The second

is that as more information is made available, the solution concepts we discussed can be

implemented without imposing any further conditions, such as zero-monotonicity, on the

environment.

The different informational structure is introduced by assuming that the players in

addition to being fully informed with respect to the characteristic function, can also, if

necessary, prove what each coalition of players can obtain. Put differently, the value of

each coalition can not only be observed but also verified by an outside authority if needed.

The designer having the ability to verify coalition values if necessary, can design slightly

different bidding mechanisms to work in such environments. One such conceivable scenario

is where a set of players (heirs), N = {1, ..., n}, have to divide a sum (estate) of known

size, v(N). Furthermore, each subset of the players can prove what part of the sum they

are entitled to (have documented claims regarding their part of the estate).

The basic bidding mechanism we now construct, can be informally described as follows:

Stages 1, 2 and 3 are the same as in previous mechanisms up to the point where an offer

is rejected at stage 3. In case of rejection all the players other than the proposer play

a similar game with one player less. The different mechanisms will however have them

sharing pies of different sizes.

In the first variant, yielding the Shapley value, the remaining players bargain over their

prescribed coalitional payoff, and the rejected proposer receives the difference between

v(N) and that coalitional payoff.

In the second variant, yielding the equal surplus value, the rejected proposer, say i,

gets her stand-alone payoff v(i) and all other players play the same game again, bargaining

over what remains of v(N), i.e., v(N)− v(i).

The third variant takes, as before, a less extreme approach and shares the benefits of

rejoining to form the grand coalition between the rejected proposer and the other players.

Once an offer is rejected, we move from the status-quo outcome where proposer i gets

v(i) and the remaining players bargain over v(N\{i}) to a new starting point where the

rejected proposer receives v(i) + 1
2
(v(N)− v(i)− v(N\{i})). and the remaining players

bargain over v(N\{i}) + 1
2
(v(N)− v(i)− v(N\{i})). Hence each obtains half of the sur-

plus generated by rejoining to form the grand coalition.

As one can see from above, this approach requires a game to proceed in three stages

only. Below we formally describe the bidding games, focusing only on the rules in case
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where the offer made by a proposer (chosen in the bidding stage) has been rejected. All

other rules of these games are the same.

Mechanism B1. At stage 3, if the offer made by i∗ is rejected, all players other than i∗

proceed to play a similar game where the set of players is N\{i∗} and they will bargain

over v(N\{i∗}), and player i∗ leaves the game and receives v(N) − v(N\{i∗}) from this

stage. The final payoff to player i∗ is then v(N)− v(N\{i∗})−∑
j 6=i∗ bi∗

j . The final payoff

to any player j 6= i∗ is the payoff he obtains in the game played by N\{i∗} plus the bid bi∗
j .

Theorem 4.1 Mechanism B1 implements the Shapley value of an arbitrary cooperative

game (N, v) in SPE.

Proof.

Since the proof follows the same line as that of Theorem 3.1, we will skip most of it and

stress just two aspects to illustrate the way the proof proceeds. First, to show that the

Shapley value is an SPE outcome, one can consider the strategies of the first three stages

provided in Theorem 3.1. Second, we explicitly provide Claim (c) below to describe the

full set of SPE.

Claim (c). For the game that starts at stage 2 there exist two types of SPE. One is that at

stage 2 player i∗ offers xi∗
j = φj(N\{i∗}) to all j 6= i∗ and, at stage 3, every player j 6= i∗

accepts any offer xi∗
j ≥ φj(N\{i∗}) and rejects the offer otherwise. The other is that at

stage 2 the proposer offers xi∗
j ≤ φj(N\{i∗}) to some players j 6= i∗ and, at stage 3, any

player j ∈ N\{i∗} rejects any offer xi∗
j ≤ φj(N\{i∗}).

As one can see, the key feature of Mechanism B1 (implementing the Shapley value)

is that it specifies a rule giving v(N) − v(N\{i∗}) to proposer i∗ if her offer is rejected

at stage 3 and the rest of the players are guaranteed with bargaining over v(N\{i∗}). Is

this rule acceptable in practice? How about the other possible ways in dealing with the

situation when an offer is rejected? Different contexts may call for different treatments.

An opposite choice to Mechanism B1 may follow this argument: In return to the highest

net bid made by proposer i∗, she should be guaranteed with her stand-alone payoff v(i∗)

in case of the offer rejected so that the remaining players get the residual, i.e., v(N)−v(i∗).

Mechanism B2. At stage 3, if the offer is rejected, proposer i∗ leaves the game with v(i∗)

from this stage, whereas all other players proceed to play a similar game where the set of
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players is N\{i∗} and they bargain over v(N)− v(i∗). The final payoff to player i∗ is then

v(i∗)−∑
j 6=i∗ bi∗

j . The final payoff to any player j 6= i∗ is the payoff he obtains in the game

played by N\{i∗} plus the bid bi∗
j .

Theorem 4.2 Mechanism B2 implements the equal surplus value of an arbitrary cooper-

ative game (N, v) in SPE.

Proof.

The proof is analogous to that of Theorem 3.2.

Following the same reasoning as in the previous section one is naturally led to another

mechanism described as follows.

Mechanism B3. When an offer is rejected at stage 3, both parties, proposer i∗ and

the remaining players N\{i∗} first get their status quo payoffs, and then share the sur-

plus v(N) − v(i∗) − v(N\{i∗}) equally. That is, i∗ leaves the game with her stand-alone

payoff v(i∗) plus half of the surplus, i.e., v(N)−v(i∗)−v(N\{i∗})
2

, from this stage, whereas all

other players proceed to play a similar game with the set of players N\{i∗} and bar-

gain over v(N\{i∗}) + v(N)−v(i∗)−v(N\{i∗})
2

. The final payoff to player i∗ is then v(i∗) +
v(N)−v(i∗)−v(N\{i∗})

2
−∑

j 6=i∗ bi∗
j . The final payoff to any player j 6= i∗ is the payoff he obtains

in the game played by N\{i∗} plus the bid bi∗
j .

Theorem 4.3 Mechanism B3 implements the consensus value of an arbitrary game (N, v)

in SPE.

Proof.

Adopting the same idea as that for proving Theorem 3.1 and Theorem 3.3, the proof can

be readily constructed.

We want to note that, by suitable modifications, other results in section 3 can be ob-

tained in this environment as well.

5 Conclusion

In this paper we provided a unified framework to implement and study values for transfer-

able utility environments. The main building block is a bidding mechanism that starts by
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having the players bid for the role of the proposer. The proposer makes an offer to all the

remaining players, if the offer is accepted the game ends. In case of rejection the remaining

players play the same game again. Once this process ends, the first proposer “re-enters”

the game, to play against the proposer (“second proposer”) chosen form the remaining

players. From here onwards the mechanisms differ. In order to implement the Shapley

value the original proposer has the right to make another offer before the game ends. To

achieve the equal surplus value the second proposer is awarded that right. The consensus

value is implemented when the two proposers bid for the right to make another offer. In

effect, any average of the Shapley and equal surplus values can be achieved by suitably

adjusting the rules of the mechanism for the two proposers’ interaction. These results are

valid for any transferable utility game satisfying zero-monotonicity. We also showed that

in case where the payoffs that different coalitions can obtain are verifiable by an outside

party, the mechanism can be modified to implement the above solution concepts in any

transferable utility environment.

The design of a single basic mechanism to implement several cooperative solution con-

cepts serves twin purposes. On one hand it provides a robust non-cooperative foundation

for the application of various solutions and on the other hand it makes it possible to exam-

ine them critically by the rules needed to implement them. This might provide important

insights as the rules of the game are “quite detached” from the axioms generating these

values.

There are several possible extensions of the “generalize bidding” approach to other

cooperative environments and solution concepts. For games in partition function form,

the use of similar mechanisms can complement results obtained by Maskin (2003) and

Macho-Stadler et. al. (2005) by implementing values proposed by Pham Do and Norde

(2002) and Ju (2004). For games with a coalition structure, these mechanisms can serve as

an alternative way of implementing the Owen value (Owen 1977) which was implemented

by Vidal-Puga and Bergantiños (2003) for strictly superadditive games. Recently, Ju and

Borm (2005) introduced a new class of games, primeval games, to model inter-individual

externalities and analyze compensation rules from a normative point of view. The im-

plementability of these compensation rules via generalized bidding mechanisms is another

interesting direction of research.

Moving away from general cooperative environments, the mechanisms constructed in

this paper can also resolve distributional problems in many concrete settings such as cost-

sharing environments, bankruptcy disputes and dissolution of partnerships.
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