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Abstract:

An assignment situation can be considered as a two-sided market consisting of two disjoint

sets of objects. A non-negative reward matrix describes the profit if an object of one group is

assigned to an object of the other group. Assuming that each object is owned by a different

agent, Shapley and Shubik (1972) introduced a class of assignment games arising from these

assignment situations.

This paper introduces assignment situations with multiple ownership. In these situations

each object can be owned by several agents and each agent can participate in the ownership of

more than one object. In this paper we study simple assignment games and relaxations that

arise from assignment situations with multiple ownership. First, necessary and sufficient

conditions are provided for balanced assignment situations with multiple ownership. An

assignment situation with multiple ownership is balanced if for any choice of the reward

matrix the corresponding simple assignment game is balanced. Second, balancedness results

are obtained for relaxations of simple assignment games.
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1 Introduction

An assignment situation can be considered as a two-sided market consisting of two disjoint

sets of objects. An illustration of such a two-sided market is, for example, the housing

market. In this situation one set of objects is a collection of houses, where different houses

are owned by different agents (the group of sellers). The other set of objects is a collection

of agents where each agent wants to buy exactly one house (the group of buyers). Shapley

and Shubik (1972) introduced assignment games, a class of cooperative games, in order to

analyze these assignment situations. They showed that these games have a non-empty core.

Quint (1991) showed that the core of assignment games have a lattice structure. Solymosi

and Raghavan (1994, 2001) provided a polynomial algorithm for the nucleolus of assignment

games and provide necessary and sufficient conditions for stability of the core. Hamers et

al. (2002) proved that all extreme points of the core are marginal vectors, in spite of the

fact that assignment games need not be convex. Núñez and Rafels (2003) characterize the

extreme points of assignment games by means of the reduced marginal worth vectors.

This paper analyzes assignment situations in which an object can be owned by several

agents and where agents can participate in the ownership of more than one object. We will

refer to these assignment situations as assignment situations with multiple ownership, AMO

for short. An AMO is described by two disjoint sets of agents, two disjoint sets of objects and

the description of which agent(s) own(s) which objects. If an object of one set is assigned

to an object of the other set there will be some reward. This reward will be described using

a reward matrix. Similar to Shapley and Shubik (1972) we define simple assignment games,

a class of cooperative games arising from an AMO and a non-negative reward matrix. In a

simple assignment game each coalition can only match objects that are completely owned

by this coalition. Moreover, if a player is participating in the ownership of more than one

object, at most one of these objects can be matched. In the relaxations of simple assignment

games this last restriction is relaxed, i.e. if a player is participating in more than one object,

at most two (three, ..., etc.) of these objects can be matched.

The house market is still a nice example of this model. The properties of the sellers

can be apartment buildings or shopping malls which usually are owned by several agents.

Moreover, it can be that some agents are involved in the ownership of several apartment

buildings or shopping malls. The buyers can be viewed as a group of investors which are
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interested in apartment buildings or shopping malls. Obviously, one investor can be member

of more than one investor group. The possible restrictions on the number of apartment

buildings or shopping malls that can be sold or bought can be imposed by governmental

rules, for example, to resist monopolies in city areas of owners of apartments or shopping

malls.

We call an AMO balanced if for any choice of the non-negative reward matrix the cor-

responding simple assignment game is balanced. We will characterize balanced AMO by

requiring a structure on the ownership of the objects by the agents. This line of research has

been applied by Herer and Penn (1995) and Granot et al. (1999) to characterize submodu-

lar and balanced graphs with respect to traveling salesman problems and Chinese postman

problems, respectively. Finally, we will study relaxations of simple assignment games and

provide sufficient conditions for non-emptiness of the core.

This paper is organized as follows. In Section 2 we introduce formally the AMO’s and the

corresponding simple assignment games. Section 3 is devoted to balanced AMO’s. Finally,

in Section 4 we provide a sufficient condition for balancedness of the relaxations of simple

assignment games by formulating these games as Integer Linear Programming problems.

2 The assignment model and its game

In this section we introduce assignment situations with multiple ownership and its corre-

sponding games.

An assignment situation with multiple ownership ((M1, M2), (A1, A2), (S1, S2)), for short

AMO, consists of two finite and disjoint agent (player) sets M1 and M2, two finite and

disjoint sets of objects A1 and A2 and functions Si : Ai → 2Mi, i ∈ {1, 2}, that describe

the set of agents that own some object. Specifically, for object a ∈ Ai the set Si(a) is the

subset of agents in Mi that own object a. It is assumed that ∪a∈Ai
Si(a) = Mi for i = 1, 2

and Si(a) �= ∅ for any a ∈ Ai and i = 1, 2. These assumptions imply that each agent of Mi

is involved in the ownership of at least one object of Ai and that each object is owned by at

least one agent. Observe that it is not excluded that agents are involved in the ownership

of more than one object. If an object of A1 is matched with an object of A2, there can be

obtained some reward. A non-negative matrix R ∈ IRA1×A2 expresses this reward. So, if
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object a ∈ A1 is assigned to object b ∈ A2, then the reward is equal to Rab ≥ 0. Observe

that the assignment situations as discussed in Shapley and Shubik (1972) can be seen as a

special class of AMO’s with a reward matrix.

Now, we follow the same line as in Shapley and Shubik (1972) to define a simple as-

signment game that arises from an AMO. Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO. Let

Ti ⊂ Mi, i ∈ {1, 2}, be two coalitions and let Bi(Ti) = {a ∈ Ai | Si(a) ⊂ Ti} be the objects

that are completely owned by the members of coalition Ti. A matching µ for T1∪T2 consists

of pairwise disjoint pairs in B1(T1) ×B2(T2). Hence, for a coalition T1 ∪ T2 the definition of

a matching implies that we can only assign objects that are completely owned by members

of coalition T1 ∪ T2 and each of these objects is assigned to at most one other object. A

matching µ is called admissible if for any two distinct pairs (a1, b1), (a2, b2) ∈ µ it holds

S1(a1)∩S1(a2) = ∅ and S2(b1)∩S2(b2) = ∅. The restriction to admissible matchings implies

that for each player at most one object is matched where he is participating in. The set of

admissible matchings with respect to coalition T1 ∪ T2 is denoted by A(T1 ∪ T2).

Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO and R a non-negative reward matrix. The

corresponding simple assignment game (M1 ∪ M2, v) is defined for all T1 ⊂ M1, T2 ⊂ M2 by

v(T1 ∪ T2) = max{
∑

(a,b)∈µ

Rab : µ ∈ A(T1 ∪ T2)}, (1)

i.e. the worth of a coalition is the maximum value of an admissible matching for this coalition.

Observe that v(T1 ∪ T2) = w(B1(T1) ∪ B2(T2)) where (A1 ∪ A2, w) is the assignment game

as defined in Shapley and Shubik (1972), arising from the situation (A1, A2, R) in which the

agents are identified with the objects.

The following example illustrates an AMO and its corresponding game. Moveover, this

example shows that the core of a simple assignment game can be empty. The core of a

cooperative game (N, v) is defined by

Core(v) = {x ∈ IRN | x(S) ≥ v(S) for all S ⊂ N, x(N) = v(N)},

where x(S) =
∑

i∈S xi. Hence, if x ∈ Core(v), then no coalition in S ⊂ N has an incentive

to split off from the grand coalition if x is the proposed vector of revenue shares. A game

(N, v) is balanced if it has a non-empty core.
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Example 2.1 Figure 1 displays an AMO ((M1, M2), (A1, A2), (S1, S2)) with reward matrix

R. The rows and columns of R represent the objects of A1 and A2, respectively. The players

owning an object are printed bold behind the rows and above the columns. For example,

column 2 represents the second object of A2 which is owned by players 3 and 4.

3 3,4 4

R =

⎛
⎝ 0 2 1

1 1 2

⎞
⎠ 1

2

Figure 1: An AMO with reward matrix R.

Let (M1 ∪ M2, v) be the corresponding game. An example of an admissible matching

of {1, 2, 3, 4} is {(r1, c1), (r2, c3)}, where (r1, c1)((r2, c3)) reflects the matching of the ob-

jects in row 1 (2) and column 1 (3). This matching yields a reward of 2. The matching

{(r1, c1), (r2, c2)} is inadmissible because player 3 is participating in the ownership of c1 and

c2 and we assumed that each player could be matched at most once. It is straightforward to

check that v({1, 2, 3, 4}) = 2, v({1, 2, 4}) = 2, v({1, 3, 4}) = 2 and v({2, 3}) = 1. It follows

that this simple assignment game has an empty core, because if (x1, x2, x3, x4) ∈ Core(v),

then

4 = 2(x1 + x2 + x3 + x4)

= (x1 + x2 + x4) + (x1 + x3 + x4) + (x2 + x3)

≥ v({1, 2, 4}) + v({1, 3, 4}) + v({2, 3})
= 2 + 2 + 1 = 5,

which is a contradiction. �

In the following sections balancedness of simple assignment games and its relaxations

will be studied.

3 Balanced assignment situations with multiple own-

ership

In this section we provide necessary and sufficient conditions for balancedness of AMO’s.
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An AMO is called balanced if for any reward matrix R the corresponding simple assign-

ment game is balanced.

First, we show that for AMO’s in which each agent (player) is participating in one object,

are balanced.

Proposition 3.1 An AMO in which each agent is participating in precisely one object is

balanced.

Proof: Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO that satisfies S1(a)∩S1(â) = ∅ for all

a, â ∈ A1, a �= â and S1(b)∩S1(b̂) = ∅ for all b, b̂ ∈ A2, b �= b̂. Let R be a non-negative reward

matrix. Now, we have to show that the corresponding simple assignment game (M1 ∪M2, v)

is balanced. Let (A1 ∪ A2, w) be the assignment game, as defined in Shapley and Shubik

(1972), arising from the situation (A1, A2, R) in which the agents are identified with the

objects. Because assignment games are balanced there exists a vector (uA1, vA2) ∈ Core(w),

where uA1 (resp. vA2) represents the payoff of the players in A1 (resp. A2). Note that

uA1 ≥ 0 and vA2 ≥ 0. Let x ∈ IRM1∪M2 be defined as follows:

For all i ∈ M1 : xi =
uA1

a

| S1(a) | with a ∈ A1 such that i ∈ S1(a)

For all j ∈ M2 : xj =
vA2

b

| S2(b) | with b ∈ A2 such that j ∈ S2(b)

We show that x ∈ Core(v). Let T1 ⊂ M1, T2 ⊂ M2, then

x(T1 ∪ T2) =
∑
i∈T1

∑
a∈A1:i∈S1(a)

uA1
a

|S1(a)| +
∑
j∈T2

∑
b∈A2:j∈S2(b)

vA2
b

|S2(b)|

=
∑
a∈A1

|S1(a) ∩ T1|uA1
a

|S1(a)| +
∑
b∈A2

|S2(b) ∩ T2|vA2
b

|S2(b)|
≥

∑
a∈A1:S1(a)⊂T1

uA1
a +

∑
b∈A2:S2(b)⊂T2

vA2

b

=
∑

a∈B1(T1)

uA1
a +

∑
b∈B2(T2)

vA2

b

≥ w(B1(T1) ∪ B2(T2))

= v(T1 ∪ T2).

Observe that the first inequality holds since uA1 ≥ 0 and vA2 ≥ 0, the second inequality holds

since (uA1, vA2) ∈ Core(w). Moreover, for the grand coalition all inequalities are equalities,

i.e., x(M1 ∪ M2) = v(M1 ∪ M2), which completes the proof. �
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Next, we will define two properties that fully characterize balanced AMO’s.

An AMO ((M1, M2), (A1, A2), (S1, S2)) satisfies the partitioning property if for all i ∈
{1, 2} there exists a partition {A1

i , A
2
i , ..., A

ki
i } of Ai that satisfies the following two condi-

tions:

(i) for every r ∈ {1, ..., ki}, it holds that
⋂

a∈Ar
i

Si(a) �= ∅,

(ii) for every r1, r2 ∈ {1, ..., ki}, r1 �= r2, it holds

⎛
⎝ ⋃

a∈A
r1
i

Si(a)

⎞
⎠ ∩

⎛
⎝ ⋃

a∈A
r2
i

Si(a)

⎞
⎠ = ∅.

The first condition states that there is at least one player participating in each object of

a partition element. The second condition states that player sets corresponding to two dif-

ferent partition elements have no player in common. Observe, that AMO’s where each player

is participating in precisely one object satisfies the partitioning property. We illustrate an

AMO that satisfies the partitioning property in the following example.

Example 3.2 Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO such that

M1 = {1, 2, 3, 4, 5}, M2 = {6, 7, 8, 9}, A1 = {a1, a2, a3}, A2 = {b1, b2, b3}, S1(a1) = {1, 2},
S1(a2) = {1, 3}, S1(a3) = {4, 5}, S2(b1) = {6, 7}, S2(b2) = {7, 8}, S2(b3) = {9}. Taking the

partitions A1
1 = {a1, a2}, A2

1 = {a3} and A1
2 = {b1, b2}, A2

2 = {b3}, it is straightforward to

verify that this AMO satisfies the partitioning property. �

An AMO ((M1, M2), (A1, A2), (S1, S2)) satisfies the intersection property if
⋂

a∈A1

S1(a) �= ∅ or

⋂
b∈A2

S2(b) �= ∅. Hence, an AMO satisfies the intersection property if all row objects or all

column objects have at least one player in common. The following example illustrates the

intersection property.

Example 3.3 Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO such that

M1 = {1, 2, 3}, M2 = {4, 5, 6}, A1 = {a1, a2, a3}, A2 = {b1, b2}, S1(a1) = {1, 2},
S1(a2) = {1, 3}, S1(a3) = {2, 3}, S2(b1) = {4, 5}, S2(b2) = {5, 6}. Obviously,

⋂
b∈A2

S2(b) =

{5} �= ∅. Hence, this AMO satisfies the intersection property. �

Observe that the AMO of Example 3.2 does not satisfy the intersection property and the

AMO of Example 3.3 does not satisfy the partitioning property.

Now, we can formulate the characterization of balanced AMO’s.
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Theorem 3.4 An AMO is balanced if and only if it satisfies the partitioning property or

the intersection property.

Proof: First observe that if |A1| = 1 or |A2| = 1 then trivially the intersection property

holds and for any reward function the corresponding simple assignment game is balanced.

Hence, we have to prove the theorem for |A1| ≥ 2 and |A2| ≥ 2.

We first prove the ”if”-part. Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO and let R be

a reward matrix. Let (M1 ∪ M2, v) be the corresponding simple assignment game. First

assume that ((M1, M2), (A1, A2), (S1, S2)) satisfies the partitioning property. Hence, for i ∈
{1, 2} there exists a partition {A1

i , A
2
i , ..., A

ki
i } that satisfies the conditions in the partitioning

property. From this AMO we create a new AMO that satisfies the condition of Proposition

3.1. First, we will merge the objects in one partition element to one object and these

merged objects will be owned by the intersection of the players that own the objects in the

partition element. Second, the reward between two new objects is the maximum reward

that can be achieved between two objects in the corresponding partition elements. Formally,

((M1, M2), (A1, A2), (S1, S2)) induces an AMO ((M̄1, M̄2), (Ā1, Ā2), (S̄1, S̄2)), where M̄i =
ki⋃

r=1

⋂
a∈Ar

i

Si(a), Āi = {a1
i , ..., a

ki
i } and S̄i(a

r
i ) =

⋂
a∈Ar

i

Si(a) for all i = 1, 2, r ∈ {1, ..., ki} . Let R̄

be defined by R̄a
r1
1 a

r2
2

= max
a∈A

r1
1 ,b∈A

r2
2

Rab for all r1 ∈ {1, ..., k1}, r2 ∈ {1, ..., k2}. Let (M̄1∪M̄2, w)

be the game corresponding to the induced AMO and R̄. Because the induced AMO satisfies

the condition of Proposition 3.1, we have that Core(w) �= ∅. Let x̄ ∈ Core(w) and define

x ∈ IRM1∪M2 as xi = x̄i if i ∈ M̄1 ∪ M̄2 and xi = 0 otherwise. We show that x ∈ Core(v).

First observe that w(S) = v(S∪M̄ ′
1∪M̄ ′

2) for all S ⊂ M̄1∪M̄2 with M̄ ′
i = Mi\M̄i, i ∈ {1, 2}.

Then

x(M1 ∪ M2) = x̄(M̄1 ∪ M̄2)

= w(M̄1 ∪ M̄2)

= v(M1 ∪ M2)

7



and

x(S) = x̄(S ∩ (M̄1 ∪ M̄2))

≥ w(S ∩ (M̄1 ∪ M̄2))

= v((S ∩ (M̄1 ∪ M̄2)) ∪ M̄ ′
1 ∪ M̄ ′

2)

≥ v(S)

for all S ⊂ M1∪M2. The first inequality holds because x̄ ∈ Core(w) and the second because

S ⊂ (S ∩ (M̄1 ∪ M̄2)) ∪ M̄ ′
1 ∪ M̄ ′

2. Hence, x ∈ Core(v).

Secondly, assume that ((M1, M2), (A1, A2), (S1, S2)) satisfies the intersection property. With-

out loss of generality we assume that

⋂
a∈A1

S1(a) = B �= ∅.

Then v(S) = 0 if B � S. Also v(S) ≤ maxa∈A1,b∈A2{Rab} if B ⊆ S and v(M1 ∪ M2) =

max
a∈A1,b∈A2

Rab. Define the vector x ∈ IRM1∪M2 by xi = v(M1 ∪M2) for some i ∈ B and xj = 0,

j �= i, otherwise. It is straightforward to check that x ∈ Core(v).

Second we prove the ”only if”-part. We show that if an AMO does not satisfy the partition

property and the intersection property, then it is not balanced. Assume that

((M1, M2), (A1, A2), (S1, S2)) does not satisfy the intersection property. This implies that⋂
a∈A1

S1(a) = ∅ and
⋂

b∈A2

S2(b) = ∅. We distinguish between two cases:

(i) For all a1, a2 ∈ A1 holds S1(a1) ∩ S1(a2) �= ∅, or

for all b1, b2 ∈ A2 holds S2(b1) ∩ S2(b2) �= ∅,
(ii) There exists a1, a2 ∈ A1 with S1(a1) ∩ S1(a2) = ∅, and

there exists b1, b2 ∈ A2 with S2(b1) ∩ S2(b2) = ∅.
Assume that (i) holds. Without loss of generality assume that S1(a1) ∩ S1(a2) �= ∅ for

all a1, a2 ∈ A1. Then take the reward matrix R in which every entry is equal to 1. Let

(M1 ∪ M2, v) be the simple assignment game corresponding to ((M1, M2), (A1, A2), (S1, S2))

and R. Since the intersection of the player sets of any two objects in A1 is not empty, at most

one object of A1 can be assigned to an object of A2. Hence, it follows that v(M1 ∪ M2) = 1

and, due to the fact that the intersection property is not satisfied, v(M1 ∪ M2\{i}) = 1 for

all i ∈ M1 ∪ M2. Obviously, Core(v) = ∅. So, ((M1, M2), (A1, A2), (S1, S2)) is not balanced.

Assume (ii) holds. Let G = (V, E) be the graph with V = A1 and the edge set E defined
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by (a, b) ∈ E if a, b ∈ V, S1(a) ∩ S1(b) �= ∅. The graph G consists of several connected

components that partition A1 in a natural way. Let {B1, B2, ..., Bk} be this partition. Hence,

if a, b ∈ Bj for some j ∈ {1, ..., k} then there exists a path from a to b. A similar partition can

be constructed for A2. Since ((M1, M2), (A1, A2), (S1, S2)) does not satisfy the partitioning

property, we can assume (without loss of generality) that there exists a j ∈ {1, ..., k} such

that
⋂

a∈Bj

S1(a) = ∅. Now, one of the following two cases is satisfied:

(α) for all a1, a2 ∈ Bj,a1 �= a2, it holds S1(a1) ∩ S1(a2) �= ∅,
(β) there exists a1, a2 ∈ Bj,a1 �= a2, with S1(a1) ∩ S1(a2) = ∅.
If case (α) holds, we define the reward matrix R by Rab = 1 for all a ∈ Bj, b ∈ A2 and

Rab = 0 otherwise. Since
⋂

a∈Bj

S1(a) = ∅, Bj contains at least two objects. Hence, we can

conclude, similarly to case (i), that v(M1∪M2) = v((M1∪M2)\{i}) = 1 for all i ∈ M1 ∪M2.

Hence, Core(v) = ∅. So, ((M1, M2), (A1, A2), (S1, S2)) is not balanced.

If case (β) holds, observe that there exists c1, c2, c3 ∈ Bj such that S1(c1)∩S1(c2) = ∅, S1(c1)∩
S1(c3) �= ∅ and S1(c2)∩S1(c3) �= ∅. This observation holds by the following argument. Recall

that Bj is a connected component of the graph G. Because S1(a1) ∩ S1(a2) = ∅ for some

a1, a2 ∈ Bj, a1 �= a2, the graph is not complete. Hence, there is a path of length two in

G. The vertices on this path satisfy the required property. According to assumption (ii)

there are b1, b2 ∈ A2 with S2(b1) ∩ S2(b2) = ∅. Now, we define the matrix R by Rab = 1

if (a, b) ∈ {(c1, b1), (c2, b1), (c3, b2)} and Rab = 0 otherwise. Obviously, v(M1 ∪ M2) = 1

because S1(c1) ∩ S1(c3) �= ∅ and S1(c2) ∩ S1(c3) �= ∅. Because S2(b1) ∩ S2(b2) = ∅ and

S1(c1) ∩ S1(c2) = ∅ we also have for all i ∈ M1 ∪ M2 that v((M1 ∪M2)\{i}) = 1. Hence, we

conclude that Core(v) = ∅. So, ((M1, M2), (A1, A2), (S1, S2)) is not balanced. �

4 k-AMO games

In this section we discuss k-AMO games, relaxations of simple assignment games. We provide

sufficient conditions for balancedness of k-AMO games. First we will introduce the class of

k-AMO games.

Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO. A matching µ in B1(T1)×B2(T2) is called k-

admissible for coalition T1∪T2 if for any k+1 pairwise distinct pairs (a1, b1), ..., (ak+1, bk+1) ∈
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µ it holds that
k+1⋂
i=1

S(ai) = ∅ and
k+1⋂
i=1

S(bi) = ∅. Observe that the restriction to k-admissible

matchings implies that a player that owns more than k objects can assign at most k objects.

The set of k-admissible matchings with respect to a coalition T1 ∪ T2 is denoted by

Ak(T1 ∪ T2). Note that Ak(T1 ∪ T2) ⊂ Ak+1(T1 ∪ T2), for all k ∈ IN and for all T1 ∪ T2.

Obviously, A1(T1 ∪ T2) = A(T1 ∪ T2) for all T1 ∪ T2 ⊂ M1 ∪ M2.

Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO and let R be a non-negative reward matrix.

The corresponding k-AMO game (M1 ∪M2, vk) is defined for all T1∪T2, with T1 ⊂ M1, T2 ⊂
M2 by

vk(T1 ∪ T2) = max{
∑

(a,b)∈µ

Rab : µ ∈ Ak(T1 ∪ T2)}. (2)

Observe that a simple assignment game coincides with a 1-AMO game. The following

example shows a 2-AMO game.

Example 4.1 Consider the AMO of Example 2.1. Let (M1 ∪ M2, v2) be the corresponding

2-AMO game and consider coalition {1, 2, 3, 4}. In contrast to the simple assignment game

in Example 2.1 in the 2-AMO game the matching {(r1, c1), (r2, c2)} is admissible. It is readily

verified that v2({1, 2, 3, 4}) = 4 and (2, 2, 0, 0) ∈ Core(v2). �

Next, we will formulate (2) as an Integer Linear Programming problem. For every i ∈
M1 ∪M2, define the vector ei ∈ IRA1×A2 by eiab = 1 if i ∈ S1(a)∪ S2(b), a ∈ A1, b ∈ A2, and

eiab = 0 otherwise. For every c ∈ A1∪A2, define the vector fc ∈ IRA1×A2 by fcab = 1 if c = a or

c = b, a ∈ A1, b ∈ A2, and fcab = 0 otherwise. Define the matrix A ∈ IR(M1∪M2∪A1∪A2)×(A1×A2)

by A =

⎡
⎣ e

f

⎤
⎦, where e consists of all vectors ei, i ∈ M1 ∪ M2 and f consists of all vectors

fc, c ∈ A1 ∪ A2. Let T1 ⊂ M1, T2 ⊂ M2. Define the vector pT1∪T2(k) ∈ IRM1∪M2 by

pT1∪T2
i (k) = k if i ∈ T1 ∪ T2 and pT1∪T2

i (k) = 0 otherwise, and define qT1∪T2 ∈ IRA1∪A2 by

qT1∪T2
a = 1 if Si(a) ⊂ T1 ∪ T2 for some i ∈ {1, 2} and qT1∪T2

a = 0 otherwise. We define the

vector uT1∪T2(k) ∈ IRM1∪M2∪A1∪A2 by uT1∪T2(k) =

⎡
⎣ pT1∪T2(k)

qT1∪T2

⎤
⎦ . So, the j-th row of

uT1∪T2(k) corresponds to the j-th row of the matrix A, i.e., if the j-th row of uT1∪T2(k)

represents player i or object a, then also the j-th row of the matrix A represents player i
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or object a. Now, it is straightforward to verify that (2) is equivalent to the following ILP

problem:

vk(T1 ∪ T2) = max
∑

a∈A1,b∈A2

Rabyab (3)

subject to Ay ≤ uT1∪T2(k),

yab ∈ {0, 1} for all a ∈ A1, b ∈ A2.

Deng et al. (1999) introduced the class of combinatorial games. Let N be the finite set

of players and M be a finite set with cardinality n and m, respectively. A combinatorial

game (N, vcom) is defined for all S ⊂ N by

vcom(S) = max{cT y|By ≤ 1S, y ∈ {0, 1}m}, (4)

where B is a n × m {0, 1}-matrix and 1S
i = 1 if i ∈ S and 1S

i = 0 otherwise. Deng et al.

(1999) proved the following theorem.

Theorem 4.2 (Deng et al. (1999))

A combinatorial game (N, vcom) is balanced if and only if the optimum of the ILP-problem

(4) of the grand coalition coincides with the optimum of its LP-relaxation.

It follows immediately that for k = 1 the ILP formulation (3) is a special case of the ILP

formulation of (4). Hence, we have the following corollary.

Corollary 4.3 A simple assignment game is balanced if and only if the solution of the

ILP-problem (3) of the grand coalition coincides with the solution of its LP-relaxation.

Obviously, the result of Deng et al. (1999) can not be applied to k-AMO games for k ≥ 2

because the right-hand side vector in (3) is not a {0, 1}-vector. Indeed, the following example

illustrates that the core of a k-AMO game can be non-empty although the ILP optimum

does not coincide with the optimum of its LP relaxation.

Example 4.4 Figure 2 displays an AMO ((M1, M2), (A1, A2), (S1, S2)) with reward matrix

R given by
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5 6 7 8

1, 2, 3

1, 2, 4

1, 3, 4

2, 3, 4

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Figure 2: An AMO with reward matrix R.

Then, for the corresponding 2-AMO game (M1 ∪M2, v2) it holds v2(M1 ∪M2) = 2, which is

the optimal solution of the ILP-problem (3) of the grand coalition. But the optimal solution

of the corresponding LP-relaxation is 8
3

which is larger than the worth of the grand coalition.

However, it is straightforward to check that (1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0) ∈ Core(v2).

The following theorem shows that the coincidence of the optimum of the ILP-problem and

its relaxation is still a sufficient condition to have a balanced k-AMO game.

Theorem 4.5 Let ((M1, M2), (A1, A2), (S1, S2)) be an AMO and let R be a reward matrix.

Let (M1 ∪ M2, vk) be the corresponding k-AMO game. If the optimum of the ILP-problem

(3) of the grand coalition coincides with the optimum of its LP-relaxation, then the corre-

sponding k-AMO game is balanced.

Proof: The LP relaxation of (3) is equal to

max
∑

a∈A1,b∈A2

Rabyab (5)

subject to Ay ≤ uT1∪T2(k),

y ≥ 0.

The dual of (5) is equal to

min zT · uT1∪T2(k) (6)

subject to AT z ≥ R,

z ≥ 0,
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where R = (Rab)a∈A1,b∈A2 . Let (M1 ∪ M2, vk) be the corresponding k-AMO game. By the

assumption in the theorem and the duality theorem of LP there exists an optimal solution z∗

of (6) such that vk(M1∪M2) = z∗T ·uM1∪M2(k). Now, we define the |M1|+ |M2| dimensional

vector x by xi = kz∗i +
∑

a∈A1:i∈S1(a)
z∗a

|S1(a)| for all i ∈ M1 and xj = kz∗j +
∑

b∈A2:j∈S2(b)
z∗b

|S2(b)|

for all j ∈ M2. We prove that x is in the core of vk. Let T1 ⊂ M1, T2 ⊂ M2. Then

x(T1 ∪ T2) =
∑
i∈T1

kz∗i +
∑
i∈T1

∑
a∈A1:i∈S1(a)

z∗a
|S1(a)| +

∑
j∈T2

kz∗j +
∑
j∈T2

∑
b∈A2:j∈S2(b)

z∗b
|S2(b)|

≥
∑
i∈T1

kz∗i +
∑

a∈A1:S1(a)⊆T1

z∗a +
∑
j∈T2

kz∗j +
∑

b∈A2:S2(b)⊆T2

z∗b

= z∗ · uT1∪T2(k)

≥ vk(T1 ∪ T2),

where the last inequality holds because for any coalition the feasible region in the dual

problem (6) is identical. Hence, z∗ is a feasible solution (6) for T1 ∪ T2. Evidently, for

M1 ∪ M2 all inequalities become equalities, which completes the proof. �

We conclude this section with two examples. They show that there is no relation between

the cores of consecutive k-AMO games.

Example 4.6 Figure 3 displays an AMO ((M1, M2), (A1, A2), (S1, S2)) with reward matrix

R given by

4 5 6 4, 5 4, 6 5, 6

1

2

3

1, 2

1, 3

2, 3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3: An AMO with reward matrix.

Let (M1 ∪M2, v1) be the corresponding simple assignment game. Then v1(M1 ∪M2) = 3

and the core is non-empty since for instance, (1, 1, 1, 0, 0, 0) ∈ Core(v1). We now show that

Core(v2) = ∅.
Let (M1 ∪ M2, v2) be the corresponding 2-AMO game. Then v2({1, 2, 4, 5}) = 3,

v2({1, 3, 4, 6}) = 3, v2({2, 3, 5, 6}) = 3 and v2(M1∪M2) = 4. Suppose (x1, x2, x3, x4, x5, x6) ∈

13



Core(v2), then 8 = 2(x1 + x2 + ... + x6) = (x1 + x2 + x4 + x5) + (x1 + x3 + x4 + x6) + (x2 +

x3 +x5 +x6) ≥ v2({1, 2, 4, 5})+v2({1, 3, 4, 6})+v2({2, 3, 5, 6}) = 9, which is a contradiction.

Therefore, Core(v2) = ∅.

Example 4.7 Recall that the AMO of Example 2.1 and Example 4.1 are identical. In Exam-

ple 2.1 it is shown that Core(v1) = ∅, whereas in Example 4.1 it is shown that Core(v2) �= ∅.

Finally, we remark that k-AMO games, where k ≥ max{|A1|, |A2|}, are balanced, because

these games can be considered as a subgame of the assignment games of Shapley and Shubik

(1972) in which the objects are the players.
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