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1 Introduction

The main purpose of this paper is to show that, for any given parameter values, an

equilibrium with dispersed prices exists in a matching model with divisible money

presented by Green and Zhou (1998), referred to below as GZ. Special attentions will

be paid to the uniqueness of the equilibrium and the welfare effect of price dispersion.

An influential paper by Kiyotaki and Wright (1989) has analyzed the search model

of money in which both goods and money are indivisible and consumers can hold just

one unit of them. Subsequently, Shi (1995, 1997), Trejos and Wright (1995), and GZ

have extended the model to allow for divisible money and/or goods. In models with

divisibility, there potentially exists an equilibrium with dispersed prices; different

sellers charge different prices in an equilibrium. Indeed, Camera and Corbae (1999),

Soller-Curtis and Wright (2000), and Matsui and Shimizu (2001) have succeeded

in presenting models with dispersed price equilibria. In this paper, we show that

equilibrium price dispersion occurs in the environment of GZ.

In search models of money, a random matching takes place and a potential buyer

and a potential seller meet. Suppose that one of them presents a take-it-or-leave-

it offer. If she knows the other’s characteristics, such as his money holding, then

she would extract all gains from trade. Suppose she offers a price (and quantity of

consumption good) depending on the other’s characteristics, then equilibrium price

dispersion obviously occurs. Camera and Corbae (1999) have indeed presented such

a model; the buyer, who knows the amount of the seller’s money holding, offers a

price (and quantity of consumption good). Of course, in their model, there only

exists an equilibrium with dispersed prices.

Soller-Curtis and Wright (2000) have successfully proved the existence of equilibria

with dispersed prices without assuming sellers’ knowledge on buyers’ characteristics.

Their model, however, contains exogenous preference shocks, i.e., the buyer’s char-

acteristics are determined exogenously and stochastically. In the equilibrium, the

seller is indifferent between a low price with a high probability of success in trading

and a high price with a low probability of success in trading.

Introducing market places into Green and Zhou’s model, Matsui and Shimizu

(2001) have proved the existence of equilibria with dispersed prices without assum-

ing exogenous shocks or sellers’ knowledge on buyers’ characteristics. However, the

market places play a crucial role for the existence of a two-price equilibrium. In this

paper, we will prove the existence of a two-price equilibrium in the original model.
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GZ have shown that there is a continuum of single price equilibria in their model.

Our existence result has a remarkable contrast to theirs. That is, confining our

attention to geometric distributions of money holdings, it is shown that there is the

unique p-2p equilibrium in which the sellers offer prices p or 2p.

As for the welfare property of our equilibrium, it also has a remarkable contrast

to that of single price equilibria. Even if the proportion of the agents with positive

money holdings is arbitrarily small, there exists a single price equilibrium. Thus the

probability of success in trading can be arbitrarily small, and therefore the arbitrarily

small welfare will be. While in our two-price equilibrium, the proportion of the agents

with positive money holdings is uniquely determined for given parameter values and

it is a certain positive value larger than 1/2. Thus the probability of success in

trading is a certain positive value.

The plan of this paper is as follows. Section 2 presents GZ’s model and introduce

new notations in order to investigate equilibrium price dispersion. Section 3 is de-

voted to the definition of our equilibrium concept and to the proof of its existence.

Section 4 presents an environment in which our equilibrium is unique. Section 5

analyzes the welfare effect of price dispersion.

2 Green and Zhou’s Model

In this section, we present GZ’s model.

In the economy, there are infinitely lived agents with a nonatomic mass of measure

one. There are k ≥ 3 types of agents and each type i, i = 1, . . . , k, has equally 1/k

mass. There are k + 1 goods. The first k goods are indivisible and immediately

perishable, and good i is consumed by type i agents. The remaining good is a

perfectly divisible and perfectly durable fiat-money object with an exogenously given

total nominal stock M > 0. Agents can hold any amount of fiat money. A type i

agent can costlessly produce one unit of good i + 1 at any time for i = 1, . . . , k −
1. (An agent of type k produces good 1.) She consumes only good i and derives

instantaneous utility u > 0. All agents have common discount rate γ > 0 and

maximize their discounted expected utility of the stream of their consumption.

Time is continuous starting from period 0. Agents meet pair wise randomly

according to a Poisson process with parameter µ > 0. Since the consumption goods

are perishable and there is no double coincidence of wants, all trade should involve

fiat money as a medium of exchange. Thus consumption goods cannot be used
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as commodity money. Each agent is characterized by her type and the amount of

money she holds. We assume that a partner’s type is observable, but not her money

holding, and that an agent knows the distribution of money holdings of the economy.

Transactions occur according to a seller-posting-price protocol as follows. When a

type i agent who has fiat money (potential buyer) meets a type i−1 agent (potential

seller) who can produce the buyer’s desired consumption good, the seller posts an

offer first, then the buyer decides to accept or reject it. Transaction occurs if and

only if the offer is accepted and the buyer pays the offered price.

We will focus on stationary equilibrium where the strategy that agents with an

identical money holding and an identical type take is time-invariant. Therefore, we

will hereafter discuss a generic type i.

Let η ∈ R+ denote an agent’s money holding. A strategy of type i agent is

defined as a set of two correspondences, an offer strategy ω(η) : R+ → R+ and a

reservation price strategy ρ(η) : R+ → R+. The former is a set of prices that a type

i agent with money holding η offers when she meets a potential buyer. A seller with

money holding η offers one of the elements in ω(η). It will be shown that, by the

perfectness condition, ρ gives the maximum price that a buyer is willing to defray for

the consumption good, and so it becomes a function rather than a correspondence.

Of course, since the reservation price cannot exceed the buyer’s money holdings, ρ

should satisfy the following feasibility condition:

ρ(η) ≤ η.(1)

GZ only consider stationary distributions of money holdings. However, we con-

sider stationary distributions of offer prices and reservation prices as well as money

holdings, since we allow agents with the same money holding for taking different

strategies. That is, for a money holding η, an offer price o, and a reservation price

r, H(η, o, r) denotes a stationary distribution defined on R+ × R+ × R+. From

H , the stationary distribution of offer prices, Ω, and the stationary distribution of

reservation prices, R, are defined as follows.

Ω(x) = H{(η, o, r)|o ≤ x}(2)

R(x) = H{(η, o, r)|r < x}.(3)

We define R to be continuous from the left.

Let V : R+ → R+ be a value function. That is V (η) is the maximum value

of discounted utility achievable by the agent’s current money holding η. At every
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moment, a type i agent with money holding η meets a type i−1 agent with probability

µ/k. Transaction does not occur and money holding does not change if the partner’s

offer x exceeds the type i’s reservation price r. If partner’s offer price x is not more

than reservation price r, then transaction occurs and the type i agent derives utility

u from consumption and enters in the next trading opportunity with money holding

η−x. The probability that type i with money holding η meets a type i+1 agent is also

µ/k. Transaction does not occur if the type i’s offer o is greater than the partner’s

reservation price. If type i’s offer o does not exceed the partner’s reservation price,

then transaction occurs and faces the next matching opportunity with money holding

η + o. Then, using γ, µ, Ω, and R, the Bellman equation for V (η) is given by 1

V (η) =
µ

kγ + 2µ

(
max
r∈[0,η]

{∫ r

0

(u + V (η − x))dΩ(x) + (1 − Ω(r))V (η)

}

+ max
o∈�+

{
R(o)V (η) + (1 − R(o))V (η + o)

})
.(4)

Some remarks on V (η) as follows. V (η) is nonnegative, since an agent can always

choose r = 0, i.e., she can always refrain from purchase. V (η) is bounded above,

since consumption opportunities occur with 1/µ intervals on average and the utility

should be discounted.

In terms of V (η), it is optimal to accept offer o if u+V (η−o) ≥ V (η). The same

condition in terms of reservation price ρ is ρ(η) ≥ o. Then the perfectness condition

with respect to reservation price is as follows:

ρ(η) = max
{
r ∈ [0, η]

∣∣u + V (η − r) ≥ V (η)
}
.(5)

That is, type i’s reservation price is her full value for good i + 1, and thus it is a

function of η.

The economy is stationary if H is an initial stationary distribution of the pro-

cess induced by the optimal trading strategy (ω, ρ). Now we define the stationary

equilibrium grounded on the above. We adopt stationary perfect Bayesian Nash

equilibrium as our equilibrium concept.

Definition 1 < H, R, Ω, ω, ρ,V > is said to be a stationary equilibrium if

1. H is stationary under trading strategies ω and ρ, and the distribution of offer

prices Ω and that of reservation prices R are derived from H by (2) and (3),

and
1As for the details of derivation, see GZ.
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2. given the distributions H, R and Ω, the reservation price strategy ρ and the

offer strategy ω satisfy the feasibility condition (1) and the perfectness condition

(5), respectively, and the value function V , together with ρ and ω, solves the

Bellman equation (4). Therefore,

V (η) =
1

φ + 2

((∫ ρ(η)

0

(u + V (η − x))dΩ(x) + (1 − Ω(ρ(η))V (η))

)

+

(
R(ω(η))V (η) +

(
1 − R(ω(η))

)(
V (η + ω(η))

)))
,(6)

holds, where φ = kγ/µ.

3 Two-Price Equilibrium

3.1 The Equilibrium

In what follows, we focus on a stationary distribution H such that its support is the

set
{
(np, n̄p, ¯̄np)

∣∣n, n̄, ¯̄n = 0, 1, 2, . . .
}

for some p > 0. Thus H can be expressed by

h̄(n, s, t), the measure of the set of agents with a money holding np, an offer price

sp, and a reservation price tp. Of course, h̄ satisfies∑
n

∑
s

∑
t

h̄(n, s, t) = 1(7)

h̄(n, s, t) ≥ 0(8)

h̄(n, s, t) > 0 only if

sp ∈ ω(np) and ρ(np) = tp.(9)

To begin with, we define the concept of a p-2p equilibrium (two price equilibrium)

of which existence we are going to show.

Definition 2 <H,R,Ω,ω,ρ,V > is said to be a p-2p equilibrium if, for some p > 0,

1. <H,R,Ω,ω,ρ,V > satisfies 1 and 2 of Definition 1, ω(np) ⊂ {p, 2p}, n = 0, 1, . . . ,

and

2. h̄ satisfies

∃n, t ∈ {0, 1, 2, . . .}, h̄(n, 1, t) > 0(10)

∃n′, t′ ∈ {0, 1, 2, . . .}, h̄(n′, 2, t′) > 0(11)

∃n′′, s ∈ {0, 1, 2, . . .}, q ∈ {2, 3, 4, . . .}, h̄(n′′, s, q) > 0.(12)
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From (10)−(12),

∃n ∈ {0, 1, . . .}, p ∈ ω(np)(13)

∃n′ ∈ {0, 1, . . .}, 2p ∈ ω(n′p)(14)

∃n′′ ∈ {0, 1, . . .}, ρ(n′′p) ≥ 2p(15)

immediately follows. Thus (10)−(12) imply that there exist transactions both with

price p and with price 2p.

We are now ready to present our main theorem.

Theorem 1 For all φ > 0, there exists a p-2p equilibrium for some p > 0.

First, in the next subsection, we specify a strategy which is shown to be a p-

2p equilibrium strategy. Then, in the following subsections, we find a stationary

distribution and a value function consistent with the strategy, and show that they

indeed constitute a p-2p equilibrium.

3.2 The Strategy

We consider the strategy satisfying (i) and (ii) below. (i) For all money holdings

η = np, n = 0, 1, 2 . . . , agents offer either p or 2p. (ii) Agents with money holding p

accept only offer p, and agents with money holding larger than or equal to 2p accept

p and 2p. That is

ω(np) = {p, 2p}, n = 0, 1, . . . ,(16)

ρ(0) = 0,(17)

ρ(p) = p,(18)

ρ(np) ≥ 2p, n ≥ 2(19)

hold. Note that we now just suppose that ρ(np), n ≥ 3, is larger than or equal to

2p, and it will be completely specified later.

The steps of the proof of Theorem 1 are as follows. First, in Subsection 3.3, we

find a stationary distribution consistent with the above strategy. Then, in Subsection

3.4, using the fact that the values of the offer prices p and 2p are the same, we derive

a simple relationship between V (np), n = 0, 1, . . . . It is expressed as a homogeneous

second order difference equation, and thus V (n), n = 2, 3, . . . , can be expressed by

V (0) and V (p). Then, in Subsection 3.5, we find values of unknowns, including V (0)

and V (p), which solve the Bellman equation. Finally, in Subsection 3.6, we show

that the agents have incentive to play the strategy.
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3.3 A Stationary Distribution

In this subsection, we investigate a stationary distribution consistent with the strat-

egy (16)−(19).

First, it is convenient to sum up the measures of the set of agents with reservation

prices larger than or equal to 2p, since no offer prices are larger than 2p. Thus we

define

h(n, s, t) =



∑

q h̄(n, s, q) if n ≥ 2 and t = 2
0 if n ≥ 2 and t > 2
h̄(n, s, t) otherwise.

(20)

In the above definition, h(n, s, 2) is equal to the measure of the set of agents with

reservation prices larger than or equal to 2p. We denote the measure of the agents

with money holding np by

h(n) =
∑

s

∑
t

h(n, s, t).(21)

Next, we introduce some notations. Let m1 be the proportion of the agents with

positive money holdings, which corresponds to m in GZ, and m2 be the proportion of

the agents with ρ(np) ≥ 2. Let z1 be the proportion of the agents with offer price p

and z2 be that with offer price 2p. Of course, z1+z2 = 1 holds. Each of the above can

be expressed by h(·, ·, ·): m1 =
∑∞

n=1

∑
s

∑
t h(n, s, t), m2 =

∑∞
n=0

∑
s h(n, s, 2) =∑∞

n=2 h(n), z1 =
∑∞

n=0

∑
t h(n, 1, t), and z2 =

∑∞
n=0

∑
t h(n, 2, t).

When all agents play the strategy (16)−(19), the time derivative of h(n) is written

as

ḣ(0) = µ(z1h(1) + (1 − z1)h(2)) − µm1h(0, 1, 0) − µm2h(0, 2, 0)(22)

ḣ(1) = µ(m1h(0, 1, 0) + z1h(2) + (1 − z1)h(3))

− µ(m1 + z1)h(1, 1, 1) − µ(m2 + z1)h(1, 2, 1)(23)

ḣ(n) = µ(m2h(n − 2, 2, t) + m1h(n − 1, 1, t) + z1h(n + 1) + (1 − z1)h(n + 2))

− µ(m1 + 1)h(n, 1, 2) − µ(m2 + 1)h(n, 2, 2) ∀n ≥ 2.(24)

For example, in (24), ḣ(n) is the difference between the measure of agents whose

money holdings become np as results of trades and that of agents whose money

holdings change from np to other ones as results of trades at any moment. There are

four cases that agents’ money holdings become np: an agent with (n − 2)p sells her

product at 2p, an agent with (n − 1)p sells at p, an agent with (n + 1)p purchases

her consumption good at p, and an agent with (n + 2)p purchases at 2p. The
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probabilities of these cases, when she meets a potential trader, are m2, m1, z1, and

1−z1, respectively. On the other hand, there are three cases that the money holdings

change from np to other ones: an agent with offer strategy p sells her product at p,

an agent with offer strategy 2p sells at 2p, and she purchases her consumption good.

The probability of these cases when she meets a potential trader are m1, m2, and 1,

respectively. Similar arguments apply to (22) and (23).

The stationarity of distribution H requires that h is invariant, i.e., (22)−(24) are

equal to zero. Thus, for the strategy (16) − (19), H is stationary if and only if

z1h(1) + (1 − z1)h(2) = m1h(0, 1, 0) + m2h(0, 2, 0),(25)

m1h(0, 1, 0) + z1h(2) + (1 − z1)h(3) = (m1 + z1)h(1, 1, 1) + (m2 + z1)h(1, 2, 1),
(26)

for n ≥ 2,

m2h(n − 2, 2, t) + m1h(n − 1, 1, t)+z1h(n + 1) + (1 − z1)h(n + 2)

= (m1 + 1)h(n, 1, 2) + (m2 + 1)h(n, 2, 2),(27)

and, for m1 and m2,

h(0) = 1 − m1(28)

h(1) = m1 − m2(29)
∞∑

n=2

h(n) = m2.(30)

Note that among (28)−(30), two of them are independently determined.

The following lemma gives a stationary distribution.

Lemma 1 The distribution

h(n) = mn
1 (1 − m1)(31)

h(n, 1, t) = z1m
n
1 (1 − m1)(32)

h(n, 2, t) = (1 − z1)m
n
1 (1 − m1),(33)

for n = 0, 1, 2, . . . , and m2 = m2
1 satisfy (25) − (30). 2

Proof : Substituting (31)−(33) and m2 = m2
1 into (25)−(30), we can easily verify

the stationarity of the distribution.
2There may exist another distribution satisfying (25) − (30).
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Q.E.D.

Under this stationary distribution, the proportion of the agents who offer p is

exactly the same at all money holdings.

In fact, the stationary distribution of money holdings, h(n), is the same as that

in a single-price equilibrium in GZ. Therefore,

M = p

∞∑
n=1

nh(n) =
m1

1 − m1
p(34)

holds as in GZ. Later, we will show that m1 is uniquely determined in the equilibrium.

Thus, for a given M , p is uniquely determined.

3.4 Equilibrium Value Function

First, for convenience, we denote by V (n) = V (np), the value function of an agent

with money holding np. We restrict our attention to the case that money holdings

are integer multiples of p. Thus the value function becomes a step function. Let

[x] denotes the integer part of a real number x, 3 the value function V (η) can be

rewritten as

V (η) = V ([η/p]) = V (n), n = 0, 1, 2, . . . .(35)

Next, we investigate a necessary condition for the existence of a p-2p equilibrium.

For the strategy (16)−(19), let the expected value of a money holding np, an offer

price sp, and a reservation price tp be W (n, s, t). On the equilibrium path, if it

exists, W (n, s, t) can be written as follows:

for n = 0,

W (0, 1, 0) =
1

φ + 2
(V (0) + (1 − m1)V (0) + m1V (1))(36-(a))

W (0, 2, 0) =
1

φ + 2
(V (0) + (1 − m2)V (0) + m2V (2)),(36-(b))

for n = 1,

W (1, 1, 1) =
1

φ + 2
(z1(u + V (0)) + ((1 − m1) + z2)V (1)

+ m1V (2))(37-(a))

W (1, 2, 1) =
1

φ + 2
(z1(u + V (0)) + ((1 − m2) + z2)V (1)

+ m2V (3)),(37-(b))

3Consequently, x = [x] + ε for some ε ∈ [0, 1)
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for n ≥ 2 and t ≥ 2,

W (n, 1, t) =
1

φ + 2
(z2(u + V (n − 2)) + z1(u + V (n − 1))

+ (1 − m1)V (n) + m1V (n + 1))(38-(a))

W (n, 2, t) =
1

φ + 2
(z2(u + V (n − 2)) + z1(u + V (n − 1))

+ (1 − m2)V (n) + m2V (n + 2)).(38-(b))

In case of (38-(b)), the strategy of an agent is to offer 2p and to accept offer prices

p and 2p. Suppose she meets a partner. If the partner is a seller, he offers p with

probability z1 and 2p with probability z2. She accepts both offer and the transaction

results in a purchase, and then obtains utility u. Her money holding becomes (n−1)p

if the offer price is p and (n − 2)p if it is 2p. If the partner is a buyer, she offers

2p and so the transaction results in a sale with probability m2 and in no trade with

probability 1−m2. Her money holding becomes (n+2)p in the former case and does

not change in the latter case. Similar arguments apply to (36-(a))−(38-(a)).

On the equilibrium path, (38-(a)) and (38-(b)) should be equal, 4 and the same

arguments apply to (37-(a)) and (37-(b)), and to (36-(a)) and (36-(b)). From these

equalities, we obtain the same relation

V (n + 2) =
m1

m2
V (n + 1) − m1 − m2

m2
V (n), n = 0, 1, 2, . . . .

This is equivalent to the following homogeneous second-order difference equation:

m2V (n + 2) − m1V (n + 1) + (m1 − m2)V (n) = 0.

The solution to the difference equation is

V (n) =
m2

2m2 − m1

[(
1 −

(
m1 − m2

m2

)n)
V (1) −

(
m1 − m2

m2
−
(

m1 − m2

m2

)n)
V (0)

]
.

(39)

Nontrivial solutions {V (n) | n = 0, 1, . . .} are bounded if and only if m1 < 2m2.

The following lemma summarizes the above results.

Lemma 2 If the value function of a p-2pequilibrium with the strategy (16) − (19)

exists, the following conditions hold.

1. m1 < 2m2.

4Of course, they are equal to V (n).
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2. Given V (0) and V (1)，V (n) is given by (39).

3. For all n，W (n, 1, t) = W (n, 2, t) = V (n)．

The relation m2
1 = m2 in Lemma 1, together with the condition m1 < 2m2 above,

implies m1 > 1/2.

Lemma 3 If the value function of a p-2pequilibrium with the strategy (16) − (19)

exists, m1 > 1/2 holds.

3.5 Existence of Equilibrium Value Function

In the previous two subsections, we presented necessary conditions for the existence

of a p-2p equilibrium with the strategy (16)−(19). The conditions are expressed by

V (0), V (1), m1, and z1. We will show, in this subsection, that there exist such V (0),

V (1), m1, and z1, and, in the next subsection, that they indeed constitute a p-2p

equilibrium even if we take off-equilibrium-paths into consideration. For a while, we

suppose that m1 and m2 satisfy m1 < 2m2, m2
1 = m2 and thus m1 > 1/2, and later

we will show these inequalities are indeed satisfied.

Lemma 2-2 says that V (n), the value of state n, is given by (39). Substituting

m2 = m2
1, (39) can be rewritten as

V (n) =
m1

2m1 − 1

[(
V (1) −

(
1 − m1

m1

)
V (0)

)
−
(

1 − m1

m1

)n

(V (1) − V (0))

]
.(40)

Lemma 2-3 says that W (n, 1, t)
(
= W (n, 2, t)

)
equals V (n) for all n. Below, we

rewrite them using (40).

We first consider V (n) = W (n, 1, 2) for n ≥ 2. Substituting (40) into the both

sides of V (n) = W (n, 1, 2), we obtain, for all n ≥ 2,

1

φ + 2

{
u +

m1

2m1 − 1

[
2

(
V (1) −

(
1 − m1

m1

)
V (0)

)

−
((

m1

1 − m1

)2

(1 − z1) +

(
m1

1 − m1

)
z1 + 2 − 2m1

)(
1 − m1

m1

)n

(V (1) − V (0))

]}

=
m1

2m1 − 1

[(
V (1) −

(
1 − m1

m1

)
V (0)

)
−
(

1 − m1

m1

)n

(V (1) − V (0))

]
.

(41)
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In order to show that (41) holds for all n ≥ 2, it suffices to show

1

φ + 2

{
u +

m1

2m1 − 1

[
2

(
V (1) −

(
1 − m1

m1

)
V (0)

)]}
=

m1

2m1 − 1

(
V (1) −

(
1 − m1

m1

)
V (0)

)(42)

1

φ + 2

((
m1

1 − m1

)2

(1 − z1) +

(
m1

1 − m1

)
z1 + 2 − 2m1

)
= 1.(43)

From (42),

V (0) =
m1

1 − m1
V (1) − 2m1 − 1

φ(1 − m1)
u ,(44)

holds and, from (43)

z1 = 2 − m1 − φ(1 − m1)
2

m1(2m1 − 1)
(45)

holds.

We next consider V (0) = W (0, 1, 0). This implies

V (0) =
m1

φ + m1
V (1).(46)

Then, by (44), V (0) and V (1) can be expressed as:

V (0) =
1

φ

2m1 − 1

φ + 2m1 − 1
u(47)

V (1) =
φ + m1

m1

1

φ

2m1 − 1

φ + 2m1 − 1
u.(48)

Finally, we consider V (1) = W (1, 1, 1). Together with (40), (45), (46), and (47),

this implies

1

φ + 2

(
2m1 − 1

m1

(
1

φ + 2m1 − 1
z1 + 1

))
u =

1

φ + 2
z1u,

and then

z1 =
(φ + 2m1 − 1)(2m1 − 1)

2m2
1 + (φ − 3)m1 + 1

(49)

holds.

So far, we have shown the relations between V (0), V (1), m1 and parameters φ

and u ((47) and (48)), and the relations between m1, z1 and a parameter φ ( (45)

and (49)). The remaining conditions we should show are (a) there exist V (0), V (1),

m1, and z1 satisfying these relations, (b) 1/2 < m1 < 1, (c) 0 < z1 < 1, and (d) the

13



incentive to play the strategy. In this subsection, we are going to show that (a),(b),

and (c) are satisfied for all φ > 0. (d) will be shown in the next subsection.

First, eliminating z1 from (45) and (49), we obtain the following fifth-degree poly-

nomial of m1:

4m5
1 + (4φ − 8)m4

1 + (φ2 − 8φ + 9)m3
1 + (−2φ2 + 7φ − 5)m2

1 + (φ2 − 4φ + 1)m1 + φ = 0.

The left-hand side of this equation is expressed as the product of two polynomials

of m1, i.e.,

2m2
1 + (φ − 1)m1 − φ = 0(50)

or

2m3
1 + (φ − 3)m2

1 + (3 − φ)m1 − 1 = 0.(51)

holds.

However, by a simple calculation, the solution to (50) always gives z1 = 1. Thus it

does not satisfy condition (c). 5 So we will focus only on the third-degree polynomial

(51).

For all φ > 0, (51) always has a unique solution m∗
1 ∈ (1/2, 1), i.e., conditions (a)

and (b) hold. Indeed, denoting the left-hand side of (51) by F (m1, φ) and substituting

m1 = 1/2 and m1 = 1 into F (m1, φ), we obtain F (1/2, φ) = −φ/4 < 0 and F (1, φ) =

1 > 0. The uniqueness follows from ∂F
∂m1

> 0 for m1 ∈ (1/2, 1).

Next, solving (51) with respect to φ, we obtain

φ =
2m3

1 − 3m2
1 + 3m1 − 1

m1(1 − m1)
.(52)

Then, substituting this into (45) or (49), we obtain z1 = 2m1−1
m2

1
. Since m∗

1 ∈ (1/2, 1),

z∗1 =
2m∗

1−1

(m∗
1)2

∈ (0, 1), condition (c), holds.

Figures 1 and 2 show the graphs of the solution to (51) and of (49). We can also

see that they satisfy condition (b) and (c) for all φ > 0.

So far, we have proved the following Lemma.

Lemma 4 For the stationary distribution H in Lemma 1, there exist V (0), V (1), m∗
1

and z∗1 satisfying (6) for all φ > 0.

5It corresponds to one of single-price equilibria in GZ.
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3.6 Incentive

First, as for the reservation price strategy, we define ρ(np) by the perfectness condi-

tion (5) for all n ≥ 3, i.e.,

ρ(η) = max
{
r ∈ [0, η]

∣∣u + V (η − r) ≥ V (η)
}
,(53)

where V is the solution to the Bellman equation obtained in the previous subsections.

Finally, we show that, for V (n), m∗
1, z∗1 , and the stationary distribution obtained in

the above subsections, each agent has incentive to play the strategy (16)−(19) and

ρ specified by (53).

First, we investigate the reservation price strategy. In a p-2p equilibrium with the

above strategy, V (n) ≤ u + V (n− 2) must hold for n ≥ 2, since an agent with n ≥ 2

accepts offer 2p. 6 7 This inequality holds if m1 < 2m2 and

V (2) − V (0) ≤ u,(54)

since, by using (39), inequality (54) can be written as

m2

2m2 − m1

(
1 −

(
m1 − m2

m2

)2
)

(V (1) − V (0)) ≤ u,(55)

and so that

V (n) − V (n − 2) =
m2

2m2 − m1

((
m1 − m2

m2

)n−2

−
(

m1 − m2

m2

)n
)

(V (1) − V (0))

=
m2

2m2 − m1

(
m1 − m2

m2

)n−2
(

1 −
(

m1 − m2

m2

)2
)

(V (1) − V (0))

<
m2

2m2 − m1

(
1 −

(
m1 − m2

m2

)2
)

(V (1) − V (0))

< u(56)

holds if m1 < 2m2. Of course, m∗
1 < 2m∗

2 = 2(m∗
1)

2 holds.

By using (40) and (47), V (2) − V (0) ≤ u can be written as

1

m2
1

2m1 − 1

φ + 2m1 − 1
u ≤ u,

6This condition is equivalent to the one that the expected value of t = 2 is not less than that of t = 1 for all
n ≥ 2. Indeed, W (n, 1, 1) ≤ W (n, 1, 2) is equivalent to V (n) − V (n − 2) ≤ u. The same argument applies to
W (n, 2, 1) ≤ W (n, 2, 2).

7An agent accepts an offer 2p also accepts an offer p. Clearly, V (n) − V (n − 1) < V (n) − V (n − 2) ≤ u holds if
V (n) is increasing. Indeed, V (n) given by (39) is increasing if m1 < 2m2.
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and it is equivalent to

2m3
1 + (φ − 1)m2

1 − 2m1 + 1 ≥ 0,

since u > 0. Thus, by (51), we can rewrite the above inequality as

2m2
1 + (φ − 5)m1 + 2 ≥ 0.(57)

Substituting (52) into inequality (57), we obtain

(2m1 − 1)2

1 − m1
≥ 0.(58)

This inequality always holds strictly if 1/2 < m1 < 1. Therefore, V (2)−V (0) ≤ u is

satisfied for m∗
1 ∈ (1/2, 1).

We can easily show that an agent with n = 1 accept offer p. Indeed, since V (n)

is increasing in n, V (1) − V (0) ≤ V (2) − V (0) ≤ u holds.

Next, we focus on the offer strategy. It suffices to show that the expected value

of offering 3p is less than that of offering 2p. Let a(j) and A(j) denote a minimal

money holding necessary for an agent to accept an offer jp and the set of money

holdings larger than or equal to a(j), respectively. Note that {n∣∣np ∈ A(j)} =

{a(j), a(j) + 1, a(j) + 2, . . .} holds and an agent with money holding np ∈ A(j)

always accepts the offer jp.

(21), (31), (32), and (33) imply H
{
(n, s, t)

∣∣np ∈ A(j)
}

= m
a(j)
1 ≤ mj

1. Let W (n, j)

be the expected value of an agent with money holding np and with offer price jp.

W (n, j) can be written as

W (n, j) = H
{
(n, s, t)

∣∣np ∈ A(j)
}
V (n + j) + H

{
(n, s, t)

∣∣np /∈ A(j)
}
V (n)

≤ mj
1V (n + j) + (1 − mj

1)V (n).(59)

Thus, we can see that the expected value of offer price 3p is lower than that of offer

price 2p if

m3
1V (n + 3) + (1 − m3

1)V (n) < m2V (n + 2) + (1 − m2)V (n)

= m2
1V (n + 2) + (1 − m2

1)V (n).(60)

Substituting (40) into this inequality (60) yields (2m1 − 1)(m1 − 1) < 0. For m∗
1 ∈

(1/2, 1), this clearly holds. That is the expected value of offer price 3p is less than

that of offer price 2p.

For j ≥ 3, W (n, j + 1) ≤ W (n, 2) follows from (60) if

mj+1
1 V (n + j + 1) + (1 − mj+1

1 )V (n) < mj
1V (n + j) + (1 − mj

1)V (n)
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holds. Substituting (40) into the above inequality, we obtain mj+1
1 − (1 − m1)

j+1 <

mj
1 − (1 − m)j and thus (1 − m1)

j−1 < mj−1
1 . For m∗

1 ∈ (1/2, 1), this clearly holds.

Note that the probability of acceptance of an offer larger than 2p is not zero, but

too small for the value to be larger than that of offer price 2p. Thus no seller makes

an offer larger than 2p.

So far, we have proved the following Lemma.

Lemma 5 For V (n), m∗
1, z∗1, the stationary distribution H in Lemma 4, and the

strategy specified above, it is optimal for an agent to play the strategy.

By the lemmas, all the conditions in Definition 2 are clearly satisfied. This com-

pletes the proof of Theorem 1.

4 Uniqueness

In this section, confining our attention to geometric distributions of money holdings,

we show that the equilibrium obtained in the previous section is the unique p-2p

equilibrium.

For m1 ∈ (0, 1) and p > 0, let Hm1,p be the distribution of money holdings such

that the proportion of agents with money holding np, n = 0, 1, 2, . . . , is mn
1 (1−m1).

Since marginal utilities of money of rich sellers are lower than those of poor sellers,

it seems at first glance that there exists a p-2p equilibrium in which the former only

offer p and the latter only offer 2p. However, there does not exist such an equilibrium;

such a strategy is not consistent with the stationarity of Hm1,p. As for reservation

price strategies, a strategy satisfying ρ(2p) = p and ρ(n̂p) ≥ 2p for some n̂ > 2

is a candidate for an equilibrium strategy. However, there does not exist such an

equilibrium; there do not exist m1, z1, V (0), and V (1) consistent with the Bellman

equation.

Theorem 2 If < Hm1,p, R, Ω, ω, ρ,V > is a p-2p equilibrium, then it must be the one

given in the previous section, i.e., (i) Hm1,p, R, and Ω must be the ones determined by

h(n, s, t) in Lemma 1, where m∗
1 and z∗1 are given in Subsection 3.5 and p∗ =

1−m∗
1

m∗
1

M ,

(ii) V (n), n = 0, 1, . . . , must be the ones given by (40),(47), and (48) for m∗
1, and

(iii) ω and ρ must be the ones given by (16) − (19) and (53).

Proof : See Appendix.
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5 Welfare

Next, we investigate welfare. We obtained the stationary geometric distribution

h(n) = mn
1 (1−m1) as in GZ and therefore our p-2p equilibrium and one of GZ’s single-

price equilibria coexist under this money holding distribution. A natural question is

in which equilibrium welfare is higher. For a given φ > 0, m∗
1 is uniquely determined

by (51). We use the standard welfare measure U(m1, φ, u) =
∑∞

n=0 h(n)V (n) =

(1 − m1)
∑∞

n=0 mn
1V (n). Substituting the value of V (n) yields the welfare of p-2p

equilibrium U2(m
∗
1, φ, u) = V (1) =

φ+m∗
1

m∗
1

1
φ

2m∗
1−1

φ+2m∗
1−1

u. On the other hand, the welfare

of the single-price equilibrium under the same distribution is U1(m
∗
1, φ, u) =

m∗
1u

φ
as

obtained in GZ. By tedious calculation, we can show that U1(m
∗
1, φ, u) > U2(m

∗
1, φ, u)

for any φ > 0. Figure 3 shows this for φ ∈ (0, 0.001) when u = 0.01. This is due

to the fact that, in the p-2p equilibrium, there are more matches result in no trade

than in the single-price equilibrium.

There exists a continuum of single-price equilibria in GZ. The second question

is whether the welfare of any single-price equilibrium is higher than that of p-2p

equilibrium. The proportion of the agents with positive money holdings, m, can

be any value in (0, m̂) for some m̂ > 0.8 Since the welfare is in proportion to

m in single-price equilibria, the welfare can be any small positive value. However,

in p-2p equilibrium, the welfare is of some positive value for any given φ. Thus

U2(m
∗
1, φ, u) > U1(m, φ, u) holds for sufficiently small m.

Appendix: Proof of Theorem 2

Let αn ∈ [0, 1], n = 0, 1, . . . , denote the proportion of the agents with offer price p among the agents
with money holding np. Suppose ρ(p) = p and ρ(2p) = 2p, the case in Section 3. Given Hm1,p and
m2 = m2

1, (25)−(27) can be rewritten as

z1m1 + (1 − z1)m2
1 = m1α0 + m2

1(1 − α0),(A1)

m1α0 + z1m
2
1 + (1 − z1)m3

1 = (m1 + z1)α1m1 + (m2
1 + z1)(1 − α1)m1,(A2)

for n ≥ 2,

mn
1 (1 − αn−2) + mn

1αn−1 + z1m
n+1
1 + (1 − z1)mn+2

1 = (m1 + 1)αnmn
1 + (m2

1 + 1)(1 − αn)mn
1 .

(A3)

By (A1), α0 = z1 holds. Then, by induction, αn = z1 holds for all n.

8m̂ must be the solution of (50) since all sellers post p and the offer prices p and 2p are indifferent. If the
proportion of money holders is larger than this value, the proportion of the buyers who accept 2p is large enough for
the sellers to have an incentive to offer 2p. Figure 4 shows m̂ and m∗

1.
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Suppose ρ(p) = 0 and ρ(2p) = 2p. Then the stationarity of Hm1,p for n = 0 becomes (1−z1)m2
1 =

m1α0 + m2
1(1 − α0), so that −z1m

2
1 = (m1 − m2

1)α0 holds. Since z1 and m1 are in (0,1), α0 must
be negative. This contradicts α0 ∈ [0, 1].

Therefore, the distribution given in Lemma 1 is the unique distribution satisfying ρ(2p) = 2p
and the stationarity of Hm1,p. Thus the p-2p equilibrium in Section 3 is the unique one in case of
ρ(2p) = 2p.

Next, suppose there exists an integer n̂ ≥ 3 such that ρ(np) ≥ 2p for all n ≥ n̂ and ρ(np) < 2p
for all n < n̂. For the proof of Theorem 2, it suffices to show that there is no p-2p equilibrium
strategy consistent with the stationarity of Hm1,p. Below, we will prove this.

First, we will show that αn must be in (0,1) for all n = 0, 1, . . . . Note that, in this case,
m2 = mn̂

1 holds by (30). Suppose ρ(p) = 0. Then the stationarity of Hm1,p for n = 0 implies
0 = m1α0 + mn̂

1 (1 − α0). This holds only if m1 = 0. Therefore, ρ(p) = p holds and thus ρ(np) = p
holds for n = 2, 3 . . . , n̂ − 1, since ρ is an increasing function. Thus, the stationarity of Hm1,p

implies the following equations: 9

z1m1 = m1α0 + mn̂
1 (1 − α0),(A4)

m1α0 + z1m
2
1 = (m1 + z1)α1m1 + (mn̂

1 + z1)(1 − α1)m1,(A5)

for n = 2, . . . , n̂ − 3,

mn̂+n−2
1 (1 − αn−2) + mn

1αn−1 + z1m
n+1
1 = (m1 + z1)αnmn

1 + (mn̂
1 + z1)(1 − αn)mn

1 ,(A6)

for n = n̂ − 2 and n = n̂ − 1,

mn̂+n−2
1 (1 − αn−2) + mn

1αn−1 + z1m
n+1
1 + (1 − z1)mn+2

1 = (m1 + z1)αnmn
1 + (mn̂

1 + z1)(1 − αn)mn
1 ,

(A7)

for n ≥ n̂,

mn̂+n−2
1 (1 − αn−2) + mn

1αn−1 + z1m
n+1
1 + (1 − z1)mn+2

1 = (m1 + 1)αnmn
1 + (mn̂

1 + 1)(1 − αn)mn
1 .

(A8)

By (A4),

α0 =
z1 − mn̂−1

1

1 − mn̂−1
1

.(A9)

By (A4), m1α0 = z1m1 − mn̂
1 (1 − α0) holds. Substituting this into the first term of the left-

hand side of (A5) and solving it with respect to α1 yield a relationship between α0 and α1: α1 =
z1m2

1−mn̂
1 (1+m1)

m2
1(1−mn̂−1

1 )
+ mn̂

1

m2
1(1−mn̂−1

1 )
α0. Solving this equation for α0 and substituting it into (A6) for

n = 2, yield a relationship between α1 and α2: α2 = z1m2
1−mn̂

1 (1+m1)

m2
1(1−mn̂−1

1 )
+ mn̂

1

m2
1(1−mn̂−1

1 )
α1. Similarly,

repeating the operation in turn, we obtain the following first-order difference equations of αn:

for n = 0, 1, . . . , n̂ − 4,

αn+1 =
z1m

2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn,(A10)

9Precisely, these representations are applied only to n̂ ≥ 5. If n̂ = 4, (A7) holds for n = 2 and 3, and if n̂ = 3,
(A7) holds for n = 2 and m1α0 + z1m2

1 + (1 − z1)m3
1 = (m1 + z1)α1m1 + (mn̂

1 + z1)(1 − α1)m1 holds for n = 1.
However, since these modifications do not affect the following argument, we will restrict our attention to the general
case (A4)−(A8).
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for n = n̂ − 3,

αn̂−2 =
(1 − z1)m3

1 + z1m
2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn̂−3,(A11)

for n = n̂ − 2, n̂ − 1, . . . ,

αn+1 =
(1 − z1)m3

1 + m2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn,(A12)

and α0 is given by (A9).

By using these relations, below we will show that αn′ = 0 or αn′ = 1 for some n′ contradicts the
fact that m1, z1 ∈ (0, 1), and αn ∈ [0, 1] should hold for all n in p-2p equilibria. Thus αn ∈ (0, 1)
should hold for all n = 0, 1, . . . , if a p-2p equilibrium exists.

The case of α0: First, by (A9), α0 = 1 only if z1 = 1, and α0 = 0 only if z1 = mn̂−1
1 . However,

if α0 = 0 and z1 = mn̂−1
1 hold, then α1 must be negative by (A10). Therefore, α0 ∈ (0, 1) holds.

The case of αn = 0 for n ∈ {1, 2, . . . , n̂ − 4}: Suppose αn = 0 for some n ∈ {1, 2, . . . , n̂−4}.
Then, by (A10),

αn+1 =
z1m

2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

(A13)

0 =
z1m

2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn−1.(A14)

Suppose αn+1 ∈ (0, 1], then by (A14), αn−1 < 0 holds. Suppose αn+1 = 0, then αn−1 = 0 holds
also by (A14). Applying the same operation backward, we finally obtain α0 = 0, but α0 cannot be
zero as we have already shown. Therefore, αn cannot be zero.

The case of αn = 1 for n ∈ {1, 2, . . . , n̂ − 4}: Suppose αn = 1 for some n ∈ {1, 2, . . . , n̂−4}.
Then, by (A10), 1 = z1m2

1−mn̂
1 (1+m1)

m2
1(1−mn̂−1

1 )
+ mn̂

1

m2
1(1−mn̂−1

1 )
αn−1 holds and arranging this yields (1−z1)m2

1 =

mn̂
1 (αn−1 − 1). This equation holds only if m1 = 0 or both z1 = 1 and αn−1 = 1 hold. Therefore,

αn cannot be one.

The case of αn = 0 for n ∈ {n̂ − 3, n̂ − 2}: Suppose αn̂−3 = 0, then αn̂−2, αn̂−1, αn̂, . . . can
be written by (A11) and (A12) as follows.

αn̂−2 =
A

B
(A15)

αn̂−1 =
1
B

C +
mn̂

1

B2
A(A16)

αn̂ =
1
B

C +
mn̂

1

B2
C +

(mn̂
1 )2

B3
A(A17)

αn̂−2+� = C

�∑
x=1

(mn̂
1 )x−1

Bx
+

(mn̂
1 )�

B�+1
A,(A18)
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where, A ≡ (1 − z1)m3
1 + z1m

2
1 − mn̂

1 (1 + m1), B ≡ m2
1(1 − mn̂−1

1 ), and C ≡ (1 − z1)m3
1 + m2

1 −
mn̂

1 (1 + m1). Note that, since αn̂−2 ≥ 0 should hold in equilibria, A ≥ 0 holds. Thus C > 0 holds.
Since {αn̂−2+�}∞�=1 should converge to a real number less than or equal to one, then (mn̂

1 )
B < 1 holds.

Thus m2
1 − mn̂

1 − mn̂+1
1 > 0 holds. Thus

lim
�→∞

αn̂−2+� = C

∞∑
x=1

(mn̂
1 )x−1

Bx
+ lim

�→∞
(mn̂

1 )�

B�+1
A

= C

1

m2
1(1−mn̂−1

1 )

1 − mn̂
1

m2
1(1−mn̂−1

1 )

=
(1 − z1)m3

1 + m2
1 − mn̂

1 (1 + m1)
m2

1 − mn̂
1 − mn̂+1

1

= 1 +
(1 − z1)m3

1

m2
1(1 − mn̂−1

1 )
(A19)

holds. The right-hand side of (A19) is larger than one. That is, if αn̂−3 = 0, then there always
exists some n such that αn > 1. This is a contradiction.

As for the case of αn̂−2, besides a slight modification, i.e., αn̂−2+� = C
∑�

x=1
(mn̂

1 )x−1

Bx , the same
argument applies. Therefore, neither αn̂−3 = 0 nor αn̂−2 = 0 hold.

The case of αn = 1 for n ∈ {n̂ − 3, n̂ − 2}: As for the case of αn̂−3 = 1, the same argument
as the case of αn = 1 for n = 1, 2, . . . , n̂ − 4 applies.

Next, suppose αn̂−2 = 1, then by (A11) and (A12),

1 =
(1 − z1)m3

1 + z1m
2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn̂−3(A20)

αn̂−1 =
(1 − z1)m3

1 + m2
1 − mn̂+1

1

m2
1(1 − mn̂−1

1 )
(A21)

hold. (A21), together with (1 − z1)m3
1 − (1 − z1)m2

1 − mn̂
1 (1 − αn̂−3) = 0, which is derived from

(A20), implies

αn̂−1 =
(2 − z1)m2

1 − mn̂+1
1 + mn̂

1 (1 − αn̂−3)
m2

1(1 − mn̂−1
1 )

= 1 +
(1 − z1)m2

1 + mn̂
1 (1 − αn̂−3)

m2
1(1 − mn̂−1

1 )
.(A22)

The right-hand side of (A22) is always larger than one. Therefore, αn̂−2 cannot be one.

The case of αn = 0 for n ∈ {n̂ − 1, n̂, . . . }: Suppose αn = 0 for some n ∈ {n̂ − 1, n̂, . . . }.
The same argument as the case of αn̂−2 = 0 applies. Thus αn cannot be zero in this case.

The case of αn = 1 for n ∈ {n̂ − 1, n̂, . . . }: Finally, suppose αn = 1 for some n ∈ {n̂ −
1, n̂, . . . }. Then by

1 =
(1 − z1)m3

1 + m2
1 − mn̂

1 (1 + m1)
m2

1(1 − mn̂−1
1 )

+
mn̂

1

m2
1(1 − mn̂−1

1 )
αn−1(A23)

αn+1 =
(1 − z1)m3

1 + m2
1 − mn̂+1

1

m2
1(1 − mn̂−1

1 )
,(A24)
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we obtain

αn+1 = 1 +
mn̂

1 (1 − αn−1)
m2

1(1 − mn̂−1
1 )

.(A25)

The right-hand side of (A25) is larger than one if αn−1 ∈ [0, 1). If αn−1 = 1, then, applying the
above argument for αn−1 = 1, αn−2 = 1 holds. Applying this argument backward, αn = 1 holds
for n = n̂ − 2, n̂ − 1, . . . , n − 3. However, αn̂−2 = 1 cannot hold as we have shown. Therefore, αn

cannot be one in this case.
So far, we have shown that αn ∈ (0, 1) holds for all n = 0, 1, . . . . In other words, ω(np) = {p, 2p}

must hold for all n. Thus V (n), n = 0, 1, . . . , is given by (39) even in the case that, for some n̂ ≥ 3,
ρ(np) ≥ 2p for all n ≥ n̂ and ρ(np) < 2p for all n < n̂. What remains to show is there do not exist
V (0), V (1), m1 and z1 satisfying necessary conditions for the existence of a p-2p equilibrium in this
case.

Substituting m2 = mn̂
1 , (39) can be rewritten as

V (n) =
mn̂

1

2mn̂
1 − m1

[(
V (1) −

(
m1 − mn̂

1

mn̂
1

)
V (0)

)
−
(

m1 − mn̂
1

mn̂
1

)n

(V (1) − V (0))
]

.(A26)

If V (n) is given by (A26) for all n, W (n, 1, t) = V (n)
(
= W (n, 2, t)

)
must hold for all n on the

equilibrium path as in Section 3.5. W (n, 1, t) and W (n, 2, t) can be written as

for n = 0,

W (0, 1, 0) =
1

φ + 2
(V (0) + (1 − m1)V (0) + m1V (1))(A27-(a))

W (0, 2, 0) =
1

φ + 2
(V (0) + (1 − m2)V (0) + m2V (2)),(A27-(b))

for n = 1, . . . , n̂ − 1,

W (n, 1, 1) =
1

φ + 2
(z1(u + V (n − 1)) + ((1 − m1) + z2)V (n) + m1V (n + 1))(A28-(a))

W (n, 2, 1) =
1

φ + 2
(z1(u + V (n − 1)) + ((1 − m2) + z2)V (n) + m2V (n + 2)),(A28-(b))

for n ≥ n̂ and t ≥ 2,

W (n, 1, t) =
1

φ + 2
(z2(u + V (n − 2)) + z1(u + V (n − 1)) + (1 − m1)V (n) + m1V (n + 1))

(A29-(a))

W (n, 2, t) =
1

φ + 2
(z2(u + V (n − 2)) + z1(u + V (n − 1)) + (1 − m2)V (n) + m2V (n + 2)).

(A29-(b))

By W (0, 1, 0) = V (0),

V (0) =
m1

φ + m1
V (1)(A30)
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holds, by W (n, 1, 1) = V (n) for n = 1, . . . , n̂ − 1,

1
φ + 2

{
z1u +

mn̂
1

2mn̂
1 − m1

[
2
(

V (1) −
(

m1 − mn̂
1

mn̂
1

)
V (0)

)]}
=

mn̂
1

2mn̂
1 − m1

(
V (1) −

(
m1 − mn̂

1

mn̂
1

)
V (0)

)(A31)

1
φ + 2

((
mn̂

1

m1 − mn̂
1

)
z1 + 2 − m1 − z1 +

(
m1 − mn̂

1

mn̂−1
1

))
= 1(A32)

holds, and by W (n, 1, t) = V (n) for n ≥ n̂,

1
φ + 2

{
u +

mn̂
1

2mn̂
1 − m1

[
2
(

V (1) −
(

m1 − mn̂
1

mn̂
1

)
V (0)

)]}
=

mn̂
1

2mn̂
1 − m1

(
V (1) −

(
m1 − mn̂

1

mn̂
1

)
V (0)

)(A33)

1
φ + 2

((
mn̂

1

m1 − mn̂
1

)2

(1 − z1) +
(

mn̂
1

m1 − mn̂
1

)
z1 + 1 − m1 +

(
m1 − mn̂

1

mn̂−1
1

))
= 1(A34)

holds. However, clearly, (A31) cannot be consistent with (A33) unless z1 = 1.
Thus, given Hm1,p, any strategy such that ρ(np) ≥ 2p for all n ≥ n̂ and ρ(np) < 2p for all n < n̂

does not constitute a p-2p equilibrium. This completes the proof of Theorem 2.
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