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1 Introduction

Networks play a significant role in the economic life of indials. Their functions include
such wide ranging tasks as the dissemination of informatio& creation of synergies,
facilitating afordable forms of economic exchange, and the enforcemerdrois

The literature on networks in economics has witnessed amge®oth in terms of in-
terest and clarity of the issues related to the fundamenitatiples of network formation
with the publication of the seminal contribution of Jacksomd Wolinsky (1996) on link-
based stability concepts in a game theoretic approach wwoneformation. The literature
currently covers theories of the formation of diverse neknsiructures such as networks
between acquaintances (Brueckner 2003, Gilles and Sar@f4)2rade networks (Goyal
and Joshi 1999, Kranton and Minehart 2001, Furusawa andskp2002), labor markets
as contact networks (Montgomery 1991, Calvo-Armengol aruékstan 2004), informa-
tion exchange networks (Bala and Goyal 2000, Haller and §ae293), and the Internet
(Badasyan and Chakrabarti 2004).

The most fundamental insight put forward by Jackson and Wkyi (1996) is that
there is a profound tension betwesdifi@ency and stability in game theoretic models of
network formation. Indeed, networks that generate maxcuobéctive values — indicated
asefficient networks— are usually not stable in the sense that players have imesrtb
delete existing links or create new links. Since their inflied paper many authors have
discussed this fundamental tension betwefiigiency and stability of social networks.

In this paper we examine the role of middlemen in attainiffgciency in stable net-
works. Our paper examines the conflict betwefitiency and stability in networks with
middlemen and identifies circumstances under which thisid@ns resolved. As a corol-
lary we also examine the implications for networks that dohave middlemen.

Middlemen are individuals with positional power who canrdpg a network by dis-
connecting it. They can play a variety of roles in networkenfracting as matchmak-
ers who reduce costs of waiting by bringing together buyacs sellers (Rubinstein and
Wolinsky 1987), to experts who who can resolve informatiegnametries (Klein and
Leffler 1981, Biglaiser 1993) or just disseminate informationutlomality (Biglaiser and
Friedman 1994).

To understand the role of middlemen in networks we use abladed stability concept

There is also a relatively large literature on networks ineotdisciplines like sociology, operations
research, and physics. Here we refer to, for example, Baréd@02) and Watts (2003). Thefltirence of
the treatment in economics is that nodes are agents capabdditmn, and hence capable of forming and
deleting links.

2For a discussion of this strand of the literature we refeheoexcellent review by Jackson (2003).



calledstrong pairwise stabilitformalized by Gilles and Sarangi (2004)nlike pairwise
stability (Jackson and Wolinsky 1996) where a pair of playean either add or sever a
single link at a time, strong pairwise stability takes gipésyers the ability to delete ore
moreof the links in which they participate. The creation of a lrgquires mutual consent
and hence as in pairwise stability players considering fiegnanly one link at a time. On
the other hand, breaking a relationship in the network isliateral act and, consequently,
under strong pairwise stability a player can delete anyetudifsher links.

The ability to delete multiple links is a realistic modificat of pairwise stability that
provides us with a more natural stability concept. This iitglxoncept is also a hybrid
between pairwise stability and the notion of so-called Nastworks since like pairwise
stability it considers the addition of a single link at a timkile permitting the deletion of
multiple links by a player at the same time as in Nash equuiibr It can be shown that
for certain normal form game-theoretic models of netwonkrfation, Nash equilibria are
characterized by stability against the removal of setsni&liby individual players. (Gilles
and Sarangi 2004, Propositions 3.1 and 3.10) This is alszgrerzed by Goyal and Joshi
(2003) and Bloch and Jackson (2004) who discuss pairwiséestghilibria. This concept
combines the Nash equilibrium property with stability agdipairs of players forming
additional links. This notion is therefore closely relatedstrong pairwise stability. It
should also be clear that pairwise stable equilibrium ndt&gan only be investigated in
the context of (non-cooperative) network formation games.

Further, it has been argued that pairwise stability is ativelly weak concept since
it admits a relatively large number of networks. On the othand the notion of strong
stability (Jackson and van den Nouweland 2004) or strongmstability (Konishi and
Utku Unver 2003) of networks are in many ways too strong; adngjttoo few networks.
Thus there is a need for intermediate notions of stalfilitye argue that strong pairwise
stability is one such concept.

Given that strong pairwise stability allows an agent to ehaultiple links and even
disconnect the network, it shifts the focus from individliaks (as in pairwise stability)
to the player herself. Thus, it provides a natural modeltimg for studying the role of
middlemen in networks. It allows us to focus on their posigilppower in the network. With
the exception of Kalai, Postlewaite, and Roberts (1978)dtd of middlemen in networks

3We remark that Jackson and Wolinsky (1996) already inditagéhout formalizing, several generaliza-
tions of their pairwise stability concept, including whag wall strong pairwise stability in this paper. Bloch
and Jackson (2004) also use the notion of strong pairwibdigtabut label it as pairwise stability*. Closely
related to this is also the notion of pairwise stable equilin studied by Goyal and Joshi (2003). For a
discussion of these two concepts we refer mainly to BlochJanttson (2004).

“For a survey of the recent theoretical developments in tiwarks literature we refer the reader to
Jackson (2003), Goyal (2004) and Slikker and van den Nounsg[2001).



remains largely unexplored. They measure the power of mideh in core allocations of
a 3-person exchange economy. Interestingly they find tlagieps occupying a middleman
position need not always be bettdf.oOne of their main findings is that, if preferences
are strictly monotonic and trade through the middleman igekeial to the grand coalition,
then there do exist points in the core where the middlemaatiedt.

Here, instead of investigating when middlemen are beftewe look at the relationship
between stability andfciency and find some similarities with the results of Kalaiste-
waite, and Roberts (1978). We show that for strong pairwiabil#ly the coincidence of
efficiency and stability occurs for component-wise egalitapaydfs. Jackson and Wolin-
sky (1996) showed that so-called critical links have to betradized in order to establish
pairwise stable andficient networks. Here we establish that middlemen in the okw
have to be secured in the sense that they have no incentibesak communication in the
network.

A middleman occupies a critical position in the network imttlshe can disconnect
communication lines by removing certain links under hertcmn A secure middleman
will not disrupt the functioning of the social network besauhey tend to lose more. In
a related study, anthropologist Jean Ensminger has argaethibse who occupy central
positions in the social network of the Orma tribe in Kenyadahmore fairly in dictator
and trust games since they have more to lose. Ensmingeefuatgues that persons oc-
cupying the middlemen positions in the Orma social netwaunk act as agents of change
for social norms. Consequently, since fairness and repuatatatter more in market-based
economies, the middlemen try to instill these values siheg benefit the most from mar-
kets (Ensminger and Knight 1997, Knight and Ensminger 1988)is when the incentives
of the middlemen are aligned with those of the others plajtesspossible to generate
maximal collective values in the network.

We find that for middleman-free networks, the componenewigalitarian rule ensures
that dficient networks are also strongly pairwise stable. The fiotuifor this is quite
simple. Since no one has any positional advantage, the (@oemp) egalitarian rule is
adequate to resolve the tension between stability dincieacy. In a sense if any player
attempts to exploit the network, given that all players ggcthe same position in the
network, the others can easily disconnect a player that taeexpropriate more than his
fair share.

The rest of this paper is organized as follows. Sections 23amtroduce network mod-
elling principles and the élierent stability concepts mentioned above. Section 4 istddvo
to strongly pairwise stable networks and its relation tdieawork in the literature. Sec-
tion 5 is about networks with middlemen and in Section 6 wes@né networks without



middlemen. Section 7 concludes.

2 Modelling principles

In this section we define the formal elements used in desgibetwork formation, in-
cluding some concepts borrowed from graph theory. Thislisie@d by the description of
generation of (collective) value and its allocation in avmak.

2.1 Networks and network components

Let N = {1,2,...,n} be a finite set of players. Two distinct players € N arelinked
if i and j are mutual partners in some social or economic activitys Tould range from
an exchange network to a group involved in an economicadidpetive relationship to an
ethnic social network that provides information about netw ¢penings. The two players
forming a link are assumed to be “equals” within the relagtip, as no player has the
power to coerce the other into forming or staying in the retethip. Thus we restrict our
attention only toundirectednetworks or graphs. We allow for the possibility that these
relationships have spilloveffects on the network relations between other players. This is
captured by the formal description of such network benefits.

Formally, an (undirected) link betweeand j is defined as the sét j} and we use the
shorthand notatioij to denote this link. Clearlyj is equivalent toji.

The player seN permits a total of%n(n — 1) potential links. The collection of these
potential links onN is denoted by

ov={ij |1,j e Nandi # |} (1)

A network gs now defined as any collection of lingsc gy. The collection of all networks
on N is denoted byGN = {g| g c gy} and consists of 20-1 networks. The networlgy
composed of all possible links is called tt@mplete networkn N and the networkyy = @
consisting of no links is thempty networlon N.

Let7: N — N be a permutation ohl. For every networlg € GN the corresponding
permutation is denoted by" = {x()x(j) | ij € g} € GN. Two networksg,h € GN
have the same topology if there exists a permutatioN — N such thath = g*. This
is denoted ag) ~ h. Forg € GN the correspondingetwork topologyis denoted by
g={heGN|h~ g}. Clearly a network topology is a mathematieglivalence claswith
regard to the binary relationship It is obvious that the collection of all networks\ is
partitioned into network topologies.



For every networlg € GN, and every player € N, we denotd’s neighborhoodn g
by Ni(g) = {j € N | j # iandij € g}. Playeri therefore (directly) interacts with those
in herlink set L(g) = {ijj € g| j € Ni(g)} c g. We also defindN(g) = UicnNi(g) and let
n(g) = #N(g) with the convention that iN(g) = @, we letn(g) = 1.°

A pathin g connecting playersandj is a set of distinct player§i, i, ...,i,} € N(Q)
with p > 2 such thai; =i, i, = |, and{iiip, izls,...,1p1ip} € 9. A path between two
distinct players, ] € N (assuming that a path exists betweand|) is shortesif it consists
of a minimal number of players. Note that a shortest path éetwand j contains one and
only one member of the neighborhood 8&{g), as well as one and only one member of
the neighborhood s&{;(g). The set of all shortest paths is denoted?yg). If there is no
path betweemnand j, thenP;(g) = @.

Let tj(g) denote thegeodesic distancketween and j, which is defined as follows: If
Pi(g) = @, thent;(g) = co. Otherwisef;(g) = |N(p;(9))| - 1.

The networkg’ c gis acomponenbf g if for all i € N(g') andj € N(g'), i # j, there
exists a path iy’ connecting and j and for anyi € N(g') andj € N(g), ij € g implies
j € g. Inother words, a component is simply a maximally connestigdazhetwork ofg.
We denote the class of network components of the netgdrk C(g). The set of players
that are not connected in the netwaylare collected in the set of (fully) disconnected or
isolated players iig denoted by

No(9) = N\ N(g) = {i € N | Ni(9) = 2}.
Furthermore, we define
I'(g) = {N(h) [ he C(g)} U {{i} | i € No(9)} (2)

as the partitioning of the player sitbased on the component structure of the netvgdrk

2.2 Collective network benefits and fficiency

We describe the benefits or “utilities” generated by pasttion in a network through a
collective network benefit functioggven byv: GN — R such that(@) = 0. Following
Jackson and Wolinsky (1996), we refer to such functions aswark value” functions. A
network value functio assigns a total benefitg) < R to the networkg € GN. The space

SWe emphasize here thatNf(g) # @, we have than(g) > 2. Namely, in those cases the network has to
consist of at least one link.

5We therefore distinguish a link-based partitioning of avwek g into components, denoted B(g), from
a node-based partitioning denotedItfg). Both conventions are necessary to analyze the role nidztie
who represent a special type of node with multiple links toeas that could potentially lead toftérent
components.



of all network value functions such thaw/(@) = 0 is denoted by". It is clear thafVN is
a (22" - 1)-dimensional Euclidean vector space.

Letv € VN be some network value function. We now define two useful ptoseof
such a network value function:

() The network value functiomis component additivé v(g) = > (g V(h). Compo-
nent additivity requires that the total value generatednetavork is the sum of the
values generated in each component. An immediate consegwéromponent
additivity is the fact that isolated playerg No(g) generate no value.

(i) The network value functiorv is anonymousf v(g®) = v(g) for all permutations
n and networkgy. Anonymity implies that the benefitg€g), depend only on the
topology of the network.

Finally, we define the notion of networkfeiency using the collective benefits generated
by the network. A networly € GN is efficientwith respect to value functionif v(g) > v(g')
forallg c gy.’

2.3 Allocation rules

Next, we discuss the problem of allocating these colleatievork benefits or “values”

amongst the members of a network. The @&yo an individual player is given by an

allocation rule Y: GNx VN — RN which determines how the collective value is distributed

over the individual players. Thu§(g, v) is the payd to playeri from the networkg under

the value functiorv. We now define some appealing properties for an allocatitan ru
Recall thatt: N — N is a permutation. Le¥" be defined by (g") = v(Q).

(i) Anallocation ruleY is anonymousdf for any permutationr, Y, (9", v*) = Yi(g, V).
Anonymity of the allocation rule simply means that the péipba player depends
solely on their position in the network rather than the ladfe¢he players.

(i) An allocation ruleY is balancedif 3.y Yi(g,Vv) = v(g) for all vandg. 8

(i)  An allocation ruleY is component balancedl 3’y Yi(9, V) = v(h) for everyg
andh € C(g) and every component additive

Remark 2.1 We note that component balance implies balance for everypooent ad-
ditive network value function. Also, component balance ghith component additivity
implies that fully disconnected players i(ly) always have an allocated pagof zero.

’In the literature these are also referred to as stronfjigient networks. See for instance Jackson and
Wolinsky (1996).
8Balance is also known asfleciency” in the literature.
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Letv e VN. Thecomponent-wise egalitarian allocation rulkedefined by
~v(hy)

) ©)
whereh; € C(g) such thai € N(h)) andh; = @ if there is noh € C(g) such thai € N(h).
Under this allocation rule, the value generated by a commpiasesplit equally among the
members of that component.

Y (g, V)

Remark 2.2 The component-wise egalitarian allocation rul&¥s the unique allocation
rule Y that is component balanced and assigns an equalfpayall players in the same
component of a network, i.e., for tl, v) € GN x VN it holds that

Yi(g.v) = Yj(h.v) (4)
for every he C(g) and all i, j € N(h).

Finally we mention thalr®(-, v) is balanced for every component additives VN. The
component-wise egalitarian payoule is not balanced for arbitrary network value func-
tions. Equation (4) implies also that the component-wisaliegian allocation rule is
anonymous.

3 Stability properties

A network is a collection of links. It is the culmination of agezess in which players
establish links or sever existing links. In this section wsedss the principles underlying
network formation and their stability from a link-based gq@ctive. The central tenet of
our approach is that in principle, the formation of each limlést be considered separately.
Each link in the network involves a pair of players and itaviation requires the mutual
consent of those two players. Thus the creation of a linkdnag ttonsidered one at a time.
However, each player can delete a link unilaterally. Theneefve consider stability with
respect to the deletion of links and the addition of linksasagely.

We first introduce some auxiliary notation. Denotedyy ij the network obtained by
adding linkij to the existing network, i.e.,g + ij = gU {ij}. Similarly, g — ij denotes the
network that results from deleting linkfrom the existing networl, i.e.,g—ij = g\ {ij}.

Let Y be some allocation rule. We discuss three fundamental mktstability proper-
ties that encapsulate the network formation principlesalesd above.

(i) Anetworkg e GN islink deletion proof(LDP) if for every playeii € N and every
neighborj € Ni(g), it holds thatYi(g — ij, V) < Yi(g,Vv). Link deletion proofness
requires that each individual player has no incentive tesan existing link with
one of her neighbors.



(i) A network g € GN is strong link deletion proo{SLDP) if for every playei € N
and every set of neighboM c N;(g), it holds thatY;(g \ hw, V) < Yi(g,Vv) where
hy = {ij € g| j € M} c Li(g). Strong link deletion proofness requires that
each player has no incentive to sever links with one or morki®heighbors.
Obviously, SLDP implies LDP.

(i) A network g € GN is link addition proofif for all playersi, j € N, it holds that
Yi(g+1j,Vv) > Yi(g,v) impliesY;(g+ij, V) < Y;(g, V). Link addition proofness states
that there are no incentives to form additional links. Tkifounded on a process
of mutual consent in link formation. Indeed, when one playeuld like to add a
link, the other player could have strong objectiéns.

Jackson and Wolinsky (1996) introduced link deletion pnesk and link addition proof-
ness, although they did not explicitly define these concaptsuch. Strong link deletion
proofness was introduced recently by Gilles and Saran@i4R0

These three fundamental stability concepts can be usedfiteededditional stability
concepts. A networly € GN is pairwise stabldf it is link deletion proof and link addition
proof. Furthermore, a netwotke G is strongly pairwise stablé it is strong link deletion
proof and link addition proof.

The main diterence between the regular pairwise stability and stronmgvs& stability
is that individual players are allowed to remove multipleks rather than a single link
under their control. This is the same as thi#atence between LDP and SLDP.

We first remark that strong pairwise stability is a natunakibased stability concept.
Since links require mutual consent, it considers the anldf one link at a time. However,
link deletion is unilateral and, hence, it allows a singlayelr to delete multiple links at the
same time. Thus, while pairwise stability can only focusiokd, by permitting deletion of
multiple links strong pairwise stability allows us to foauslinks as well as the players who
form these links. Second, Goyal and Joshi (2003) discusiyand negative spillovers
in networks in relation to strong pairwise stability and whiat a large class of network
topologies satisfy this property. They show that in games wositive spillovers where
the players are playing against the field, a strongly paewtable network is either empty,
or complete, or has a dominant group topology. With negatpéovers it is possible
to obtain the empty networks and stars as strongly pairviedagles networks. Moreover,
regular (or symmetric) and irregular networks with unequ@inections are possible with
negative spillovers in the playing field games.

9Considering one link at a time with regard to link formationthis fashion seems natural. A general-
ization to the simultaneous formation of multiple links @walot yield much unless it is incorporated within
a coalitional framework. Such coalitional consideratians the foundation of the notion of strong stability
introduced and analyzed by Jackson and van den Nouwelafd)20
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We now provide a simple three player network formation gainat demonstrates the
natural advantages of strong pairwise stability over (l@gpairwise stability. It illustrates
that pairwise stability has some serious limitations ingkase that individual players do
not have the ability to delete multiple links even in sitoas where this is extremely desir-
able.

Example 3.1 Being stuck in bad company

Consider a three player situation with = {1,2,3}. For simplification of notation we
denote the potential links in this situation as follovas= 12,b = 13, andc = 23. Hence,
GN = {2, a, b, c,ab, ac, bc, abg.

Leta > 0. We consider an allocation rul: GN x VN — R which for everyv € VN is
defined by

Y(2,V) = (0,0,0)

Yav) = (9. %.0)

Y(b.v) = (*2,0,Q)

Y(c.v) = (0%, Y9)

Y(ab,v) = (v(ab), 0, 0)

Y(ac,v) = (-ev(abg), v(ad) - 3(1 - e)v(abg), 3(1 + e)v(abg)
Y(bc,v) = (—ev(abg), 3(1 + a)v(abg), v(bc) - 3(1 - e)v(abg)
Y(abc v) = (—av(abg). 3(1+ e)v(abg), 3(1 + a)v(abg)

Note thatY is component balanced. Our main claim is that in generaleutig allocation
rule'Y, the complete networsbcis LDP, but not SLDP:

Claim: If v € VN such that Yg) > O for every g# @, then the networky= abc is link
deletion proof, but not strong link deletion proof, with respto the allocation rulé .

The claim states that if a player does not have the posgilofitemoving multiple links

simultaneously, he might get stuck with “bad company”. kdienere player 1 would like
to remove his links with player 2 as well as player 3, but udibd he can only remove
at most one of these two links. Under SLDP player 1 is able nookee both links and
improve his situation.

Proof of the claim: Letv € VN be such that(g) > O for everyg # @. Thatg* = abcis not
SLDP is clear since player 1 would like to remove both liakandb to arrive at network
¢, which yields himY,(c) = 0 > —av(abcd) = Y(abg).

We show thag* = abcis LDP. Removing linka or link b would not yield a strict improve-

9



ment for either of the involved players, sinégabd = Y,(bc) = Y1(ac), Yo(abo) = Y,(bo),
andY;(abg = Ys(ac). Finally, it is not profitable to remove linkfor players 2 and 3 since

Ya(ab) = 0 < (1 + e)v(abg) = Yz(abg and
Ya(ab) = 0 < 1(1 + a)v(abg) = Ya(abo).

This implies that the complete netwogk = abcis LDP, as asserted. O

Example 3.1 clearly shows the limited applicability of reguink deletion proofness to
economic situations. Unless one considers a situationrwstdet control or supervision,
free individuals usually have the ability to sever unwartednections and to escape situ-
ations as described in the example. From that perspectrogmgspairwise stability is the
more applicable stability concept.

4 Properties of strongly pairwise stable networks

We have already seen that as a modeling principle strongvisairstability has some of
advantages over pairwise stability. As a stability conceéps still a modification of the
more primitive notion of pairwise stability and therefore@mparison is appropriate. This
section provides a further examination of strong pairwisdiity by illustrating a few
properties and applying it to some well known models in ttexditure. We also study the
relationship betweenfigciency, pairwise stability and strong pairwise stability.

4.1 Boundedness of pays in strongly pairwise stable networks

Using the insight from Example 3.1 we can draw a further aasioh — in general SLDP
networks only have bounded pdjg This is the subject of the next proposition.

Proposition 4.1 Let v be a component additive network value function and Y lzgrgoo-
nent balanced allocation rule. Then there exists some®/such that0 < Yi(g,Vv) < V for
every strong link deletion proof networkegGN and every player & N.

Proof. Letv be a component additive network value function ahlde a component bal-
anced allocation rule. These properties immediately intipht disconnected players are
always allocated zero. Hence, if for some playee have thal;(g) < 0 in some network
g e GN, then

Yi (9\ Li(9)) = Yi(2) = 0> Yi(9) )

10



In other words, by severing all links, playecan earn zero pay&s. Hence, if any playear
earns less than zero paj®in a certain network, the network is obviously not stromé li
deletion proof.
Next, let
V = maxv(g) > 0. (6)
geGN
Consider an arbitrary strongly pairwise stable netwpekGN. Given thatY is component

balanced, and therefore balancgy,y Yi(g) = v(g) < V. From the aboveY;(g) > 0 for all
i € N. Hence,

Yi(@) = V(@) - ) Yi(9) <@ <V (7)

i
foralli € N. O

Note that the result does not require anonymity of Y.

We emphasize that the boundedness of fiays a property of strongly pairwise stable
networks does not extend to regular pairwise stable nesvoBxample 3.1 shows that
individual players do not have the ability to guarantee thelres autarkic existence from
the other players in the network under regular pairwiseilgigabHence, under pairwise
stability, the (individually) lower bound of the paffdo any player is not zero, but rather
whatever this player is confronted with by his fellow plageiThis is not the case under
strong stability, where this lower bound is zero. This canéinvhat Goyal and Joshi (2003)
find in networks with negative spillovers — strongly pairevistable networks are either
empty or stars.

4.2 The connections model

We discuss strong pairwise stability within the contextvad fpopular and well-developed
explicit models of network value functions. First, we dissuihe connections model and,
subsequently, we investigate strong pairwise stabilityhe context of unequal connec-
tions10

In the connections model of Jackson and Wolinsky (1996) itles Irepresent social
relationships like friendship between individuals. Siiices unrealistic to suppose that
payments could be exchanged for friendship we assume awgyosibility of side pay-
ments. Consequently;(g,v) = Y7(g) for all v e VN. The paydf that playeii receives from

OFor elaborate discussions of other applications and medetefer to Jackson (2003) and Goyal (2004).
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networkg is

Y@=~ > g ®
j# it ijeg
wheres € (0, 1) is the benefits parametey, > O is the cost of establishing lirikfor player
I andt;j(g) is the number of links on the shortest path betwiesmdj. If for the connections
model given in (8), it holds that all link formation costs agual, i.e.c; = ¢ > 0, then we
refer to this setup as tleymmetricconnections model.

Jackson and Wolinsky (1996) characterize the collectiopaifwise stable networks
in the symmetric connections model. The next propositiamwshthat all pairwise stable
networks in the symmetric connections model are also stpaigvise stable. This is a
consequence of the additive nature of the (connectiorsgatibn rule.

Proposition 4.2 Let n > 3. Every pairwise stable equilibrium in the symmetric connec-
tions model is strong pairwise stable.

For a proof of Proposition 4.2 we refer to the appendix of gaper.

An interesting extension of the symmetric connections rtmla spatial setting has been
developed by Johnson and Gilles (2000). In their model,glay N, is located ak; and
the setX = {xq,..., X} € [0, 1] with x; = 0 andx, = 1 represents the spatial distribution of
players. Without loss of generality assume that x; if i < j. Thus, the distance between
the players, j € N is given byd; = | — x| < 1. This allows for the link establishment
costs being determined by the spatial distance betweerngslaystead of having a fixed
cost per link.

Itis easy to verify that both Proposition 1 and 2 (which clotgeze the pairwise stable
networks) of Johnson and Gilles (2000) are satisfied by gtpatirwise stability. The class
of acyclic pairwise stable (empty network and the chainyvoeks identified in their paper
are also strong pairwise stable. Arguments similar to treegiven above can be used to
demonstrate this.

4.3 Unequal connections

Goyal and Joshi (2003) develop a framework to discuss uthequaections in which they
allow explicitly for the possibility of positive and negei spillovers arising due to links
between the players. They consigaaying the field gamewhere spillovers depend on
the number of links all the other players have, éochl spilloverswhere the externalities
depend on the number of links of a potential partner. Hereasgict attention to the local
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spillover games. The (gross) pdigof playeri satisfy local spillovers if for any network
g and any additional lin it holds that

Yi(g +1j) - Yi(9) = ¥(mi(9). n;(9))- (9)

wheren;(g) andn;(g) denote the number of neighbors of playend j respectively. Thus,
marginal returns depend on the number of links a player lsawe#l as the cardinality of
the neighborhood set of a potential partner. The identitthefpotential partner is crucial
in local spillovers games since they may all have féedent number of links. Each link
has a cost > 0 which must be subtracted to obtain the net benefits of a ivdsay that
marginal returns satisfy positive spillovers with respicbwn links PS Ol as well as
links of the potential partner®S PL), if Y(;, ;) is increasing in bothy; andn;. We now
show that in this setting a pairwise stable network may naitlengly pairwise stable.

Example 4.3 Letc > 0 and letN = {1, 2, 3,4}. Consider the complete netwogk on N,
where the marginal returns are given ¥Y2,2) = 1.2c, ¥(1,1) = c and¥(0,0) = 0.5c.
This network satisfies botAS OLandPS PL

It is easy to check that no player wishes to break a singledimik hence the network is
pairwise stable. But by deleting 3 links simultaneously, aypl is better i since & —
2.7c > 0. Hencegy is not strongly pairwise stable. O

Note thatitis also possible to construct other such exasrgddong as the marginal benefits
satisfy thePS OLproperty. This is because the marginal link may outweigHittkes costs,
while the earlier links fail to do so. Hence, by deleting asetlof links a player might be
able to obtain a higher patfo

4.4 Component-wise egalitarian payfis

A major focus of the networks literature has been on the aurfétween stability andié-
ciency in social and economic networks. Jackson and Woli(l5896) identify conditions
under which this conflict is resolved for the component-wagalitarian rule. This is an
appealing allocation rule since it splits the value of a meknequally among all members
of the component. In this section we revisit the earlier wamkhe tension between stabil-
ity and dficiency using strong pairwise stability. We begin by introiehg the notion of a
critical link.

Definition 4.4 Alink ij € g € GN is critical in the network g i#I'(g) < #I'(g — ij).

In other words, a link is critical if after its removal eithigxe number of components of the
network increases, or the number of disconnected playersases. It means that there is
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no alternative path to replace such a critical link. A catilink is also known as a “bridge”
in the sociological literature on networks.

Let h € C(g) denote a component that contains a critical link in the oetvg € GN
and leth; c handh, c hdenote components obtained frdrby severing that critical link.
(Note that it may be the case that= @ or h, = @.) We now define the notion of critical
link monotonicity introduced by Jackson and Wolinsky (1p86their discussion of the
properties of component egalitarian allocation rdfé

Definition 4.5 The pair (g, v) satisfiescritical link monotonicity if for any critical link
ij € hwith he C(g) and the two associated componentsahd h of h— ij, we have that

v(h) > v(hy) + v(h;) implies that v max[\r:g:g, \r:gg ]

n(h) ~

This constitutes a necessary andhisient condition for the existence offeient networks
that are pairwise stable with regard to the component wiastagan allocation rule:

(10)

Claim 4.6 (Jackson and Wolinsky 1996, Claim, page 61)
If g is gfficient relative to a component additive v, then g is pairwisél for Y¢ relative
to v if and only if(g, v) satisfies critical link monotonicity.

We next show that critical link monotonicity, however, it @olequate for strong pairwise
stability.

Example 4.7 Let n = 4. Let the collective network benefits functigme given by

v(fij}) = 10,

v(fij, ik}) = 5,

v({ij, ik, il}) = 13,

v(gn) = 2, and

v(g) = O for all otherg € GM

Observe that is component additive and anonymous.

Now consider the component-wise egalitarian allocatide Y€ for this particular setup.
Clearly, every éicient network is a star given b, ik,il} for i = 1,2,3. However, a
star is not strongly pairwise stable because it is not SLDRact, Y({ij, ik, il}) = 3%1,
Yee(ij, ik}) = 14, andY®({ij}) = 5. Therefore, playerwould sever two of his three links:
Y, ik, i\ il 1kY) = YEP((ij}) = 5> 3%1 = Yo({ij, ik, il}).

For the stah = {i}, ik, il } all three links are critical. Consider deletion of any liniddat h,
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andh, = @ be the two associated components. Th€h) = 13,v(h;) = 5, andv(h,) = 0,
implying that

V(h) 1 V(hl) 2 V(hZ)

_— = = = 1— = .

o =% ny = Mam,) 7O
Hence the fiicient networkh obviously satisfies critical link monotonicity but is notatgly
pairwise stablé! o

This naturally leads to the question: What conditions ar@ired to make ficient net-
works strong pairwise stable under the component egalitaailocation rule? Interest-
ingly, this leads us to a condition relating to the preserfcaiddlemen in the network.
The analysis is presented below.

5 Networks with middlemen

A critical link refers to a single link between two playershese removal results in a
disconnected network. On the other hand when a single playeoves multiple links
leading to the disintegration of the network, we call suchlaygr amiddlemanin the
network?!2

Definition 5.1 A player i € N has amiddleman position in the network ge GN if there
exists some set of links kt L;(g) under the control of player i in g such that, there are at
least two distinct players,j j» € N\ {i} who are connected in g and who are not connected
in g\ h*. A player with a middleman position in a network g is denoted asdalleman in

g. The set of middlemen in the network g is denoted fy) & N.

Itis clear from this definition that a middleman has a critfmasition in a network since she
can break up communication among other players in the nktiyodeleting a well-chosen
subset of her own links. A subskt c L;(g) of links that a middlemane M(g) can delete
to break up communication within a netwagks called ecritical link setfor middleman.

The following re-statement of the definition of a middlemargiven without a proof.
It follows immediately from the definition of a middleman jtas in a network.

Remark 5.2 Let n> 3 and let ge GN be some network withI’(g) = 1. Now, i€ M(q) if
and only if player ie N controls a critical link set h c L;j(g) such that exactly one of the
following properties holds:

Hn fact, in this example all of the 64 possible networks $atisitical link monotonicity.
2In graph theory, the position of a middleman in the networki$® referred to as a “cut node”.
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(i) #C(g\h)>#C(g) = 1.
(i) #C(g\ h*) = 1and there is some playerg N \ Ng(g) such that je No(g \ h*).
(i) #C(g\h*)=0and Ny(g\ h*) = N.

Remark 5.2 states that a middleman in a network can eithezaserthe number of non-
trivial components in the network by removing some critiltaks, or disconnect some
players from the network. In the latter case such discomdeglayersj € N are always
marginalin the sense thatl#(g) = 1. Remark 5.2 (iii) discusses the case of a so-called
complete stanetwork, where playerris the center of the star involving all other players,
le.,g=Li(gn) ={ij | j#i}

In general it is not true that a player who can refine the pamiitg of the player set
into components by severing links need be a middleman. thdmmsider a playerin a
networkg such that #(g) < #I'(g \ h) for someh c L;j(g). While this player could be a
middleman, she might also be a marginal player in the netgohk the latter case it is not
appropriate to label this player as a “middleman”, sincedddes not play a critical role in
communication among other players in the network.

This is illustrated by referring to the trivial two playertaerk g, = {12} on the player
setN = {1,2,3}. Note first thatl’(g;) = {{1, 2}, {3}}.*®> Observe that 12 is a critical link
in g;, but neither player 1 nor player 2 are middlemen. On the dihed, in the network
02 = {1213}, player 1 is a middleman. This conforms with the definitiomahiddleman.

We now introduce some further notation to describe the rednaf\a critical link set by
some middleman in the network. Lgte GN be some network and léte C(g) be one of
its components. Late M(h) be a middleman i and leth* c L;(h) be a critical link set
for middlemani. Now we denote byC(h \ h*) = {hy, h,, ..., hy,} the components obtained
from h by deleting the critical link set*. It should be clear that one of these components
might be empty. In particular, this is the case whyth \ h*) # @. Furthermore, we
denote b)ﬂ e C(h\ h*) as the component df that contains player. Soi € N(ﬁ). Note
thath might be the empty set. In that case plaiyberself has become an isolated node in
the disintegrated network after removaltof i.e.,i € No(h \ h*). The latter is exactly the
situation covered in Remark 5.2(iii).

Definition 5.3 A pair (g,Vv) € GN x VN is middleman secure if for every component k
C(g), every middleman& M(h), and every critical link set*hc L;(h) for middleman i we

Bt should be clear that this case is not covered by Remarkst2e it explicitly assumesEg;) = 1.
Instead this case has to be referred back to the generaltaefiof a middleman position.
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have that

v(h) _ v(h)

MG ()

v(h) > Zv(h) implies that ——

where @h\ h*) = {hy, hy, ..., hnt andh € C(h \ h*) such that ie N(h).
We first show that middleman security implies critical linkonotonicity.

Proposition 5.4 Let ve VY be nonnegative in the sense thég)v> 0 for all g € GN. If
(g, V) satisfies middleman security, th@mv) satisfies critical link monotonicity as well.

Proof. Consider any componehte C(g) of the networkg and a critical linkij € h. Denote
by h; andh, the two components in the reduced networij produced by severingwhere
i € N(hy) andj € N(h,). We have to consider three cases:

CaseA:hi=h, =0
In this caseh consists of a single link, namely = {ij}. Hence,n(h) = 2, n(h,) =
n(hy) = 1, andv(h;) = v(h,) = 0. Thereforey(h) > 0 = v(h,) + v(h;) implies that

v(hy) V(hz)}
n(hy)’ n(hy) |

% = &Zh) > 0 = max[v(hy), v(hy)] = max[

This is equivalent to critical link monotonicity.

Case B: h; # @ andh, = @
Here,n(h) > 3,n(h;) = n(h)-1 > 2,n(hy) = 1, andv(h,) = 0. This case corresponds
to disconnecting exactly one marginal playgrom the networkg by middleman.
In other words, playeris a middleman with the critical link set beiry}. Suppose
thatv(h) > v(h;) + v(hy) = v(hy). Then from the middleman security condition
applied to middlemanand critical link setij} it follows that

vh) _ v(hy) _ vihy) | v(hy) v(hy)
n = n(hy) ~ max[n(hl),O] - max[n(hl)’ n(hz)}’

since by nonnegativity(h;) > 0. Clearly this case satisfies critical link monotonicity
as well.

Case C: hy # @ andh, # @.
Here both playersand j could be middlemen. Considering playes the middle-
man with critical link setij}, middleman security forimplies that

v(h) _ v(h)

n(m) ~ n()

v(h) = v(hy) + v(hy) (12)
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Similarly, considering playeras the middleman with critical link s@}}, middleman
security forj implies that

v(h) _ v(hy)
V) > vihy) +vlhy) = > (13)

Hence, from (12) and (13) it follows that
v(h) S max[v(hl) V(hz)]

v(h) > v(hy) +v(h) = n(h) ~ n(hy)’ n(hy)

which is equivalent to the condition of critical link monoioity.

This completes the proof of the assertion. m]

Note that the construction in Example 4.7 does not satisfjdieman security. Consider
the critical link seth* = {ik, il } for middlemani in the networkg = {ij, ik, il}. Severing all
links in h* results in one non-null componeimt =h= {ij} and two disconnected playets
andl. Now, v(g) = 13> 10 = v(h) + V() + V(2) but% =3;<5= % Observe that in
a middlemen secure network, a middleman prefers not toethatonnected components
by deleting a critical link selt*. Thus for such networks arfeient network is als& LDP

for the component wise egalitarian rule.

Proposition 5.5 If g € GN is gficient relative to a component additiveevVN, then g is
strong link deletion proof with respect to the component-vegalitarian allocation rule
Ye¢if and only if(g, v) is middleman secure.

Proof. Without loss of generality we restrict ourselves to a nekngpe GN that consists of
a single component, i.e.J'fg) = 1, and such thag # @.

Only if: Suppose is dficient relative tor as well as strong deletion proof f&f€ relative
to v. Then for any critical link seb* c L;(g) for middlemani € M(g), it must hold that
does not wish to sever the links in that set. With the notagimployed above, this requires
that

n@ ~ n(h) (14)

This evidently implies that middleman security holds fgn).

If : Suppose thag is efficient relative tos and that ¢, v) is middleman secure.

Severing a non-critical link set by any player will only clggnthe value of the component
without changing the number of players in that component. fBgiency ofg and compo-
nent additivity ofv, this value is already at a maximum and hence there can betgaine
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Suppose that some middlemiaa M(g) in g severs a critical link sdt* from L;(g). This re-
sults into the component s&{g\ h*) = {hy, ..., hy}. This has no benefit for the middleman
I because byféiciency ofg and component additivity, we have that

v(g) > ) v(h)
k=1

which by middleman security implies that (14) has to holdisTdonfirms that is in fact
strong link deletion proof.
This completes the proof of the assertion. ]

The next result is a straightforward corollary of Propasitb.5.

Corollary 5.6 If g € GN is eficient relative to a nonnegative and component additive
v € VN then g is strongly pairwise stable for the component-wisditegian allocation
rule Ye¢if and only if(g, v) is middleman secure.

Proof. From Proposition 5.5 we know that middleman security ingtfeatg is strong link
deletion proof forY®®. Using Proposition 5.4 we know that middleman security el
critical link monotonicity. From Claim 4.6, we know that if @&twork g satisfies critical
link monotonicity, it is pairwise stable as well and, ther&, link addition proof. Hencey
has to be strongly pairwise stable. O

Corollary 5.6 demonstrates that middlemen exert crysialitional powerin the alloca-
tion process of network benefits. When they have no incertivistconnect the network,
component-wise egalitarianism resolves the conflict betw&tability and liciency. As
shown in the previous discussion, the presence of middlesmerucial for the allocation
of network benefits such that thé&ieient networks are strongly pairwise stable.

Remark 2.2 emphasizes that the component-wise egalitdiaggaton rule is the unique
rule that combines the benign requirement of componennbaland the equal treatment
of members of the same component in the network. This imghiasit is the unique rule
that links the payfi of individuals directly with the collective value generated by these
individuals. In this regard it is the unique allocation rtiat points individuals directly
to eficiency. In other words, the collective value becomes théiddalized payd for
all players, and network formation thus becomes a comma@méast non-cooperative en-
deavor*

14We refer to Bowles (2004, Chapter 2) for a complete discussiathe properties of this type of non-
cooperative game.
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6 Networks without middlemen

We first turn to the study of networks that are always middlersecure, irrespective
of the network value function employed. These networks amotkd as middleman-
free. Subsequently we investigate whether regular (or sgtme) networks are necessarily
middleman-free.

Formally a networkg € GV is calledmiddleman-free if M(g) = @, i.e., in such net-
works there are no middleman positions. The next propasfiroves that these networks
are always middleman secure and, hence, will also satigfgatdink monotonicity.

Proposition 6.1 A network ge GN is middleman-free if and only if for every network value
function ve VN the pair(g, v) is middleman secure.

Proof. We first consider the case whare 3 and the network) € GN consists of a single
non-trivial component, i.e., B(g) = 1. Sincen > 3 it is obvious thafg has to consist of at
least two links.

If:

Suppose to the contrary thgihas at least one middleman. We proceed by constructing a
network value functiow’ for which (g, v’) is not middleman secure.

Leti € M(g) be a middleman iig. Note that by definition of a middleman position it has
to hold that #.;(g) > 2.

Next, consider a critical link sét* c L;j(g) such thaC(g\ h*) = {h, ..., hy} withi € N(hy)
andn(h) > n(hy). It is clear that since consists of at least two links, we can select the
critical link seth* for middlemani in this fashion. This follows from an application of the
characterization of a middleman position given in Remark 5.2

Now select the network value functionsuch thaw’(h) = v'(h;) = 1 andv'(hy) = O for all
k=2,...,m Then we have obviously that

V() =1=v(h) =) V()
k=1

and

vi) 11 _v(h
nth) — n(h) " n(hy)  n(hy)

This implies that middleman security is not satisfied forpla& (g, v').

Only if:
Suppose thag is middleman-free. Sinc®l(g) = @ it follows immediately that for any
network value functiow € VN the pair ¢, v) has to be middleman secure.
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Figure 1. A 3-regular network with one critical link

To show the assertion for any non-empty network, the onlyaiemg case to be inves-
tigated is thatg = {ij} for somei, j € N. This networkg is middleman free and as a
consequence it is middleman secure as well. Combining teightwith the previously
investigated case we have shown the assertion for any npihyeratwork. O

Combining Corollary 5.6 and Proposition 6.1 we attain theghtihat éficient and middleman-
free networks are always strongly pairwise stable undermpoorant-wise egalitarian pay-
offs. In particular this has bearing on situations with link otmme value functions, in
which the complete network idfecient.

Corollary 6.2 If g € GN is middleman-free as well agfeient relative to a nonnegative
and component additive& VY, then g is strongly pairwise stable for the component-wise
egalitarian allocation rule Y©.

We emphasize that in general very large networks withi@ant clustering can be expected
to be middleman-free. The reason is that in such networks tire enough redundant links
to allow for multiple paths between firent individuals preventing any individual from
having positional power.

Example 6.3 Regular networks

Regular networks form an interesting class of networks thalso popular in the networks
literature®® For instance the empty network and the complete network atte tegular
networks.

Formally a networlg is k-regular if #1°(g) = 1 and for every player € N it holds that
#N;(g) = k. Hence, the network consists of exactly one component agny @layer is con-
nected to exactlk other players. Using strong pairwise stability Goyal anshi§2003)
find many instances of regular networks both in case of pesand negative spillovers.

15They are also sometimes referred to as symmetric netwodssiprably since every agent has the same
number of links (Goyal and Joshi (2003)). As Figure 1 denmass$ their shape need not necessarily be
symmetric.
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Figure 2: A 4-regular network with a uniqgue middleman positi

The class ok-regular networks has a non-empty intersection with thesotd middleman-
free networks for everik > 2. First, observe that middlemen free graphs are not a subset
of regular graphs since regular graphs need not be conneadeed, it is trivial to see that
every 2-regular network has essentially a unique topologlcan be described as a circle
consisting of alh players. Fok > 3 any complete network consistingot k+ 1 players

is k-regular and middleman free. Similarly, evéepipartite graph wittk > 2 will be mid-
dlemen free.

On the other hand, fde > 3 there exist networks with critical links and middlemerg e

1 depicts a 3-regular network with a unique critical link attterefore, two middlemen
indicated by “M” in the figure. It should be remarked that itngpossible to construct a
3-regular network that has a uniqgue middleman.

For larger values ok it is possible to construdt-regular networks with a unique mid-
dleman. This is illustrated in Figure 2 that depicts a 4-taguetwork with a unique
middleman indicated by “M”. m|

7 Coda

In this paper we have shown that under the component-widiag@an rule there is no ten-
sion between strong pairwise stability arfi@ency only for middlemen secure networks.
Our analysis makes it is clear that middleman positions go@ipants widespread con-
trol over the functioning of the network. Kalai, Postleveaiand Roberts (1978) already
investigated the consequences of middleman positions pofiga They arrived at some
surprising insights, that have grediiaity with the main result from our analysis.
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Our analysis makes clear that further research is needdwanle of middlemen in the
allocation of benefits over participants in network sitoas. This analysis should not be
limited to collective benefit problems, but also extend @ividualistic paydf situations.
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Appendix: Proof of Proposition 4.2

In order to proof the assertion of Proposition 4.2 we firstivera lemma whose repeated
application ensures the result. All subsequent notiongdaveloped within the context
of the symmetric connections model with p&fyparametep € (0,1) and cost parameter
c> 0.

Consider any networf and the severance of some lipkDeletion of this link cannot
reduce the geodesic distance between plagedd any other arbitrary play&r Therefore
I's benefits are nonincreasing in the deletion of any arlyitiak. Denote bygi(g - ij)
the reduction in gross benefits accruing to playrom playerk by deleting linkij € g
through a possible increase in geodesic distance betivaedk. Then,Bi(g —ij) > O.
The set otk for which Bik(g — ij) is positive is rather restricted. Namedy(g —ij) > 0 for

all pi(9) € Pi(9), pi(9) N Li(9) = {ij}. In that case
Bi(g — ij) = 6O — sti(@-iD)

DefineW;(g) = {k € N | Bik(g —ij) > O}. Obviously,j € W;(9).
Following Jackson and Wolinsky (1996), leig — ij) denote the gain to agenty
deleting linkij. Then,

u(g-i)=c- Y Ailg-i)

keWij (9)
In general we use;(g \ h*) to denote the gain to ageinby deleting a stan* c g.1°
Lemma 1 For any network g such thatiiii, € g, ui(g —iip —iip) < ui(g —iiy).

Proof. First recall that any path betweeandk € N cannot include more than one member
of Li(g). Given that any path betwedne W;,(g) must by definition includé, it cannot
possibly includei,. Hence, elimination oii, cannot disconnect any such path. Hence,

Wi, (9) = Whi,(9 - iia) = W (15)

This also means that the geodesic distance betwardk, wherek € W, in g andg — i,
are the same. Hence, for &l W,

ti(9) = ti(g —ii1) (16)
Now,
u(g-iiz) = c- > Bulg-iir)
keWii, (9)
- Cc-— Stik(@ _ sti(g-iiz)
2| |

160bviouslyi has to be the center of the star
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Also,

u(g—iip—iip) = c— Z Bik(g—iip—iix) =c- E Bik(g— iy —iiy)
KeWi , (g—ii1) kew
- Cc-— [6tik(g_iil) _ 5tik(9\{ii1,ii2})] —Cc— [5tik(9) _ 5tik(g\{ii1,ii2})]

Hence, in order to find out which one is greater, we have to evetp(g — ii;) andti(g \
{iiq, ii,}) for all k e W. Given,g\ {ii1,iio} c g—iio, ti(g\ {ii1,ii2}) > tk(g—ii,). Also, given
0 < 6 < 1andty(g\ {ii1, ii2}) > tu(g — iiy), s*OWi2) ¢ 5ik(@-i2) for gll k € W. Hence, the
assertion of the lemma has been proved. O

Proof of Proposition 4.2

Proof. Let g be a pairwise stable network in the symmetric connectiondahadlo prove
the assertion we only have to show that the network is strokgleletion proof. Consider
any player contemplating deletion of a set oflinks iy, iip, ..., iim, Whereiy, iy, ..., in €
Ni(9). Leth* = {iiq,li,,...,Iin}. Then, one way to represent the resulting gain is as follows:

Ui(9\ h") = ui(g—iie) + Ui(g\ {iig,iiz}) + -+ + ui(g \ iy, iz, ..., iim}) (17)

Since,g is strong deletion proof)i(g —iij)) < Oforalll = 1,2,...,m. Applying Lemma 1
we get

u(g\ {iig, iz} <u(g-1iiz) <0
Repeated application of the lemma gives us
Ui (g \ fiig, iip, lig}) < ui(g\ {iig, iz} < ui(g—iiz) <0

Proceeding thus each term on the right hand side of the thequality is non-positive.
Henceu;(g \ h*) being a sum of non-positive terms is non-positive as wellngeguently,
g is strong link deletion proof.

This completes the proof of Proposition 4.2. m]
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