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ROBUST ONE PERIOD OPTION MODELLING

FRANK LUTGENS, JOS STURM

Abstract. This paper considers robust optimization to cope with uncertainty about the
stock return process in one period portfolio selection problems involving options. The ro-
bust approach relates portfolio choice to uncertainty, making more cautious portfolios when
uncertainty is high. We represent uncertainty by a set of plausible expected returns of the
underlyings and show that for this set the robust problem is a second order cone program
that can be solved efficiently. We illustrate the approach for a benchmark tracking problem
and discuss the added value of adopting the robust approach in a stochastic programming
framework.

1. Introduction

The portfolio selection problem concerns the allocation of wealth to assets such that return
is maximized and uncertainty (risk) is minimized. The best known mathematical model for
portfolio selection is the Markowitz portfolio selection model [Mar52]. The Markowitz model
measures return by the expected value of random portfolio return and uncertainty by the
variance of the portfolio return. The mathematical model is a quadratic programming model.
A good reference on portfolio optimization is Zenios [Zen93].

Critics have shown that the Markowitz model is very sensitive to the parameters of the
model, in particular to the expected return. The numerical values for the parameters are
output from financial (econometric) models, possibly combined with subjective beliefs. These
models are estimated from noisy data and as such subject to statistical and judgemental
error. However in classical portfolio optimization the parameters, once passed on to the
optimization tool, are treated as being oracle prophecies; the reliability of the parameters
is not questioned anymore. This also happens in the Markowitz model that does consider
uncertainty, but only to the extent modelled by the parameters, ignoring uncertainty in the
parameters.

Financial literature has proposed a number of solutions to deal with the parameter sensitiv-
ity, see Jagannathan and Ma [JM02], Black and Litterman [BL90], Ter Horst et al. [tHdRW02].
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These approaches adapt the parameters to reduce the exposure of the optimization to un-
certain values but do not improve the modelling of uncertainty.

Much of the recent research is directed to modelling the parameter uncertainty more
explicitly. A max-min variant of the Markowitz porfolio selection model was developed by
[RBM00]. Robust versions of the Markowitz model fit also nicely in the robust optimization
methodology developed by El Ghaoui et al. [EGOL98] and Ben-Tal and Nemirovsky [BTN98].
This methodology, which builds on semidefinite programming, is exploited in [BTMN00,
CP02, Lob00, GI02], among others.

Most robust portfolio selection models that we found in the literature are two-stage (i.e.
one period) models. A multi-stage model was developed in [BTMN00]. The robust approach
in continuous time is studied in [AHS00] and [Mae99], among others.

In the robust optimization framework [BTN98, EGOL98], a model is formulated with
similar structure to the original model, but now the constraints are not only imposed over
the one (most likely) instance of parameter values but over a set U of (empirically) plausible
parameter values. Consequently, the problem is solved assuming worst case behavior of
parameter values within this set of plausible parameters.

We use econometric methods to quantify uncertainty in, and empirical plausibility of
the parameters. For financial problems these parameters concern future asset returns. To
describe the random asset returns, we use a simple econometric model:

(1) ln r = ln µ + ε, E(εεT ) = Σ

where µ is a vector of mean returns which may have multiple constituents (e.g. a factor
model). The natural logarithm of a vector is interpreted in a component-wise fashion. The
residual returns are multivariate normally distributed, with covariances given by Σ. We
consider the uncertainty in µ, the expected future return. In practice we merely have an
estimate µ̂ at our disposal. Nevertheless, we can be confident that the true vector µ is
contained in a confidence ellipsoid U around µ̂ as follows:

(2) U = {µ|‖C(µ − µ̂)‖ ≤ θ}

where θ denotes the degree of robustness that is required (typically around 2). Indeed, if the
estimator µ̂ is a sample mean, than µ̂ is approximately normally distributed with mean µ
and a covariance matrix Ω. Letting C be such that CT C = Ω−1 yields approximately a 95%
confidence ellipsoid when θ = 2. The eigenvalues of CCT will then be of the same order as
the sample size T underlying the computation of µ̂.

In robust optimization models such as considered in [BTMN00, EGOL98], constraints are
imposed for any µ ∈ U , thus achieving models that are robust to parameter uncertainty. The
resulting models are second order cone programming models, which can be solved efficiently
using standard software, such as [Stu99].

The robust optimization approach can also be used to model uncertainty in the actual
returns r rather than uncertainty in the parameter µ; see Section 2. As such, robust opti-
mization is often seen as an alternative to stochastic programming. However, even if we use a
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stochastic programming approach, as we do for the target tracking problem as considered in
Section 4, we need robust optimization to insure against uncertainty in the parameters, in our
case uncertainty in µ. The stochastic and robust optimization approaches thus complement
each other.

The main contribution of this paper is that we generalize this approach by adding options
to the investment opportunity set. An option is the right but not the obligation to buy or
sell a particular asset for a predetermined price, called the exercise price. It is necessary
to treat options separately as these are derivative assets. The option return is an affine
function of its underlying stock return if in the money and zero otherwise. This has two
consequences. The ’break’ in the option return as a function of the underlying asset changes
the form of the uncertainty set. This demands new theory for dealing with more complicated
uncertainty sets. Secondly, we may not look at the stocks and options return separately as
there is a relation. For example, a long position in both a stock and a put on this stock
have opposite dependence on the stock price; higher stock returns are profitable for the stock
holding but have a negative effect on the option value and vice versa. Ignoring that relation
causes unnecessary conservatism, which we must surely avoid.

As a first step we only consider one period options. In this way we avoid the difficulties
associated with pricing options at intermediate time periods. The outline of the paper is
as follows. In Section 2 we introduce the problem associated with assimilating options in
a financial optimization problem. We formulate the robust version of the portfolio return
relation. In Section 3 we develop the tools to transform the class of robust relations into
second order cone constraints constraints, which can be handled by standard optimization
software. We illustrate the approach by performing an empirical study on a benchmark
tracking problem in Section 4. We try to track the American Dow Jones index by the Euro-
pean EUREX Stoxx 50 and the options on this index. Section 5 presents some preliminary
results.

2. Problem description: one period options

In this text we study the modelling of one period options: we can buy the option, and
if we do, keep it until expiration, which happens in the next time period. We adopt the
usual notation in the financial literature that X denotes the exercise price, S denotes the
price of the underlying when the option matures, and S0 > 0 denotes the current price of
the underlying. The return of the underlying is denoted rs := S/S0. Thus, X and S0 are
known quantities in <+, whereas S and rs are quantities in <+; their value will be revealed
only at the next time epoch.

The payoff of a call option (the right to buy) with exercise price X is max{0, S − X}. If
the call option costs c0 > 0, then the return r′c is

(3) r′c = max

{

0,
S − X

c0

}

.
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Since S = rsS0, we may rewrite r′c as a piece-wise linear function of rs as follows:

(4) r′c = max{0, acrs + bc} with ac :=
S0

c0
and bc := −

X

c0
.

Hence, r′c is a piece-wise linear function of rs with known coefficients ac > 0 and bc ≤ 0.

Similarly, the payoff of a put option (the right to sell) with exercise price X is max{0, X−
S}. If the put option costs p0 > 0, then the return r′p is

(5) r′p = max{0, aprs + bp} with ap := −
S0

p0

and bp :=
X

p0

.

Consider now the case that there are n underlying assets (stocks and bonds) with unknown
returns r1, r2, . . . , rn. Suppose that there are m derivatives (options) with return r′i, i =
1, 2, . . . , m, where

(6) r′i = max

{

0, bi +
n

∑

j=1

aijrj

}

,

for some given bi and aij, i = 1, . . . , m, j = 1, . . . , n. Call and put options on a single
underlying asset k correspond to the special case where aij = 0 for j 6= k and aik > 0 or
aik < 0 respectively; cf. (6) with (4)–(5).

We will use vector notation, i.e. r ∈ <n is the vector with rj as its jth component, and
similarly r′ ∈ <m is the vector with r′i as its ith component. It is important to observe that
(6) defines r′i as an explicit function of r. One could write r′i(r) to make this functional
relationship explicit; however, we omit the argument r in our notation for brevity.

We say that the ith derivative is in-the-money if r′i > 0 and out-of-the-money if r′i = 0.
The moneyness of the derivatives is determined by the realizations of r1, r2, . . . , rn through
relation (6).

For any given realization r ∈ <n
+, the derivatives {1, 2, . . . , m} can be partitioned into the

set M ⊆ {1, 2, . . . , m} of derivatives that are in-the-money, and the set N := {1, 2, . . . , m}
of derivatives that are out-of-the-money. Conversely, given a partition (M, N), M ∪ N =
{1, 2, . . . , m} and M ∩ N = ∅, we let

(7) P (M, N) := {r ∈ <n
+|r

′
i > 0 for i ∈ M, r′j = 0 for j ∈ N}.

As a matter of notation, we let A ∈ <m×n denote the matrix with entries aij on the ith
row and the jth column. Let AM denote the |M | × n submatrix of A consisting of the rows
i ∈ M , where |M | denotes the cardinality of M . Similarly, we let bM ∈ <|M | denote the
subvector of b with entries bi, i ∈ M . Thus, after a suitable row permutation we have

A =

[

AM

AN

]

, b =

[

bM

bN

]

.

Using (6) and (7), we obtain that

(8) P (M, N) = {r ∈ <n
+|bM + AMr > 0, bN + ANr ≤ 0}.
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Observe that P (M, N) is a polyhedral set. Furthermore, we have that

(9) r′M = bM + AMr for r ∈ cl P (M, N)

and

(10) r′N = 0 for r ∈ cl P (M, N).

We have shown that r′ is a linear function of the uncertain parameter r on P (M, N), where
(M, N) is an arbitrary partition of {1, 2, . . . , m}. Strictly speaking, the set {1, 2, . . . , m}
can be partitioned in 2m ways. Fortunately most of these moneyness configurations have
an empty set of supporting returns P (M, N). In view of 9 and 10 we are interested in
moneyness configurations that have a non-empty set of supporting returns P (M, N). These
configurations are characterized by grouping derivatives on the same underlying according
to the exercise price. For one single underlying asset, the moneyness configurations follow

from each return interval
[

Xi

S0
, Xi+1

S0

]

defined by two subsequent exercise prices Xi and Xi+1.

In-the-money options are call options with X ≤ Xi and put options with X ≥ Xi+1. If we
let mj denote the number of derivatives on the underlying j, then there are at most mj + 1
of these subdomains. For n underlying assets, each asset return rj is cut in at most mj + 1
subdomains. The total number of configurations is therefore limited to

∏n

j=1(mj + 1) where
∑m

j=1 mj = m. This number will be reduced further by the following point.

In practice, not all nonnegative return vectors r ∈ <n
+ are conceivable. The subset U ⊆ <n

+

of conceivable (or realistic) return vectors of the n underlying assets is called the uncertainty

set. In this section, we assume that U is the intersection of <n
+ with an n-dimensional

ellipsoid, i.e.

(11) U = {r ∈ <n
+ | ‖C(r − r̃)‖ ≤ θ}

where C is a given k × n matrix (typically k = n), and θ is a given positive scalar constant.
The quantity r̃ can be µ̂, an estimator of the mean return, as stipulated in (2). Since here
we model uncertainty in r, eigenvalues of CT C will be much smaller than if U were to model
uncertainty in the parameter µ. However, the theory developed to deal with uncertainty in r
can also be used to deal with uncertainty in µ, see Section 4 later in this paper. We remark
that the C-matrix allows us to model both volatility of individual assets and correlation
between the various assets.

In the sequel, we will formulate our financial models as second order cone optimization
models, which can be efficiently solved. A second order cone (or Lorentz cone) is defined as

(12) SOC =

{

x ∈ <n

∣

∣

∣

∣

x1 ≥
√

x2
2 + x2

3 + · · ·x2
n

}

,

where n is the dimension of the second order cone. The interior of the second order cone is
denoted int(SOC), i.e.

(13) int(SOC) =

{

x ∈ <n

∣

∣

∣

∣

x1 >
√

x2
2 + x2

3 + · · ·x2
n

}

.
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Observe that the ellipsoid U in (11) can be modelled as a conic section, viz.

(14) U =

{

r ∈ <n
+

∣

∣

∣

∣

[

θ
C(r − r̃)

]

∈ SOC(k + 1).

}

We let F be the family of conceivable moneyness configurations of the m derivative assets,
i.e.

(15) F := {(M, N) | M ∪ N = {1, 2, . . . , m}, M ∩ N = ∅, P (M, N) ∩ U 6= ∅}.

The moneyness configurations partition the uncertainty set U into at most |F| ellipsoidal

cuts of the form

(16) U(M, N) := U ∩ P (M, N) for (M, N) ∈ F .

A portfolio is a pair (x, x′) ∈ <n ×<m, where xj denotes the number amount invested in the
jth underlying asset, j = 1, 2, . . . , n, and x′

i is the amount invested in the ith derivative asset,
i = 1, 2, . . . , m. Positive and negative values of xj correspond to long and short positions
respectively.

The task of a portfolio manager is to design a portfolio (x, x′) such that budget restrictions
and other portfolio constraints hold. If the the restriction is linear in the portfolio, we may
depict it as a function

(17) f(r; x0, x, x′) := x0 + xTr + (x′)Tr′

such that the following restriction holds:

(18) f(r; x0, x, x′) ≥ 0 for all r ∈ U .

The design parameters (decision variables) are the quantity x0 and the portfolio (x, x′); r
is the vector of uncertain parameters. For example, if the value of the portfolio in the next
period must be at least $100, then one should add the constraint ‘x0 = −100’. If one also
likes to minimize the amount invested, then the objective function becomes ‘min

∑n

j=1 xj +
∑m

i=1 x′
j’. The success of the portfolio manager in solving the problem depends on her

ability to transform the (possibly) infinite number of restrictions in 18 to a finite number of
manageable restrictions.

Ensuing from (9) and (16), f(r; x0, x, x′) is a linear function of r on each ellipsoidal cut
U(M, N), i.e.

(19) f(r; x0, x, x′) = f
(M)
0 (x0, x, x′) +

n
∑

j=1

f
(M)
j (x0, x, x′)rj for all r ∈ U(M, N).

Since the coefficients of this function are different for each ellipsoidal cut U(M, N), we have
added a superscript (M). In particular, we have for r ∈ U(M, N) that

f(r) = x0 + xTr + (x′)Tr′(20)

= x0 + xTr + (x′
M )T(bM + AMr)(21)

= x0 + bT
Mx′

M + (x + AT
Mx′

M)Tr.(22)
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It follows that

(23) f
(M)
0 (x0, x, x′) = x0 + bT

Mx′
M

and

(24) f
(M)
j (x0, x, x′) = xj +

∑

i∈M

x′
iaij for j = 1, 2, . . . , n.

Since the uncertainty set U is not finite and in fact not countable, (18) represents an
infinite number of constraints on the design parameters. However, we will show that it can
be modelled by a finite number of constraints in a second order cone programming problem.

3. Duality to achieve standard-form expressions

Given a nonempty set D ⊆ <n, its homogenized cone in <n+1 is defined as

H(D) := cl {(s, y)|s > 0, y/s ∈ D}.

A set K ⊆ <n is a cone if and only if K 6= ∅ and

x ∈ K, t ≥ 0 =⇒ tx ∈ K.

If in addition,

x, y ∈ K =⇒ x + y ∈ K

then K is a convex cone. It is easily verified that H(D) is a cone; if D is convex then H(D)
is a convex cone. The dual of a cone K ⊆ <n is defined as

K∗ := {s ∈ <n|xTs ≥ 0 for all x ∈ K}.

A dual cone is always closed and convex. If K is convex, then the bi-polar relation holds:

(25) (K∗)∗ = cl K.

In the proof of Theorem 1 below, we need the following technical lemmas.

Lemma 1. Let D 6= ∅. It holds that

H(D)∗ = {(f0, f) | f0 + fTr ≥ 0 for all r ∈ D}.

The above lemma is a special case of Corollary 1 in [SZ01].

Lemma 2. Let K ⊆ <n be a cone and B an m × n matrix. Then

{x | Bx ∈ K∗} = {BTy | y ∈ K}∗.

For a proof, see relation (17) in [SZ01]. An important special case is that for two cones
K1 and K2 one has

(26) K∗
1 ∩ K∗

2 = (K1 + K2)
∗,

as obtained by setting B :=
[

I, I
]T

and K = K1 × K2.
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Lemma 3. Let

D = {r | Pr + q ∈ SOC, Ãr + b̃ ≥ 0}.

If D 6= ∅ then

H(D) = {(s, y)|Py + sq ∈ SOC, s ≥ 0, Ãy + sb̃ ≥ 0}.

Proof. From the definition of H(D), it is clear that if (s, y) ∈ H(D) then

(27) Py + sq ∈ SOC, s ≥ 0, Ãy + sb̃ ≥ 0

Conversely, suppose that (s, y) satisfies (27). If s > 0 then y/s ∈ D and hence (s, y) ∈ H(D).
Suppose now that s = 0. Since D 6= ∅, there exists r ∈ D. Let σ > 0 be arbitrary. We have
from the definition of D and (27) that

P (r +
1

σ
y) + q ∈ SOC, Ã(r +

1

σ
y) + b̃ ≥ 0.

Hence (σr + y)/σ ∈ D and (σ, σr + y) ∈ H(D) for all σ > 0. Letting σ ↓ 0 it follows that
(0, y) ∈ H(D). �

Theorem 1. Let

D = {r | Pr + q ∈ SOC, Ãr + b̃ ≥ 0}

and consider the cone of linear functions that are nonnegative on D, i.e.

K = {(f0, f) | f0 + fTr ≥ 0 for all r ∈ D}.

If D 6= ∅ then

K = cl

{[

qTu + b̃Tv + v0

PTu + ÃTv

]
∣

∣

∣

∣

u ∈ SOC, v ≥ 0, v0 ≥ 0

}

.

Proof. We have from Lemma 1 that

K = H(D)∗.

Applying Lemmas 3 and 2 respectively, we have

H(D) = {(s, y)|Py + sq ∈ SOC} ∩

{

(s, y)

∣

∣

∣

∣

[

1 0T

b̃ Ã

] [

s
y

]

≥ 0

}

=

{[

qTu
PTu

]
∣

∣

∣

∣

u ∈ SOC

}∗

∩

{[

v0 + b̃Tv

ÃTv

]
∣

∣

∣

∣

v0 ≥ 0, v ≥ 0

}∗

.

(It is well known that SOC and <n
+ are self-dual cones.) Further using (26) and (25), we

have

H(D)∗ = cl

{[

qTu + b̃Tv + v0

PTu + ÃTv

]
∣

∣

∣

∣

u ∈ SOC, v ≥ 0, v0 ≥ 0

}

.

�

The following theorem states that the closure operator in the above characterization of K
is redundant if a Slater condition holds.
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Theorem 2. Let

Do := {r | Pr + q ∈ int(SOC), Ãr + b̃ > 0}

and let K be defined as in Theorem 1. If Do 6= ∅ then

K =

{[

qTu + b̃Tv + v0

PTu + ÃTv

]
∣

∣

∣

∣

u ∈ SOC, v ≥ 0, v0 ≥ 0

}

.

Proof. Let

Γ =

{[

qTu + b̃Tv + v0

PTu + ÃTv

]
∣

∣

∣

∣

u ∈ SOC, v ≥ 0, v0 ≥ 0

}

.

We know from Theorem 1 that K = cl Γ. It remains to show that Γ is closed, i.e. cl Γ = Γ.

Let (t, x) ∈ K = cl Γ, and let (u(k), v(k), v
(k)
0 ), k = 1, 2, . . . be a sequence such that

u(k) ∈ SOC, v(k) ≥ 0, v
(k)
0 ≥ 0 for all k = 1, 2, . . .

and
[

t
x

]

= lim
k→∞

[

qTu(k) + b̃Tv(k) + v
(k)
0

PTu(k) + ÃTv(k)

]

.

By definition of Γ, such a sequence must exist, because (t, x) ∈ cl Γ. Let r ∈ Do. We have

t + rTx = lim
k→∞

qTu(k) + b̃Tv(k) + v
(k)
0 + rT(PTu(k) + ÃTv(k))

= lim
k→∞

(Pr + q)Tu(k) + (Ãr + b̃)Tv(k) + v
(k)
0

≥ lim
k→∞

(Pr + q)Tu(k) + (Ãr + b̃)Tv(k).(28)

Since Pr + q ∈ int(SOC) and Ãr + b̃ > 0, we have

(29)

{

(Pr + q)Tu > 0 for all u ∈ SOC\{0}

(Ãr + b̃)v > 0 for all v ∈ <n
+\{0}.

We claim that the sequence {u(k)} is bounded. Indeed, suppose to the contrary that
lim supk→∞ ‖u(k)‖ = ∞. From (29), it follows that

lim inf
k→∞

(Pr + q)Tu(k)

‖u(k)‖
> 0,

and hence, using also (28), we arrive at the impossible inequality

t + rT x ≥ lim sup
k→∞

(Pr + q)Tu(k) = ∞.

Similarly, we can show by contradiction from (28) and (29) that v(k) must be bounded. Hence

this sequence {u(k), v(k), v
(k)
0 } has a cluster point (u, v, v0), u ∈ SOC, v ≥ 0, v0 ≥ 0, and

[

t
x

]

=

[

qTu + b̃Tv + v0

PTu + ÃTv

]

∈ Γ.

This concludes the proof. �
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Define

K(M, N) := {(f0, f) | f0 + fTr ≥ 0 for all r ∈ U(M, N)},

where U(M, N) := U ∩ P (M, N), see (16). We find an explicit representation of K(M, N)
by applying Theorem 1 with

Ã :=





AM

−AN

In



 , b̃ :=





bM

−bN

0



 ,

see (8) and

P =

[

0T

C

]

, q =

[

θ
−Cr̃

]

,

see (14). We have deduced that (18) is equivalent with

(30) f (M)(x0, x, x′) ∈ K(M, N) for all (M, N) ∈ F ,

where f (M) is defined in (23)–(24) and F is defined in (15). We have reduced the infinite set
of constraints in (18) to at most |F| conic constraints in (30).

4. Illustration: benchmark tracking

We continue by illustrating the method we developed above for a practical problem: bench-
mark tracking. A benchmark is a quantity that may vary over time, possibly caused by
changing asset returns. The aim of benchmark tracking is to imitate the movements of a
particular benchmark with a portfolio that consists merely of financial assets at one’s dis-
posal. The level of imitation is measured by the discrepancy between the portfolio and
benchmark returns, also called the tracking-error. Consequently we express the benchmark
tracking problem as a tracking error minimization problem, as follows:

(31) min
x,x′

{

E[(gT r − f(r, x, x′))2]

∣

∣

∣

∣

∣

(
n

∑

i=1

xi) +
m

∑

j=1

x′
j = 1, (x, x′) ∈ Ξ

}

.

Here, f(r, x, x′) and gT r denote respectively the portfolio and benchmark return. The set Ξ
models restrictions faced by the portfolio manager. These restrictions make it in particular
impossible to invest in the index gT r itself. Observe that the benchmark in our illustration is
a stock index with weights gi, i = 1, . . . , n, making the return vector r the only determinant
for the benchmark value. As in (17), the portfolio return is written explicitly as

f(r; x, x′) = xTr + (x′)Tr′,

see (17). Furthermore, for all (M, N) in F we have

(32) f(r; x, x′) = xT r + (x′
M)T (bM + AMr) for r ∈ P (M, N),

see (9)–(10). The constraint (
∑n

i=1 xi) +
∑m

j=1 x′
j = 1 expresses the budget restriction: we

invest our capital, scaled to unity.



Robust one period option modelling 11

Recall from (1) that

ln(r) = ln(µ) + ε, E(ε) = 0, E(εεT ) = Σ.

In order to make the problem in (31) precise, we further assume in this section that ε is
multivariate normally distributed. However, our approach remains valid also if a different
(but specific) distribution is assumed. The objective function in (31) thus involves an n-
dimensional integral. Although this integral cannot be computed exactly, it can be computed
with reasonably accuracy using Monte Carlo methods. In particular, we have

E[(gT r − f(r, x, x′))2] = E[
(

gTeln(µ)+ε − f(eln(µ)+ε, x, x′)
)2

]

≈
κ

∑

k=1

πk

(

gTeln(µ)+εk − f(eln(µ)+εk , x, x′)
)2

,(33)

where εk, k = 1, 2, . . . , κ is a sample and
∑

πk = 1. We will not get into the details of the
sampling technique here. The reader may simply consider as an obvious possibility a sample
from N(0, Σ) of size κ with π1 = · · · = πκ = 1/κ. To simplify notations, we define a mapping
rk : <n → <n as follows:

(34) rk(µ) = eln(µ)+εk for k = 1, 2, . . . , κ.

We remark that rk(µ) is a linear function of µ, namely

(rk(µ))i = µie
(εk)i for i = 1, 2, . . . , n.

Replacing the objective function in (31) by the right hand side in (33), we arrive at the
stochastic programming formulation of (31):

(35) min{t0|(x, x′) ∈ Ξ and (36)–(39)}

with constraints

t0 ≥

√

√

√

√

κ
∑

k=1

πkt2k(36)

tk ≥ gT rk(µ) − f(rk(µ), x, x′) for all k = 1, . . . , κ(37)

tk ≥ f(rk(µ), x, x′) − gT rk(µ) for all k = 1, . . . , κ(38)

(
n

∑

i=1

xi) +
m

∑

j=1

x′
j = 1.(39)

Besides the genuine decision variables x and x′, we have incorporated auxiliary variables tk,
k = 0, 1, . . . , κ. Observe that (37)–(38) holds if and only if

tk ≥ |gTrk(µ) − f(rk(µ), x, x′)|

and hence (36)–(38) holds if and only if t0 ≥ 0 and

t20 ≥
κ

∑

k=1

πk(g
Trk(µ) − f(rk(µ), x, x′))2 ≈ E[(gT r − f(r, x, x′))2].



12 F. Lutgens, J.Sturm

Since (36) is a second order cone constraint and (37)–(39) are linear constraints, the problem
(35) can be solved using standard second order cone programming software. This is the
classical stochastic programming approach [BL97].

However, there are a number of problems with this approach. First, the value of µ is not
known exactly; one can merely work with an estimate µ̂. Second, knowledge of the randomly
selected εks will be misused by the optimization routine that selects x and x′. This typically
makes the error in (33) larger than if the εks were selected after x and x′ are determined,
although various convergence results are known for this situation [BL97]. Third, even if we
could solve (31) exactly, i.e. without approximating the integral, the underlying assumption
that ε ∼ N(0, Σ) is highly debatable. In summary, the above developed target tracking
model lacks robustness.

In the sequel of this section, we develop a modification of (35) which is robust against
uncertainty in the parameter µ. As discussed in Section 1, we construct an estimate µ̂ for µ
based on historical data. This yields a region U such that µ ∈ U with a certain confidence,
see (2). Next, we replace the constraints (37)–(38) by an infinite set of robust constraints:

tk ≥ gT rk(µ) − f(rk(µ), x, x′) for all µ ∈ U(40)

tk ≥ f(rk(µ), x, x′) − gTrk(µ) for all µ ∈ U ,(41)

for k = 1, 2, . . . , κ. As discussed in Section 2, the presence of options makes these constraints
piece-wise linear in µ.

Analogous to (8), we define for (M, N) ∈ F ,

(42) Pk(M, N) = {µ ∈ <n
+|bM + AMrk(µ) > 0, bN + ANrk(µ) ≤ 0}

as the polyhedral set associated with the (M, N) moneyness configuration. The expected
portfolio value f(rk(µ), x, x′) is therefore linear in µ for µ ∈ Pk(M, N). Recall from (6) that
A ∈ <m×n and b ∈ <m define the payoff structure of the options under consideration.

Since we are confident that µ ∈ U , it suffices to consider only those moneyness configura-
tions for which Uk(M, N) 6= ∅, where Uk(M, N) := Pk(M, N)∩U ; cf. (16). Given k, there are
only very few of such moneyness configurations, especially if the sample size underlying the
computation of µ̂ is sufficiently large (and hence the uncertainty is low). For this reason it is
important to draw scenarios such that most moneyness configurations are covered. Stratified
sampling offers a solution here.

The moneyness configurations (M, N) ∈ F that produce relevant subsets U(M, N) are
defined by subsequent exercise prices of the derivatives on each asset j. Between each two
subsequent exercise prices, a constant moneyness configuration applies. Therefore in order
to define the relevant moneyness configurations, we sort the derivatives on each underly-
ing (including boundaries 0, ∞) according to the derivatives exercise price in ascending
order. Subsequent exercise prices Xi and Xi+1 define a return interval for the underlying

j:
[

Xi

S0,j
, Xi+1

S0,j

]

. Only calls with X ≤ Xi and puts X ≥ Xi+1 are in the money for this

interval and are included in M . We combine the intervals of different underlying assets to
form a non-empty Pk(M, N). Consequently Pk(M, N) as defined in (42) can be written more
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specifically as

Pk(M, N) =

{

µ ∈ <n
+

∣

∣

∣

∣

∣

for all j = 1, . . . , n :
X l

M,j

S0,j

≤ rk(µ)j ≤
Xu

M,j

S0,j

}

,

where X l
M,j and Xu

M,j denote the exercise prices of options on underlying j that specify the
boundaries on rj for a certain configuration (M, N).

For each scenario k = 1, 2, . . . , κ, we replace (40)–(41) by

tk ≥ g(rk(µ)) − f(rk(µ), x, x′) for all µ ∈ Uk(M, N)(43)

tk ≥ f(rk(µ), x, x′) − g(rk(µ)) for all µ ∈ Uk(M, N),(44)

for all (M, N) ∈ F for which Uk(M, N) 6= ∅.

Due to Theorem 1, relations (43)–(44) are in fact second order cone constraints. In sum-
mary, our robust target tracking stochastic programming model is reduced to the following
second order cone problem:

(45) min{t0|(x, x′) ∈ Ξ and (36),(39), (43)–(44)}.

So far we have focussed on uncertainty in the parameter µ. However, one may deal with
uncertainty in the parameter Σ as well, see for example [GI02]. However for mean variance
problems it is shown (Korkie et al [JK81] and Michaud [Mic98]) that the uncertainty in
the expected return estimate is the driving force behind the misbehavior of the Markowitz
model.
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Figure 1. Uncertainty set for a world with two stock indices, Dow Jones and
EUREX, and a call option on the EUREX
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5. Computational study

In this section we compare the performance of the robust approach with the classical
approach on real market data. The specific problem we consider is to track the Dow-Jones
index with the EUREX stoxx 50 index and all options on this index. The test on real
market data naturally introduces uncertainty: uncertainty of future returns. To provide
sensible estimates for these future returns, we use a model to describe the return process. As
we calibrate (estimate) this return process on a limited set of historical data, the parameters
of the return process suffer from uncertainty. This will introduce uncertainty in the estimates
of the future returns, which the robust approach will deal with.

Strictly speaking, the uncertainty is not confined to the parameters in the return model,
but also concerns the selection of the particular return model itself. From this perspective,
the results of our test will depend on the adequacy of the model we use to describe the
returns. We may expect that the use of a poor return model, will affect the classical approach
more than the robust approach: The parameter estimates in a poor model display large
uncertainty; uncertain estimates lead to conservative strategies in the robust approach, while
the classical approach does not compensate for this uncertainty. Hence using a return model
inferior to the best known model may color the results somewhat in favor of the robust
approach. Nevertheless, the test remains appropriate as the true return process is not known
in reality and we must rely on a reasonable guess for the return process.

As in the previous section, we use a simple but common model to describe the return
process with time index t:

(46) ln rt = ln µ + εt, εt ∼ N(0, Σ),

i.e. µ and Σ are assumed to be time invariant. The parameters of the model are estimated
from historical data according to the maximum likelihood principle.

Our (limited) data set consists of monthly returns from March 1997 to March 2002. We
start at January 2000 and use the following procedure for the test. First we estimate the
return model (46) based on the last T = 3, 6, 20 observations. Next we formulate the
portfolio optimization model. Hereto we need future return scenarios i = 1, .., N and for
the robust version the uncertainty in µ. We ignore the uncertainty in the covariance matrix
and estimate it using the full sample. The scenarios are generated from return model (46)
by a combination of random and stratified sampling such that all ’exercise intervals’, i.e.
the interval between subsequent exercise prices, are covered. Depending on the number of
options maturing at the subsequent time period (20-43 options), this produces between 80
and 250 scenarios. The uncertainty set U is formed by letting CCT = TΣ−1 and the degree of
robustness θ = 1.6 or 2.5. This approximately corresponds with a 75% resp. 95% confidence
level of the solution (assuming (46) is an appropriate description of the return process). The
classical stochastic programming problem (35) has dimensions of order κ × (m + n), where
κ is the number of scenarios, m is the number of options and n is the number of underlying
stocks. In our numerical study, n = 2, viz. the Dow-Jones index and the EUREX stoxx 50
index. The set Ξ in (35) is defined as Ξ = {0} × <m+1, i.e. it is only allowed to invest in
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the EUREX stoxx 50 and options on it in order to track the Dow-Jones index. The robust
stochastic optimization problem (45) is much larger than the classical model (dimensions up
to: 15.000 × 10.000); it is also degenerate and sparse. We use SeDuMi 1.05 [Stu99] which
exploits this sparsity to solve the problems. The final step is to evaluate the solutions of the
classical and robust approach using the next periods return. By repeating this procedure
for each month between January 2000 and March 2002, we get an idea of the performance
of the classical and robust approach.

The historical means and variances of the indices are given in Table 1. The correlation
between the indices is low, 25%, making the benchmark tracking a real challenge.

Table 1. Monthly return statistics for period March 1997 to March 2002

Mean Std.dev
Dow Jones return rb 0.31% 7.47 %
EUREX return ru 2.21% 6.06 %

As a check on the relevance of the approaches, we compare the results of the classic and
robust approach to a portfolio where everything is invested in the EUREX, i.e. we try to
track the Dow Jones with the EUREX index. For the period January 2000 - March 2002
this results in an average tracking error of 9.43%.

5.1. Results. Table 2 summarizes the test results. The first panel depicts the results for a
robustness level of θ = 1.6. The columns present the different portfolio, the robust portfolio,
classic portfolio and the EUREX stoxx 50 only portfolio as a check. For convenience, we use
the acronym TE to denote the tracking error:

(47) TE = tracking error = |gTr − f(r, x, x′)|;

observe that although gTr − f(r, x, x′) can take positive and negative values, TE is always
nonnegative. The rows provide the expected and actual results, E(TE) gives the average
expected tracking error (TE) under the estimated parameters, R(TE) is the average realized
(actual) tracking error and min(TE) resp. max(TE) give the smallest and largest TE in the
simulation. If we use 20 observations to estimate our return process, the expected tracking
errors for robust, classic and the EUREX only portfolio are resp. 8.4%, 7.4% and 9.4%.
Obviously the expected TE of the classic portfolio is smaller than the restricted EUREX only
portfolio and the robust portfolio that distorts the objective of minimizing the expected
TE by using robust relations. The relevant question is: What happens ex post where the
combination of selection of the return model, parameter uncertainty and the approach to
portfolio composition play a role.Also for a comparison on real returns, the classical approach
appears to be best, although the differences become smaller: tracking errors become 7.6%,
7.2% and 7.7% respectively. Somewhat surprisingly, these similar results are achieved by
strikingly different portfolios. The classical portfolio invests fanatically in options (portfolio
norm equals 10-20 times the budget), with figures up to 10 times the budget into options
with the smallest and largest exercise prices. The reason becomes clear if we look at Figure
2 which presents the return of a typical classic portfolio. The solid line presents the portfolio
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return and the dotted horizontal line the expected benchmark return. The two vertical
dot-dash lines on the left and the right present the extreme options exercise prices and the
dotted line on the bottom depicts the distribution of the underlying EUREX stoxx 50 asset.
As the objective is to minimize the expected tracking error, we want to stay close to the
(expected) benchmark return for those returns that have reasonable probability, given by
the distribution on the bottom. Between the two extreme options exercise limits this can
be achieved by taking positions in the options such that the course of the portfolio return
has a horizontal sawtooth pattern. Outside that interval, as far as there is still probability
mass, the extreme options try to flatten the underlying return somewhat to overcome a too
extreme course as the correlation between the underlying and the benchmark is only 25%.

Figure 2. Portfolio returns

The robust portfolio invests more moderate (a portfolio norm around 4); ±90% is invested
in the underlying asset and seldom more than 5% invested in each individual option. We can
further stylize the portfolio if we look at Figure 3. The return profile for the robust portfolio,
as given in the lower left panel, is more fluent than the one of the classical approach (lower
right panel). This is due to a decrease in perseverance of the robust approach for exploiting
every possibility to decrease expected tracking error, i.e. fit as good as possible at every
particular point: The robust approach is interested in a good worst case performance in
the small neighborhood of each scenario and indifferent about the tracking error within this
neighborhood.
On some instances the return profile of the robust portfolio is roughly downward sloping.
This occurs if the relatively small (< 25%) correlation is dominated by the uncertainty in the
mean and the relevant set of returns (returns with significant probabilities as given by the
distribution on the bottom) is concentrated between the option exercise limits. This never
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Test, 20 options, Jan.1991-Sept.2000 Robust Approach Classic Approach EUREX only
3 obs., 21 sim., theta: 1.60,
E(TE) (std.err.) in % 9.57 (2.26) 7.43 (0.51) 10.61 (1.77)
R(TE) (std.err.) in % 8.09 (6.60) 8.58 (6.67) 7.64 (5.79)
min(TE)-max(TE) in % 0.46-26.64 0.01-22.58 0.72-22.70
Portfolio norm 36.40 28.45 1.00
Eurex investment 1.21 2.51 1.00
6 obs., 21 sim., theta: 1.60,
E(TE) (std.err.) in % 8.58 (0.97) 7.39 (0.37) 9.44 (0.74)
R(TE) (std.err.) in % 7.35 (5.87) 7.63 (5.45) 7.64 (5.79)
min(TE)-max(TE) in % 0.67-21.45 0.37-18.97 0.72-22.70
Portfolio norm 6.37 20.32 1.00
Eurex investment 0.94 2.16 1.00
20 obs., 21 sim., theta: 1.60,
E(TE) (std.err.) in % 8.48 (0.79) 7.42 (0.35) 9.39 (0.82)
R(TE) (std.err.) in % 7.25 (5.88) 7.12 (5.56) 7.64 (5.79)
min(TE)-max(TE) in % 0.32-21.58 0.10-19.02 0.72-22.70
Portfolio norm 11.74 19.44 1.00
Eurex investment 0.91 1.95 1.00

6 obs., 14 sim., theta: 2.50,
E(TE) (std.err.) in % 8.48 (0.89) 7.33 (0.43) 9.47 (0.90)
R(TE) (std.err.) in % 7.22 (5.06) 6.95 (4.68) 6.88 (5.80)
min(TE)-max(TE) in % 1.80-17.44 1.30-15.59 0.72-22.70
Portfolio norm 3.99 20.18 1.00
Eurex investment 0.83 1.82 1.00
6 obs., 16 sim., theta: 2.50,
E(TE) (std.err.) in % 8.47 (0.86) 7.47 (0.49) 9.66 (0.85)
R(TE) (std.err.) in % 6.79 (5.37) 6.83 (4.79) 6.28 (4.33)
min(TE)-max(TE) in % 0.39-15.66 0.75-16.71 0.72-16.55
Portfolio norm 10.88 23.74 1.00
Eurex investment 0.82 2.08 1.00
20 obs., 11 sim., theta: 2.50,
E(TE) (std.err.) in % 8.13 (0.70) 7.28 (0.30) 8.57 (0.31)
R(TE) (std.err.) in % 8.39 (7.53) 7.70 (6.37) 7.56 (6.89)
min(TE)-max(TE) in % 0.17-22.46 1.20-20.47 0.72-22.70
Portfolio norm 3.34 11.18 1.00
Eurex investment 0.84 0.87 1.00

Table 2. Test results for robustness level θ = 1.6, 2.5 and using an estima-
tion window of length T = 3, 6, 20. The investment set is limited to EUREX
stoxx 50 index and 20 options with exercise prices closest to expected return.
Some simulations are excluded due to numerical problems during robust port-
folio construction.
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happens for the classical approach as the small correlation is never doubted and reflected in
a somewhat upward sloping portfolio return profile.

The upper two panels of Figure 3 depict the tracking discrepancy (TE = rb−rP ) for various
returns of the underlying and benchmark asset. Naturally the figure is upward sloping in
the benchmark return rb as large benchmark returns make TE larger. Ideally we strive to a
flat surface at TE = 0, making the tracking error zero everywhere. Unfortunately this is not
achievable with the EUREX and its options. So we aim at finding a surface that is as close
as possible to the flat surface at TE = 0. Typically we want it to be close for returns with
large probabilities. Of course the true probabilities are unknown and we use the classic and
robust approach to deal with this.

Figure 3. Typical TE and portfolio return distribution

The surfaces of the robust and classic approach have some minor differences. As we have
seen in the portfolio profiles, the surface of the robust approach is smoother due to the worst
case property. Another recurring property is that the robust approach sacrifices the situation
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where both returns are large. This is somewhat strange as there is a small positive correlation
between the returns. However the phenomenon occurs at the boundary of the area and has
small probability. So the cost of large TE’s, or large local worst case TE’s is small in terms of
increasing expected TE. Moreover the robust approach artificially decreases the correlation
between the benchmark and underlying’s return, by using the uncertainty sets for the mean.
Therefore the robust approach is more willing to sacrifice tracking precision in that corner
than the classic approach. The classic approach generally sacrifices larger tracking precision
in more remote areas in terms of the estimated distribution. In Figure 3 this happens for
small rb combined with large ru and large rb combined with small ru. Which of the two
sacrifices is better, once again depends on the correctness of the econometric model and the
estimated parameters.

Figure 4. TE and portfolio return when expected return forecast is wrong

Figure 4 plots a similar graph for a hypothetical situation where uncertainty is large and
the estimators were far off the true estimators. The lower panels show the errors in the
estimates: the probabilities estimates of the relevant returns are almost zero. Clearly the
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robust approach performs much better as its portfolio is more prudent due to the large
uncertainty.

We note that a somewhat similar behavior of the classical and robust portfolio follows
naturally from the employed definition of uncertainty. We deduced uncertainty from the
return variance. This implies that large uncertainty and large variance go hand in hand. A
large variance also produces dispersed scenarios, assigning larger probabilities to outlying
events. Just like the conservative robust approach, the classic approach will not risk large
tracking errors for probable outlying events as this drives up the expected tracking error.
Thus in cases of large uncertainty caused by large variance, the classic approach is also more
prudent. The merit of the robust approach remains to label the sources of uncertainty:
modelled uncertainty (given by the variance of ε) and unmodelled uncertainty, characterized
by Ω.

The second panel of Table 2 depicts the results for a test with a small number of observa-
tions and thus more parameter uncertainty; we use resp. 3 or 6 observations to estimate the
return process. We consider this situation for two reasons. First, if returns do indeed follow
(46), this is a situation where the few number of observations makes parameter uncertainty
an important issue. This means that if the robust approach contributes, this should be
visible in this situation. On the other hand, we may motivate the small window estimations
by the empirical phenomenon of momentum. Momentum is the persistence of returns: high
returns are more likely to be followed by high return as low returns are more likely to be
followed by low returns. An estimation window of 3 to 6 months, catches this sort of dynamic
effect although we did not account for this in our simple return model.

The robust approach performs relatively well if only the 3 most recent observations are
used for estimating the return process. However the other approaches perform worse here.
One reason could be that the return process is not entirely correct and misses some dynamic
effects. By using the short estimation window, we introduce this dynamic effect but also
make the estimators imprecise. The robust approach can deal with this imprecision, the
classic approach cannot.

However these conclusions remain premature as the simulation size is small (due to a
limited dataset) and the conclusions are based on a particular return model. Further com-
putational experiments are needed to provide reliable conclusions.

6. Discussion

The main mathematical result of this paper is a description of the cone dual to the inter-
section of a second order cone and linear half spaces. This description enables us to develop
a formulation for the robust portfolio optimization problem with options that is efficiently
solvable. In particular, for a fixed number of options the robust portfolio return relation is
shown to be equivalent to a second order cone relation.
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We employed the former for developing a robust version of a benchmark tracking problem
including options. An empirical test for this problem shows promising results for the robust
approach in situations of considerable uncertainty.

Further and current research treats the robust formulation for the multi period portfolio
model with options. This demands that we can price options at intermediate time periods.
Current models for option pricing (e.g. [BS73]) lack precision to blindly adopt these, causing
uncertainty in the options prices. We can handle this imprecision in the (parameters of the)
option pricing model in a similar way as we treat uncertainty in the return process here.
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