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Unbiased Tail Estimation by

an Extension of the Generalized Pareto Distribution

Jan BEIRLANT, Elisabeth JOOSSENS and Johan SEGERS

Abstract

The generalized Pareto distribution (GPD) is probably the most
popular model for inference on the tail of a distribution. The peaks-
over-threshold methodology postulates the GPD as the natural model
for excesses over a high threshold. However, for the GPD to fit such
excesses well, the threshold should often be rather large, thereby re-
stricting the model to only a small upper fraction of the data. In case
of heavy-tailed distributions, we propose an extension of the GPD with
a single parameter, motivated by a second-order refinement of the un-
derlying Pareto-type model. Not only can the extended model be fitted
to a larger fraction of the data, but in addition is the resulting maxi-
mum likelihood for the tail index asymptotically unbiased. In practice,
sample paths of the new tail index estimator as a function of the cho-
sen threshold exhibit much larger regions of stability around the true
value. We apply the method to daily log-returns of the euro-UK pound
exchange rate. Some simulation results are presented as well.

1 INTRODUCTION

Analyzing financial and actuarial risks requires statistical models for profit-
loss and claim severity distributions over their full range, or at least a large
part of that range. Recently, several authors emphasized the need for para-
metric models that are able to describe well both the central part of the
distribution of a risk as well as its tail, so as to be able to calculate accu-
rately, on the one hand, classical risk measures like the variance and, on the
other hand, tail-related risk measures like value-at-risk and expected short-
fall. To this end, some authors have presented mixture models or models
with change points in the densities. See for instance Frigessi et al. (2002)
and Cooray and Ananda (2005).
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Adequate modelling of the extreme tail is needed in order to be able to
estimate frequencies of rare events. The peaks-over-threshold methodology
(Davison and Smith, 1990) puts forward the generalized Pareto distribution
(GPD) as the appropriate model to be fitted to the excess of a variable X
over a high threshold u: for y ≥ 0,

Pr[X − u > y | X > u] ≈ (1 + γy/σ)
−1/γ
+(1.1)

= 1 − Gγ,σ(y).

Here, γ is a real shape parameter called the tail index of the distribution of
X, while σ > 0 is scale parameter which can change with u. The motivation
for the GPD is a result due to Pickands (1975) claiming the approxima-
tion (1.1) to be asymptotically correct for increasingly high thresholds for
a large class of distributions, including virtually all continuous text-book
distributions.

The requirement that the threshold should be high enough shows up in
practical data analysis too: typically, for the GPD to fit threshold excesses
well, the threshold needs to be so high that at most 10% of the data can
be modelled. It would then be desirable to devise more flexible distribution
families capable of modelling excesses over lower thresholds.

To illustrate the abovementioned restriction of the GPD, and in fact
every available extreme value method, we make use of the 1691 daily log-
returns of the euro-UK pound daily exchange rate from January 4, 1999, till
August 8, 2005. The data were collected by the European System of Central
Banks and are available at http://www.bportugal.pt/rates/cambtx.

Figure 1 shows on the left a histogram of the logarithms of the 805
positive log-returns and on the right a Pareto QQ plot. The latter plot
clearly indicates that the distribution of the log-returns has a heavy tail.
Further, in Figure 2 the maximum likelihood estimates of γ arising when
the GPD is fitted to the threshold excesses are given as a function of the
number k of exceedances when the threshold u is chosen as the (k + 1)-th
largest observation. The estimates change considerably with k, raising the
question of an appropriate choice of k or u. In Figure 3, we use W-plots
(Smith and Shively, 1995) to evaluate the goodness-of-fit of the GPD for
excesses over, on the left, a high threshold u equal to 0.0061, corresponding
to k = 150, and, on the right, a lower threshold of u = 0.0038 or k = 300.
These plots consist of the pairs

(− log (1 − Gγ̂,σ̂(Xn−j+1,n − u)) ,− log(1 − j/(k + 1)))

for j = 1, . . . , k, which should lie along the first diagonal if the GPD fits
well. Here, X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the ordered data. The fit at
the higher threshold of k = 150 is indeed better than at the lower one of
k = 300.
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So, the goal we pursue here is to extend the by now classical GPD in
such a way that, at the same time, the tail fits from the GPD are safe-
guarded and, moreover, the fit is still satisfactory for much lower thresholds
and thus for a much larger sample fraction. In the process of fitting this
extended GPD (EGPD), we obtain new estimators for the tail index γ that
are asymptotically unbiased. In practice this means that the sample paths
of the new tail index estimator as a function of the threshold exhibit much
larger regions of stability around the target value. In this way, the choice of
the threshold becomes less of an issue. Recently, several other bias-reduction
methods have been proposed, such as in Feuerverger and Hall (1999), Beir-
lant et al. (1999, 2002), Gomes et al. (2000) and Gomes and Martins (2002).
These methods are based on refined models for spacings of subsequent order
statistics and do not provide an explicit parametric model to be fitted to
the data directly.

In section 2, the EGPD is presented and motivated. Maximum likelihood
estimators for the EGPD parameters are derived in section 3. Their practical
use is illustrated for the exchange rate data and the asymptotic properties of
the corresponding tail index estimator are derived. We conclude the paper
with some simulations in section 4.

2 THE NEW MODEL

To motivate the EGPD we will use the relative excesses instead of the abso-
lute excesses as used in (1.1). This is rather natural as we confine ourselves
to the case of heavy-tailed or Pareto-type distributions, that is, γ > 0.
Replacing y in (1.1) by ux − u with x ≥ 1 leads to

(2.1) Pr[X/u > x | X > u] ≈ [x{(1 + δ) − δx−1}]−1/γ ,

where δ = uγ/σ − 1. In this sense we propose to extend the GPD model by

Pr[X/u > x | X > u] ≈ [x{(1 + δ) − δxρ}]−1/γ(2.2)

= 1 − Gγ,δ,ρ(x),

the special case ρ = −1 yielding the GPD. The ranges for the parameters
are γ > 0, ρ < 0, and δ ≥ max(−1, 1/ρ). Also, the case δ = 0 in (2.2) leads
to the simple strict Pareto model for the relative excesses, as used in Hill
(1975).

The motivation for the proposed form of the EGPD is that under gen-
eral assumptions, the approximation error in (2.2) is an order of magnitude
smaller than the one in (2.1), as we will show below. First of all, recall
that the assumption that the distribution of a risk X is of Pareto-type with
Pareto index 1/γ for some γ > 0 is equivalent to the assumption that for high
positive thresholds u, the relative excess X/u given X > u is approximately
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Pareto distributed. Formally, denoting the distribution and tail functions of
X by F and F̄ = 1 − F , respectively, the assumption is that for x ≥ 1,

Pr[X/u > x | X > u] =
F̄ (ux)

F̄ (u)
(2.3)

→ x−1/γ as u → ∞.

This assumption is equivalent to the case γ > 0 in Pickands (1975) leading
to the GPD approximation in (1.1). Failure of the (generalized) Pareto dis-
tribution to fit the excesses over a threshold u is due to a bad approximation
in (1.1) and (2.3), arising when u is not yet high enough for the asymptotics
to kick in. As a result, estimates of the tail index γ and other tail quantities
will be biased.

A second-order refinement of (2.3), capturing the deviation between the
left-hand and right-hand sides, is

(2.4)
Pr[X/u > x | X > u] − x−1/γ

A(u)
→ cx−1/γ xρ − 1

ρ

as u → ∞. Here, c and ρ < 0 are real numbers and A is a positive function
vanishing at infinity; see for example Bingham et al. (1987), chapter 3, or
Geluk and de Haan (1987). The tail expansion (2.4) is verified by most
heavy-tailed distributions, like for instance the ones listed in Table 1. The
constant ρ is called the second-order parameter. The closer it is to zero, the
slower is the rate of convergence in (2.3) and thus the higher the threshold
that is needed in order to make the (generalized) Pareto approximation
work.

Rewriting (2.4) gives, as u → ∞,

Pr[X/u > x | X > u](2.5)

= {1 − ρ−1cA(u)}x−1/γ + ρ−1cA(u)x−1/γ+ρ + o(A(u))

= [x{(1 + δ) − δxρ}]−1/γ + o(A(u)),

with δ = δ(u) = −cA(u)/ρ. Dropping the remainder term o(A(u)) now gives
the new model (2.2). The Pareto approximation, which is of order O(A(u)),
is thus refined to an approximation which is of order o(A(u)).

Note that the expansion in the above display can also be used to moti-
vate other extensions of the (generalized) Pareto distribution. For instance,
the second line of the previous display provides motivation to model the
distribution of relative excess by a mixture of two Pareto distributions.

3 ESTIMATION METHOD

Suppose we have n risks, X1, . . . ,Xn, independent and identically distri-
buted with unknown distribution function F . Maximum likelihood estima-
tion in the Pareto model based on the k relative excesses over the (k + 1)th



UNBIASED TAIL ESTIMATION 5

Table 1: Tail index γ and second-order constant ρ for selected heavy-tailed
distributions. Note: Burr(γ,−γ, σ/γ) is the same as GPD(γ, σ).

distribution distribution function γ ρ

[parameters]

Burr(γ, ρ̃, β) 1 −
(
1 + x−ρ̃/γ/β

)1/ρ̃
γ ρ̃/γ

[γ > 0, ρ̃ < 0, β > 0]

Student-tν C(ν)
∫ x
−∞

(
1 + y2/ν

)
−(ν+1)/2

dy 1/ν −2

[ν > 0]

Fréchet(α) exp(−x−α) 1/α −α

[α > 0]

Inverse Burr(λ, τ, σ)
(
1 + (x/σ)−λ

)
−τ

1/λ −λ

[λ > 0, τ > 0, σ > 0]

largest observation Xn−k,n leads to the Hill (1975) estimator

(3.1) γ̂H
k,n =

1

k

k∑

j=1

log
Xn−j+1,n

Xn−k,n

for the tail index γ. Discrepancies between the true excess distribution and
the asymptotic Pareto model may lead to severely biased tail estimates. In
such circumstances, the EGPD (2.2) can provide a much more satisfactory
fit to the relative excesses.

We propose to fit the EGPD to the relative excesses over a high enough
threshold u by first computing an initial estimate of the second-order shape
parameter ρ and subsequently estimating γ and δ by maximum likelihood.
The estimate for ρ is based on a larger fraction of the sample than just
the relative excesses over u, a procedure sometimes referred to as external
estimation of ρ. We will follow here the approach in Fraga Alves et al. (2003),
which is one of the more promising ways to estimate the second-order shape
parameter for heavy-tailed distributions, see remark 3.2 below.

The reason we do not estimate the three EGPD parameters (γ, δ, ρ)
jointly by maximum likelihood is that for reasonable sample sizes, the like-
lihood surface is almost flat in ρ, rendering such a procedure rather cum-
bersome in practice. An additional problem is that for ρ close to zero, the
model is hardly identifiable. In a similar situation, the full maximum like-
lihood method is discussed in Feuerverger and Hall (1999) and Beirlant et
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al. (1999, 2002).

We apply the method to the 805 daily log-returns of the euro-UK pound
exchange rate introduced in section 1. In Figure 4, we present estimates
for the tail index γ for a range of thresholds u = Xn−k,n as a function of
k. We compare three estimators: the Hill estimator (3.1), the maximum
likelihood estimator when fitting the GPD (1.1) to the absolute excesses,
and the above described estimator when fitting the EGPD to the relative
excesses with initial second-order parameter estimate ρ̂ = −0.84. Observe
the stability of the EGPD-based estimates up to k = 400, leading to an
estimate for γ close to 0.25. Also for the new model the goodness-of-fit can
be assessed by W-plots, this time consisting of the pairs

(
− log

(
1 − Gγ̂,δ̂,ρ̂(Xn−j+1,n/u)

)
,− log(1 − j/(k + 1))

)

for j = 1, . . . , k. In Figure 5, W-plots are constructed for the same thresholds
as in Figure 3, corresponding to k = 150 and 300 exceedances, respectively.
For both thresholds, the EGPD provides a clearly better fit, especially in
the far tail.

Given an initial estimate ρ̂ of the second-order parameter, the maximum
likelihood estimates for the EGPD parameters γ and ρ are defined as the
solutions to the score equations that arise when the relative excesses

Ej = Xn−j+1,n/Xn−k,n, for j = 1, . . . , k.

are modelled by the EGPD (2.2). Since δ = δ(u) = −cA(u)/ρ is typically
close to zero, see (2.5), we can approximately solve the score equations by
linearizing them in δ. Writing Ek,n(a) = k−1

∑k
j=1 Ea

j , we obtain

γ̂EP
k,n (ρ̂) = γ̂H

k,n + δ̂EP
k,n (ρ̂)

(
1 − Ek,n(ρ̂)

)
,(3.2)

δ̂EP
k,n (ρ̂) =

{(
1 − ρ̂γ̂H

k,n

)
Ek,n(ρ̂) − 1

}
(3.3)

÷
{(

2 + ρ̂ − ρ̂Ek,n(ρ̂) − 2ρ̂γ̂H
k,n

)
Ek,n(ρ̂)

−
(
1 − 2γ̂H

k,nρ̂(2 + ρ̂)
)
Ek,n(2ρ̂) − 1

}
.

The details of this derivation can be found in Appendix A.1.
The EGPD-based tail index estimator as obtained from (3.2) and (3.3)

is asymptotically normal. Theorem 3.1 below shows that for intermediate
sequences k = kn for which

√
kA(U(n/k)) → λ 6= 0, the main bias com-

ponent of the new estimator is of smaller order than A(U(n/k)), the latter
being the order of the bias of for instance the Hill or GPD-based estimators.
In practice, this leads to more stable sample paths of the estimates as a
function of k. The asymptotic variance is the same as the one obtained in
Gomes and Martins (2002) for the estimator in (3.4); see also Feuerverger
and Hall (1999) and Beirlant et al. (2002).
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Theorem 3.1. Let X1, . . . ,Xn be a random sample from a distribution func-
tion F satisfying (2.4). If k = kn is a sequence of positive integers such that
k → ∞, k/n → 0 and

√
kA(U(n/k)) → λ ∈ [0,∞) as n → ∞, then

√
k

(
γ̂EP

k,n (ρ) − γ
)
→d N

(
0,

(1 − ργ)2

ρ2

)
.

This statement holds also true if we replace ρ by a weakly consistent estima-
tor sequence ρ̂n.

The proof of Theorem 3.1 can be found in Appendix A.2.

Remark 3.1. The approach described here should be compared with another
bias-reduction technique described in Feuerverger and Hall (1999), Beirlant
et al. (1999, 2002) and more specifically in Gomes and Martins (2002). These
references rely on the fact that the scaled log-spacings

Zj = j(log Xn−j+1,n − log Xn−j,n),

for j = 1, . . . , k, are approximately exponentially distributed with mean
γeD(j/n)−ρ̃

, where ρ̃ < 0 and D ∈ R. A similar linearization of the likelihood
then leads to the estimator

(3.4) γ̂U
k,n(ρ̃) = γ̂H

k,n + Z̄k(ρ̃)

(
k−1

∑k
j=1 j−ρ̃

)
Z̄k(0) − Z̄k(ρ̃)

(
k−1

∑k
j=1 j−ρ̃

)
Z̄k(ρ̃) − Z̄k(2ρ̃)

,

where Z̄k(a) = k−1
∑k

j=1 j−aZj. Gomes and Martins (2002) studied this
estimator in detail under a second-order regular variation assumption for-
mulated for the tail quantile function U(x) = F←(1 − x−1), with F← the
quantile or generalized inverse function of F , rather than for the tail func-
tion F̄ as in our equation (2.4): the assumption is that there exist γ > 0,
ρ̃ < 0, C ∈ R and a positive function B vanishing at infinity such that

(3.5)
U(tx)/U(t) − xγ

B(t)
→ Cxγ xρ̃ − 1

ρ̃

as t → ∞ and for all x > 0. It can be shown that (2.4) and (3.5) are
equivalent with B(t) = A(U(t)), ρ̃ = ργ, and C = γ2c.

Remark 3.2. Computation of the EGPD-parameter estimates in (3.2) and
(3.3) requires an initial estimator of the second-order parameter ρ. In the
case study and in the simulations in section 4, we have exploited the relation
ρ = ρ̃/γ with ρ̃ as in (3.5). The numerator, ρ̃, is estimated by the estimator
proposed in Fraga Alves et al. (2003), given by

(3.6) ˆ̃ρ(τ)(k1) = −

∣∣∣∣∣∣

3
(
T

(τ)
n (k1) − 1

)

T
(τ)
n (k1) − 3

∣∣∣∣∣∣
,



8 J. BEIRLANT, E. JOOSSENS AND J. SEGERS

where τ ≥ 0 is a tuning parameter and

T (τ)
n (k1) =

(
M

(1)
n (k1)

)τ
−

(
M

(2)
n (k1)/2

)τ/2

(
M

(2)
n (k1)/2

)τ/2
−

(
M

(3)
n (k1)/6

)τ/3
,

M (i)
n (k1) =

1

k1

k1∑

j=1

(log Xn−j+1,n − log Xn−k1,n)i ,

with abτ standing for b log a when τ = 0. The value k1 determines the
threshold used to estimate ρ̃. In Fraga Alves et al. (2003), it is recommended
to take k1 = min(n − 1, b2n/ log log nc) and to set the tuning parameter τ
equal to 0 whenever one expects ρ̃ to be in the range [−1, 0) and to set τ
equal to 1 otherwise. The final estimator for ρ, then, is given by

(3.7) ρ̂ = ρ̃(τ)(k1)/γ̂,

with the estimator (3.4) of γ used in the denominator.

Remark 3.3. The actual interest in risk analysis often lies in tail-related risk
measures such as value-at-risk (VaR) and expected shortfall. The approxi-
mation Pr[X > x] ≈ Pr[X > u]Ḡγ,δ,ρ(x/u) for x ≥ u > 0 yields estimators
for various tail quantities. The tail function F̄ can be estimated by

(3.8) ˆ̄F (x) =
Nu

n
Ḡγ̂,δ̂,ρ̂(x/u)

for x ≥ u > 0. Invert (3.8) to obtain an estimator for VaRp = F←(1 − p):

(3.9) V̂aRp = G←
γ̂,δ̂,ρ̂

(
np

Nu

)

for 0 < p < Nu/n, where G←
γ̂,δ̂,ρ̂

denotes the quantile function of the fitted

EGPD. Finally, the expected shortfall at tail probability p,

ESFp = E(X − VaRp)+ =

∫
∞

VaRp

F̄ (x) dx,

can be estimated by substitution of (3.8) and (3.9) into the previous display.

4 SIMULATIONS

We assessed the performance of the maximum likelihood estimator for the
tail index γ that arises when fitting the EGPD to the relative excesses over
a large threshold. The second-order parameter ρ was estimated as in (3.7),
with estimator (3.4) of γ used in the denominator. The EGPD-based esti-
mate for the tail index was then compared to the Hill estimator (3.1), the
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Table 2: Distributions in simulation study.

Burr(γ, ρ̃, β) • (γ, ρ̃, β) = (0.5,−1, 1)
• (γ, ρ̃, β) = (0.5,−0.5, 1)
• (γ, ρ̃, β) = (0.5,−0.25, 1)

Student-tν • ν = 4, so γ = 1/ν = 0.25 and ρ = −2
Fréchet(α) • α = 2, so γ = 0.5

maximum likelihood estimator based on the GPD-approximation for abso-
lute excesses, and the estimator in equation (3.4) with initial estimator for
ρ̃ as in (3.6). The distributions considered in the simulation study are listed
in Table 2.

For each distribution, 100 random samples of size 1000 were generated.
The plots in Figures 6 and 7 contain, as a function of k, the medians (left)
as well as the root mean squared errors (right) of the estimates.

The new method leads to competitive results in comparison with the ex-
isting methods. Note that in case of the Burr(0.5,-0.5,1) distribution, which
coincides with the GPD(0.5,0.5) distribution, the root MSE performance
of the EGPD-based estimator is comparable to the one of the GPD-based
estimator.

When simpler estimators than (3.4) such as the Hill estimator are used
for the denominator of (3.7), then the overall picture as given by the sim-
ulations still stands, except for t-distributions in which case the method
proposed in Gomes and Martins (2002) works best.

A APPENDIX

Recall Ek,n(a) = k−1
∑k

j=1 Ea
j with Ej = Xn−j+1,n/Xn−k,n.

A.1 Score Equations

The score equations that arise when modelling the relative excesses by the EGPD
family are

(A.1) − k

γ̂
+

1

γ̂2

k∑

j=1

log Ej +
1

γ̂2

k∑

j=1

log(1 + δ̂ − δ̂Eρ̂
j ) = 0,

and

(A.2)

(
1

γ̂
+ 1

) k∑

j=1

1 − Eρ̂
j

1 + δ̂ − δ̂Eρ̂
j

=

k∑

j=1

1 − (1 + ρ̂)Eρ̂
j

1 + δ̂ − δ̂(1 + ρ̂)Eρ̂
j



10 J. BEIRLANT, E. JOOSSENS AND J. SEGERS

respectively. By (A.1) we can express γ̂ explicitly as a function of δ̂:

(A.3) γ̂ =
1

k

k∑

j=1

log Ej +
1

k

k∑

j=1

log(1 + δ̂ − δ̂Eρ̂
j ).

Linearize equation (A.2) in δ̂ to find

(A.4) δ̂ =

(
1
γ̂

+ 1
)∑k

j=1

(
1 − Eρ̂

j

)
− ∑k

j=1

(
1 − (ρ̂ + 1)Eρ̂

j

)

(
1
γ̂

+ 1
)∑k

j=1

(
1 − Eρ̂

j

)2

−
∑k

j=1

(
1 − (ρ̂ + 1)Eρ̂

j

)2 .

The first term on the right-hand side in (A.3) is equal to the Hill estimator. Hence,

after linearization in δ̂, the maximum likelihood estimator for γ can be written as in
(3.2). Substitute (3.2) into (A.4) and linearize once more to get arrive at expression
(3.3) for the estimator of δ.

A.2 Proof of Theorem 3.1

Using the methods of proof for Theorem 3.1 in Dekkers et al. (1989) and Theorem 1
in de Haan and Peng (1998), we find

√
k

{(
γ̂H

k,n, Ek,n(ρ), Ek,n(2ρ)
)
−

(
γ,

1

1 − ργ
,

1

1 − 2ργ

)}
′

→d N(µ,Σ)

where

µ =

(
cγ2λ

1 − ργ
,

cγ2λ

(1 − ργ)(1 − 2ργ)
,

2cγ2λ

(1 − 2ργ)(1 − 3ργ)

)′

and

Σ =




γ2 ργ2

(1−ργ)2
2ργ2

(1−2ργ)2

ργ2

(1−ργ)2
ρ2γ2

(1−2ργ)(1−ργ)2
2ρ2γ2

(1−ργ)(1−2ργ)(1−3ργ)

2ργ2

(1−2ργ)2
2ρ2γ2

(1−ργ)(1−2ργ)(1−3ργ)
4ρ2γ2

(1−4ργ)(1−2ργ)2




.

From equation (3.2) it follows that γ̂EP
k,n can be written as

γ̂EP
k,n (ρ) = g

(
γ̂H

k,n, Ek,n(ρ), Ek,n(2ρ)
)

= γ̂H
k,n +

(
1 − Ek,n(ρ)

)
f

(
γ̂H

k,n, Ek,n(ρ), Ek,n(2ρ)
)
,

where

f(x, y, z) =
1 + (ρx − 1)y

1 + (ρy − ρ + 2ρx − 2)y + (1 − (1 + ρ)ρx)z
.

Since, moreover,

g

(
γ,

1

1 − ργ
,

1

1 − 2ργ

)
= γ,

we find by the delta-method,

√
k

(
γ̂EP

k,n (ρ) − γ
)
→d N (∇g′µ,∇g′Σ∇g) ,
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where ∇g is the gradient of g evaluated in
(
γ, (1 − ργ)−1, (1 − 2ργ)−1

)
′

. Some
tedious algebra now leads from the previous display to the expressions for the
limiting mean and variance as stated in the theorem.

The final statement in the theorem can be proved in the same way as Corol-
lary 2.1 in Gomes and Martins (2002). This concludes the proof of Theorem 3.1.
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Figure 1: Left: Histogram of the logarithms of the positive daily log-returns
of the euro-UK pound exchange rate. Right: Pareto QQ plot of the daily
log-returns
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Figure 2: Maximum likelihood estimates of γ for the daily log-returns of the
euro-UK pound exchange rate that result from fitting the GPD to excesses
over thresholds with k exceedances
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Figure 3: W-plots assessing the goodness-of-fit of the GPD to excesses over
thresholds with k = 150 (left) and k = 300 (right) exceedances for the daily
log-returns of the euro-UK pound exchange rate
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Figure 4: Maximum likelihood estimates of γ for the daily log-returns of the
euro-UK pound exchange rate that result from fitting the Pareto, GPD, and
EGPD to excesses over thresholds with k exceedances
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Figure 5: W-plots assessing the goodness-of-fit of the EGPD to excesses over
thresholds with k = 150 (left) and k = 300 (right) exceedances for the daily
log-returns of the euro-UK pound exchange rate
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Figure 6: Medians and RMSEs of γ̂ as function of k, based on 100 samples of
size 1000 from Burr(0.5,-1,1), Burr(0.5,-0.5,1) and Burr(0.5,-0.25,1) dis-
tributions
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Figure 7: Medians and RMSEs of γ̂ as function of k, based on 100 samples
of size 1000 from Student-t (ν = 4) and Fréchet (α = 2) distributions


