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Abstract: In this note we consider the question under which conditions all entries of the matrix
I−(I+X)−1 are nonnegative in case matrix X is a real positive definite matrix. Sufficient conditions
are presented as well as some necessary conditions. One sufficient condition is that matrix X−1 is an
inverse M -matrix. A class of matrices for which the inequality holds is presented.

Keywords: Positive matrices, positive definite matrices, inverse M -matrix problem.
Jel-codes: C00.

1 Introduction

In various scientific areas like e.g. economics and biology naturally the study of positive systems
arises. To analyze these kind of systems the theory of nonnegative matrices plays an important role.
This theory is well-documented in e.g. the seminal work of Berman and Plemmons [1].
In this note we study the problem under which conditions, entry-wise, the inequality

(I +X)−1 ≤ I (1)

holds if X is a positive definite matrix. This question e.g. recently arose in [3] in the equivalent
formulation of this problem (see below) under which conditions on the positive definite matrix X,
matrix (I + X)−1 is a so-called diagonally dominant Stieltjes matrix. Before we present formal
definitions we introduce some notation.

Notation 1.1
- A ≥ B denotes the entrywise inequality for A and B, aij ≥ bij.
- A � (�)B means that matrix A−B is positive (semi-)definite.
- Zn denotes the set of real n× n matrices with nonpositive off-diagonal entries.
- I and 0 denote the n× n identity and zero matrix, respectively.
- ei is the i

th standard basisvector in IRn and e = (1, 1, · · · , 1)T . �

Next we recall some definitions.

Definition 1.2
- X is called an M −matrix if X ∈ Zn, its inverse exists and X

−1 ≥ 0.
- X is called a Stieltjes matrix if X is a symmetric M -matrix.
- a symmetric matrix X is called diagonally dominant if |xii| ≥

∑n
j=1,j �=i |xij|, for all i = 1, · · ·n. �

From e.g. [1, pp.141] we have the next result.

Lemma 1.3
1) Symmetric M-matrices are positive definite.

2) If X � 0 and X ∈ Zn then X is an M-matrix. �

The following results, which can be verified e.g. by using the definition of matrix inverse, will be
used in the next section.
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Lemma 1.4
1) If A and C are nonsingular m×m and n× n matrices and A+BCD is invertible, then

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1. (2)

2) If XY = 0 and I +X is invertible, then (I +X)−1Y = Y .
3) If XY = Y X = 0 and all next inverse matrices exist, then (I+X+Y )−1 = (I+X)−1+(I+Y )−1−I.
�

2 Main Results

We start this section with an equivalent statement of the problem. The proof of this result uses the
next well-known matrix identity (which follows directly from (2), provided X has no eigenvalues −1
and 0)

I − (I +X)−1 = (I +X−1)−1. (3)

Theorem 2.1
Let X � 0. Then, (1) holds if and only if (I +X)−1 is a Stieltjes matrix.

Proof:
⇒ Since I − (I + X)−1 ≥ 0 it is obvious that (I + X)−1

ij ≤ 0, i �= j. Furthermore, since X � 0,
(I +X)−1 � 0 too. From Lemma 1.3, item 2), it follows then that (I +X)−1 is an M -matrix.
⇐ By assumption (I +X)−1

ij ≤ 0, i �= j. So, (I − (I +X)−1)ij ≥ 0, i �= j. Since I − (I +X)−1 =
(I+X−1)−1 � 0 it follows that also (I− (I+X)−1)ii > 0. From which the conclusion is now obvious.
�

Corollary 2.2
Let X � 0. Then

1) (1) holds only if X ≥ 0.
2) (1) holds if and only if X = Y − I for some positive definite matrix Y � I which has the property
that Y −1 is Stieltjes.

Proof:
1) According Theorem 2.1 (1) holds only if (I + X)−1 is a Stieltjes matrix. But this implies that
I +X ≥ 0. From this it is obvious that Xij ≥ 0, i �= j. Since by assumption X � 0 it follows that
also Xii ≥ 0, which completes the proof.
2) ” ⇒ ” According Theorem 2.1, Y −1 := (I + X)−1 is a Stieltjes matrix. Obviously, X = Y − I.
Since, by assumption, X � 0 it is clear that Y � I.
” ⇐ ” Follows directly by Theorem 2.1 from the fact that Y −1 = (I +X)−1 is Stieltjes. �

Another sufficient condition which immediately results from equality (3) is

Theorem 2.3
Let X � 0 and assume that X−1 is a Stieltjes matrix. Then

1) (1) holds.
2) if X−1 is, moreover, diagonally dominant then (I +X)−1 is diagonally dominant too.
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Proof:
1) If X−1 is a Stieltjes matrix, I +X−1 is a Stieltjes matrix too. So (I +X−1)−1 ≥ 0. Using (3) the
result follows then.
2) First note that I − (I +X)−1 � 0. From item 1) it follows that (I +X)−1 ∈ Zn. Consequently,
I − (I +X)−1 ≥ 0. Using this and the assumption that X−1e ≥ 0 it follows then immediately that

(I +X)−1e = (I − (I +X)−1)X−1e ≥ 0.

�

Remark 2.4
From Theorem 2.3 it follows that all known conditions in literature that suffice to conclude from the
positiveness of matrix X that X−1 is an M -matrix are also sufficient to conclude that (1) holds. So,
e.g., if X ≥ 0 either is
- totally nonnegative and det(X[i,j]) = 0 for i + j = 2k, where k is a positive integer and i �= j (see
Markham [5]);
- scaled to have unit diagonal elements and off-diagonal elements which satisfy 0 < y ≤ Xij ≤ x < 1
and s defined by x2 = sy + (1− s)y2 satisfies s ≤ 1

n−2
(assuming n ≥ 3, see [8]);

- Xij ≥ min(Xik, Xkj) for all i, j, k and Xii > Xij for all i, j, i �= j, (the so-called ultrametric matrices
see (Mart́ınez et al. [6]). These matrices can equivalently be characterized as X =

∑2n−1
i=1 τiuiu

T
i ,

where the nonzero vectors ui have only entries 0 and 1, τi ≥ 0 and always τi > 0 if ui contains only
one nonzero entry. These vectors ui are determined from the 2n−1 vertices of the with X associated
rooted tree. (see Nabben et al. [7]).
So, in all of these cases we can conclude that (1) is satisfied too. Moreover, notice that the inverse
of an ultrametric matrix is diagonally dominant (see [7] again). �

Lemma 2.5, below, contains on the one hand a result which will be used in the ensueing proofs and
on the other hand some observations concerning diagonally dominant matrices.

Lemma 2.5
Assume X is an invertible matrix and D is a positive diagonal matrix. Consider P := (X +D)−1.

1) If X−1 is diagonally dominant, then P is diagonally dominant.
2) If X−1 is a Stieltjes matrix, then P is a Stieltjes matrix.
3) If X−1 is a diagonally dominant Stieltjes matrix, then (X + αeeT )−1 is a diagonally dominant
Stieltjes matrix for all α ≥ 0.

Proof:
1) First notice that

(X +D)−1 = D−1 −D−1(D−1 +X−1)−1D−1. (4)

Next consider

H :=

(
D−1 +X−1 D−1

D−1 D−1

)

Due to our assumptions, it is easily verified that H is diagonally dominant. From e.g. Lei et al. [4]
(see also Carlson et al. [2]) we conclude then that the Schur complement of H, which equals (4), is
also diagonally dominant.
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2) Since by assumption X−1 is a Stieltjes matrix, by Lemma 1.3, item 1), X−1 � 0. From this it is
obvious that also P � 0. So, the diagonal entries of P are positive.
Furthermore since, by assumption, both X and D are a positive matrix also X + D is a positive
matrix. Next we consider the off-diagonal entries of P . Since both D−1 and X−1 are Stieltjes
matrices, also D−1 + X−1 is a Stieltjes matrix. So, in particular, all entries of (D−1 + X−1)−1 are
positive. From (4) it is obvious then that all off-diagonal entries of P are negative. Since we already
argued above that P is positive definite, Lemma 1.3 shows that P is a Stieltjes matrix.
3) Clearly, for every α ≥ 0, (X + αeeT )−1 � 0. That this matrix is then a Stieltjes matrix follows
from the fact that

(X + αeeT )−1 = X−1 − αX−1e(αeTX−1e+ 1)−1eTX−1

= X−1 − α
β
yyT ,

where β := 1
αeT X−1e+1

> 0 and y = X−1e ≥ 0 (since X−1 is diagonally dominant).
Furthermore it follows from the above identity that

(X + αeeT )−1e = X−1e− α
β
yyT e

= (1− αy
T e

β
)y

=
1

β
y ≥ 0.

�

From items 1) and 3) of Lemma 2.5 we conclude in particular that if (I+X)−1 is diagonally dominant
then also for an arbitrary positive diagonal matrix D and α ≥ 0 the matrix (I +X +D + αeeT )−1

is diagonally dominant.

Proposition 2.6
Let X � 0. Assume that (1) holds, then

(αI +X−1)−1 ≥ 0, for all α ∈ [0, 1].

Proof:
For α = 0 the result follows from Corollary 2.2, and for α = 1 by assumption.
Next consider for α ∈ (0, 1),

(αI +X−1)−1 =
1

α
(I − 1

α
(
1

α
I +X)−1).

Notice that 1
α
I + X = ( 1

α
− 1)I + I + X, where D := ( 1

α
− 1)I is a positive diagonal matrix and

(I+X)−1 is a Stieltjes matrix (see Theorem 2.1). So, according Lemma 2.5, ( 1
α
I+X)−1 is a Stieltjes

matrix. Therefore

(I − 1

α
(
1

α
I +X)−1)ij ≥ 0, i �= j. (5)

Since (αI +X−1)−1 � 0 it follows that (5) also holds for i = j. �
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Remark 2.7
From [1, Theorem 6.2.4] we have that if (αI +A)−1 ≥ 0 ∀α ≥ 0, A is a nonsingular M -matrix. From
this we therefore conclude that if X � 0 and (I +X−1)−1 ≥ 0, but X−1 �∈ Zn necessarily there exists
an α > 1 such that (αI +X−1)−1 �≥ 0. �

Next, we present a class of matrices for which the inequality (1) is satisfied. The matrices are con-
structed recursively. Lemma 2.8, below, presents the initialization of this process, whereas Theorem
2.9 indicates how after the initialization the matrices are inductively constructed.

Lemma 2.8
Consider xi, yj ∈ IRn, i = 1, · · · , k, j = 1, · · · , l, xi, yi ≥ 0, with xT

i xj = 0, yT
i yj = 0 i �= j and

xT
i yj = 0. Let Xi := xix

T
i , Yi := yiy

T
i , x :=

∑k
i=1 ρixi, y :=

∑l
i=1 τiyi, X :=

∑k
i=1 αiXi and

Y :=
∑l

i=1 βiYi. Then for all αi, βi, ρi, τi, µi ≥ 0,
1)

(I +X)−1 = I −
k∑

i=1

αi

1 + αixT
i xi

xix
T
i ∈ Zn, (6)

and (I +X)−1x ≥ 0.
2) (I +X + αk+1xx

T )−1 ∈ Zn and (I +X + αk+1xx
T )−1x ≥ 0.

3) With z := µ1x+ µ2y, for all γ ≥ 0,

Z−1 := (I +X + αk+1xx
T + Y + βl+1yy

T + γzzT )−1 ∈ Zn,

and Z−1z ≥ 0.

Proof:
1) Obviously, I +

∑r
i=1 αixix

T
i � 0 and thus invertible. Straightforward calculations show that

(I +
r∑

i=1

αixix
T
i )(I −

k∑
i=1

αi

1 + αixT
i xi

xix
T
i ) = I +

r∑
i=1

αixix
T
i −

k∑
i=1

αi

1 + αixT
i xi

xix
T
i

−
k∑

i=1

α2
ix

T
i xi

1 + αixT
i xi

xix
T
i

= I.

Which shows the correctness of the inversion formula. From the fact that xi ≥ 0 it follows then from
(6) that all nondiagional entries of (I +

∑k
i=1 αiXi)

−1 are nonpositive, whereas its diagonal entries
are positive since (I +

∑r
i=1 αixix

T
i )

−1 � 0.
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Finally, it follows directly from (6) and the fact that xT
i xj = 0 that

(I +X)−1x = x−
k∑

i=1

αi

1 + αixT
i xi

xix
T
i x

= x−
k∑

i=1

αiρi

1 + αixT
i xi

xix
T
i xi

=
k∑

i=1

ρi(1− αix
T
i xi

1 + αixT
i xi

)xi

=
k∑

i=1

ρi

1 + αixT
i xi

xi ≥ 0.

2) Using (2) again we have that

(I +X + αk+1xx
T )−1 = (I +X)−1 − αk+1

1 + αk+1xT (I +X)−1x
(I +X)−1xxT (I +X)−1.

From item 1) we have that (I + X)−1 ∈ Zn and (I + X)−1x ≥ 0. Using this, and the fact that
(I +X + αk+1xx

T )−1 � 0, it is obvious then that (I +X + αk+1xx
T )−1 ∈ Zn.

Furthermore it follows that

(I +X + αk+1xx
T )−1x = (I +X)−1x− αk+1

1 + αk+1xT (I +X)−1x
(I +X)−1xxT (I +X)−1x

=
1

1 + αk+1xT (I +X)−1x
(I +X)−1x ≥ 0.

3) First note that (X + αk+1xx
T )(Y + βl+1yy

T ) = (Y + βl+1yy
T )(X + αk+1xx

T ) = 0. So, by Lemma
1.4 item 3) and Lemma 2.8 item 2),

V −1 := (I +X + αk+1xx
T + Y + βl+1yy

T )−1

= (I +X + αk+1xx
T )−1 + (I + Y + βl+1yy

T )−1 − I ∈ Zn.

Furthermore we conclude from this expression and Lemma 1.4, item 2), and Lemma 2.8, item 2),
respectively, that

V −1z = (I +X + αk+1xx
T )−1z + (I + Y + βl+1yy

T )−1z − z
= µ2y + µ1(I +X + αk+1xx

T )−1x+ µ1x+ µ2(I + Y + βl+1yy
T )−1y − (µ1x+ µ2y)

= µ1(I +X + αk+1xx
T )−1x+ µ2(I + Y + βl+1yy

T )−1y ≥ 0.

From (2) it follows then (using the fact that Z−1 � 0) that

Z−1 = V −1 − γ

1 + γzTV −1z
V −1zzTV −1 ∈ Zn.

Finally,

Z−1z = V −1z − γ

1 + γzTV −1z
V −1zzTV −1z

=
1

1 + γzTV −1z
V −1z ≥ 0.
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�

Theorem 2.9 is a straightforward generalization of Lemma 2.8, item 3). Since the proof is a direct
copy of this part of the lemma, we skip it.

Theorem 2.9 Assume X,Y ∈ IRn×n are nonnegative positive semi-definite matrices and x, y ∈ IRn

nonnegative vectors such that
1) XY = Y X = 0, Xy = Y x = 0 and xTy = 0;
2) for all α, β ≥ 0, (I +X + αxxT )−1, (I + Y + αyyT )−1 ∈ Zn;
3) for all α, β ≥ 0, (I +X + αxxT )−1x and (I + Y + αyyT )−1y are nonnegative.
Then, with z := µ1x+ µ2y and Z−1 := (I +X + αxxT + Y + βyyT + γzzT )−1, for all α, β, γ, µi ≥ 0,
Z−1 ∈ Zn and Z−1z ≥ 0. �

The next algorithm shows how one can construct a set of inverse M -matrices satisfying (1). The
proof that indeed all matrices generated in this way satisfy (1) follows directly from Lemma 2.8 and
Theorem 2.9.

Algorithm 2.10

Step 1 Choose sets of orthogonal vectors X1 and Yi, i = 1, · · · ,m which are mutual orthogonal too.

Step 2 Choose arbitrary nonnegative vectord x1 ∈ SpanX1 and yi ∈ SpanYi, respectively. Let z1 be
an arbitrary nonnegative linear combination of x1 and y1.
Assume x1j ∈ X1, j = 1, · · · , k and yij ∈ Yi, j = 1, · · · , li. Let, for arbitrary nonnegative

αj, βij, γi, X[1] :=
∑k

j=1 αjx1jx
T
1j + αk+1x1x

T
1 , Y[i] :=

∑li
j=1 βijyijy

T
ij + βili+1yiy

T
i and Z1 :=

X[1] + Y[1] + γ1z1z
T
1 .

Step 3 Next calculate recursively for t = 1 to m
xt+1 := zt
X[t+1] := X[t] + Y[t] + αk+t+1xtx

T
t ,

zt+1 := µ
t+1
1 xt+1 + µ

t+1
2 yt+1 and

Zt+1 := X[t+1] + Y[t+1] + γt+1zt+1z
T
t+1.

Step 4 Then, Zm+1 is such that (I + Zm+1)
−1 ∈ Zn. �

Remark 2.11
1) Obviously, in the above algorithm the choice and numbering of the sets X1 and Yi is arbitrary.
Consequently, all matrices that can be obtained from the sets X1 and Yi that satisfy inequality (1)
are permutations of matrix Zm+1 calculated in Step 4 of the algorithm.
2) By considering in the above algorithm for each set the natural basis vector ei we obtain the set of
all matrices that can be generated using Theorem 2.9 that satisfy the inequality (1). Example 2.13,
below, gives an illustration in case n = 3. �

Corollary 2.12 With the notation of Lemma 2.8 and Theorem 2.9 let X1 := e1 and Yi := ei+1, i =
1, · · · , n − 1. Choose ρi = τi = µi = 1. Then, using Algorithm 2.10, it follows that any ultrametric
matrix satisfies the inequality (1). �
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The next example provides a complete description of all 3 × 3 inverse M -matrices that can be
generated from Theorem 2.9. In particular it shows that the set of Stieltjes matrices which can be
generated using Theorem 2.9 contains also matrices that are not ultrametric.

Example 2.13
Consider X1 := {e1} and Yi := {ei+1}, i = 1, 2, with ei ∈ IR3. Then for every αi, βi, µi, ρi, γ ≥ 0, the
next matrix is an inverse M -matrix

I +X = I + α1e1e
T
1 + α2e2e

T
2 + α3(ρ1e1 + ρ2e2)(ρ1e1 + ρ2e2)

T + β1e3e
T
3 +

γ(µ1ρ1e1 + µ1ρ2e2 + µ2e3)(µ1ρ1e1 + µ1ρ2e2 + µ2e3)
T

=


 1 + α1 + (α3 + γµ

2
1)ρ

2
1 (α3 + γµ

2
1)ρ1ρ2 γµ1ρ1µ2

(α3 + γµ
2
1)ρ1ρ2 1 + α2 + (α3 + γµ

2
1)ρ

2
2 γµ1ρ2µ2

γµ1ρ1µ2 γµ1ρ2µ2 1 + β1 + γµ
2
2


 . (7)

By considering above the case αi = 0, γ = 1, µ1 = 1, ρ1 = 1, ρ2 = 2, µ2 = 3 we see that

I +X :=


 2 2 3

2 5 6
3 6 10


 ,

is an inverse M -matrix too. It is easily verified that I +X is not ultrametric.
Finally notice that all other inverse M -matrices that can be generated using Algorithm 2.10 are
permutations of (7), i.e. are of the form P (I +X)P T where P is a permutation matrix. �

Example 2.14
Consider the nonnegative vectors vi ∈ IRni , ni ≥ 1, i = 1, · · · , k, with ∑k

i=1 ni = n. Let wT
j :=

(vT
1 , v

T
2 , · · · , vT

j , 0) ∈ IRn, j = 1, · · · , k.
Then, for all λi ≥ 0, (I +X)−1 is a Stieltjes matrix if

X =
k∑

i=1

λiwiw
T
i .

This follows, using the notation from Lemma 2.8 and Theorem 2.9, by considering X1 := {w1} and
Yj := {yj}, where yj = (0, vT

j+1, 0), j = 1, · · · , k − 1, respectively, with ρi = τi = µi = 1. �

Unfortunately, Algorithm 2.10 does not generate all nonnegative positive definite matrices for which
the inequality (1) holds. This is shown in the next example.

Example 2.15 Consider

X :=


 1 2 1

2 6 1
1 1 2


 .

Then X � 0 and (I +X)−1 ∈ Z3. However, the equation (see (7))
 α1 + (α3 + γµ

2
1)ρ

2
1 (α3 + γµ

2
1)ρ1ρ2 γµ1ρ1µ2

(α3 + γµ
2
1)ρ1ρ2 α2 + (α3 + γµ

2
1)ρ

2
2 γµ1ρ2µ2

γµ1ρ1µ2 γµ1ρ2µ2 β1 + γµ
2
2


 = X
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has not a solution with αi, βi, µi, ρi, γ ≥ 0. For, from the (1, 3) and (2, 3) entries it follows that
ρ1 = ρ2. Consequently, according the (1, 2) entry, (α3 + γµ

2
1)ρ

2
1 = 2. However this implies that the

(1, 1) entry does not have an appropriate solution for α1.
In a similar way it can be shown that also for the permuted matrices of (7) no appropriate solution
exists. �

We conclude this section with the observation that, if we have a set of complementary matrices, Xi,
for which (I +Xi)

−1 are Stieltjes, also the convex hull of these matrices has this property. The exact
statement follows in Theorem 2.17 below. To prove this theorem we consider the following lemma.

Lemma 2.16
1) Assume that (I + V V T )−1 is a Stieltjes matrix, then V (I + V TV )−1V T ≥ 0.

2) If (I +X)−1 is a Stieltjes matrix then for all 0 ≤ α ≤ 1 also (I + αX)−1 is a Stieltjes matrix.
3) Assume X � 0 and Y � 0 are such that both (I +X)−1 and (I + Y )−1 are Stieltjes matrices and
XY = 0. Then (I +X + Y )−1 is a Stieltjes matrix too.

Proof:
1) From (2) we have

(I + V V T )−1 = I − V (I + V TV )−1V T .

From this it follows immediately that

(V (I + V TV )−1V T )ij = (I − (I + V V T )−1)ij ≥ 0, if i �= j.
Since V TV + I � 0 it follows that also the diagonal entries of the above mentioned matrix are
nonnegative, which proves the claim.
2) Note that (I + αX)−1 = 1

α
(I +X + ( 1

α
− 1)I)−1. Lemma 2.5, item 2), yields then the result.

3) Let Y =: V V T . Using Lemma 1.4 we have

(I +X + Y )−1 = (I +X)−1 − (I +X)−1V (V T (I +X)−1V + I)−1V T (I +X)−1

= (I +X)−1 − V (V TV + I)−1V T .

From item 1) the conclusion follows then immediately. �

Theorem 2.17
Let Xi � 0, i = 1, · · · , k, be such that (I +Xi)

−1 are Stieltjes matrices and XiXj = 0, i �= j. Then,

for all 0 ≤ αi ≤ 1, (I +
∑k

i=1 αiXi)
−1 is a Stieltjes matrix. �

The proof of this theorem follows by a simple induction argument using Lemma 2.16, items 2) and
3). Finally notice that Lemma 2.16, item 2), does not hold for α > 1 as the next example shows.
Furthermore, a second example shows that item 3) also breaks down in general if XY �= 0.

Example 2.18
1) Let

X−1 :=


 9 1 −2.1

1 2 −1
−2.1 −1 1


 .
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Then X � 0 and X > 0. Furthermore, (I +X)−1 ∈ Z3 whereas (I + 4X)−1 �∈ Z3.
2) Let

X :=


 2 1 0

1 2 0
0 0 1


 and Y :=


 1 0 0

0 2 1
0 1 2


 .

Then X � 0, Y � 0, (I +X)−1 ∈ Z3, (I + Y )
−1 ∈ Z3, but (I +X + Y )−1 �∈ Z3. �

3 Concluding remarks

In this note we considered the question under which conditions the inequality (1) holds in case X is a
positive definite matrix. We showed that this is the case if and only if matrix (I +X)−1 is a Stieltjes
matrix. A necessary condition for this is that matrix X is nonnegative. A sufficient condition is that
matrix X−1 is a Stieltjes matrix. Furthermore we presented conditions under which matrix (I+X)−1

is diagonally dominant.
Next we derived a class of matrices, including the ultrametric matrices, that satisfy (1). An open
problem is to find a characterization of all matrices X for which (1) holds.
Finally we showed that in case a set of matrices Xi are complementary, and (I +Xi)

−1 are Stieltjes,
then also the convex combination of these matrices has this property. Unfortunately, this result does
not hold in general in case the matrices are not complementary.
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