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Abstract

Whereas Operations Research has always paid much attention to optimization, practitioners

judge the robustness of the ‘optimum’ solution to be of greater importance. Therefore this

paper proposes a practical methodology that is a stagewise combination of the following four

proven techniques: (1) discrete-event simulation, (2) heuristic optimization, (3) risk or uncer-

tainty analysis, and (4) bootstrapping. This methodology is illustrated through a case study on

production control systems. That study defines robustness as the system’s capability to main-

tain a short-term service measure, in a variety of environments (scenarios). More precisely, this

measure is the probability of the short-term fill rate remaining within a prespecified range.

Besides satisfying this probabilistic constraint, the system should minimize long-term work-in-

process. Actually, the case study compares four systems: Kanban, Conwip, Hybrid, and

Generic. These systems are studied for a well-known example, namely a production line with

four stations and a single product. The conclusion of this case study is that Hybrid is best when

risk is not ignored, but otherwise Generic is best: risk considerations do make a difference.

1. Introduction

Operations Research (OR) has always paid much attention to optimization, as witnessed by the

history of the Economic Order Quantity, Linear Programming, etc. More specifically, in

simulation, both academic researchers and software developers have added optimization

capabilities. For example, the 2000 Winter Simulation Conference had a panel on simulation

optimization, in which  participated eight experts from academia and software companies; see

Fu (2000). However, during the panel’s Question & Answer the speakers agreed that robust-



-3-

ness is of great importance in practice: a solution that is (nearly) optimal for a given scenario,

is not practically relevant if that solution breaks down as soon as the environment changes.

Nevertheless, commercial simulation packages do not provide the required robustness capabili-

ties; also see Law and McComas (2000) and Swisher et al. (2000).

Because practitioners judge the robustness of the ‘optimum’ solution to be of utmost impor-

tance, we propose a practical methodology that is a stagewise combination of the following

four well-known techniques: (1) discrete-event simulation, (2) heuristic optimization, (3) risk

or uncertainty analysis, and (4) bootstrapping. (The famous economist Schumpeter spoke of

‘innovations’ in case of new combinations of old techniques. Neither risk analysis nor boot-

strapping have ever before been used in production management - to the best of our knowl-

edge.)

We illustrate this methodology through a case study on the robustness or riskiness of

production management systems; that is, we examine the systems’ sensitivity  to changes in the

assumed environment. We focus on pull production-control systems (PPCSs), namely Kanban

systems and their variants. Our elaborate survey of the PPCS literature (see the many refer-

ences at the end of this article) confirms that in this domain - as in many other OR domains -

the analysts optimize, assuming a specific environment (scenario, combination of non-control-

lable input values). In practice, however, the future environment is unknown; for example, 

breakdown rates are unknown. Consequently, PPCS performance may be far below the man-

ager’s target. In practice, PPCS robustness is indeed judged to be a major issue (our personal

contacts with managers support this statement).

More specifically we choose the example of a stochastic production line with four stations

and a single product, from Bonvik, Couch, and Gershwin (1997). We compare the perfor-

mance of this production line, under four optimized PPCSs - namely, Kanban, Conwip, Hybrid,
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and Generic (defined in §3). Our methodology results in a performance ranking that indeed

differs from the ranking resulting from other methods that ignore risk.

Note that similar problems are addressed by Mulvey, Vanderbei, and Zenios (1995), using

robust linear programming including penalty functions and a set of scenarios with a probability

distribution. Mulvey et al. (1995, p. 269) also comment on an alternative approach, namely

stochastic linear programming. Interesting monographs on stochastic programming are Birge

and Louveaux (19..) and Kall and Wallace (1994). Further,  Ben-Tal (2000) also discusses

robust convex optimization (including the optimally designed bridge that collapses as soon as a

bird lands on it; also see Mulvey et al., 1995, pp. 276-277). However, none of these

approaches can be applied straightforwardly to our discrete-event simulation models (which

are inherently stochastic and dynamic), with their particular managerial criteria (which are

more complicated than the criteria in Mulvey et al. 1995).

Note further that we do not consider a change of the number of kanbans, once the uncertain

environmental variables are observed; see Mulvey et al. (1995, p. 265) and the dynamic control

literature. One reason for our approach is that the true values of the parameters - such as the

breakdown rates - never become certain.

Note finally that Gaury (2000) explores the relationships between robustness and the

Taguchian viewpoint. Taguchians assume either quadratic loss functions or simple signal-noise

functions that combine the mean and variance of the output; see Myers (1999). We, however,

use performance measures that make sense from a managerial point of view. Taguchi’s ap-

proach is applied in a Kanban study by Moeeni, Sanchez, and Vakharia(1997). That approach

has also been used for job shops (Benjamin, Erraguntla, and Mayer 1995), and for production

planning outside PPCSs (Lim, Kim, Yum, and Hwang 1996).

The remainder of this article is organized as follows. §2 explains our methodology in detail.
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§3 illustrates this methodology through Bonvik et al.’s example. §4 summarizes our conclu-

sions.

2. New methodology

In this section we detail our methodology that consists of five stages. As we go along, we

illustrate our method through our case study (more details of this study will follow in the next

section, §3).

Stage 1: We build a discrete-event simulation of the system. This is a classic technique,

which needs no further comments or references.

In our case study the real system consists of the production system and its PPCS.  This

‘real’ production system is the system in Bonvik et al. (1997). Sample output of our Arena

simulation is shown in Figure 1 (discussed in §3).

Note that in practice, the simulation’s distribution types and their parameter values are not

exactly known, so sensitivity analysis is needed to test and improve the validity of the simula-

tion model; see Kleijnen (1998). However, this sensitivity analysis plays no role in our study

because it concerns only an academic example (we did verify some of our results against

Bonvik et al.’s results).

Stage 2: Assuming a specific combination of non-controllable input values (e.g., the most

likely environmental scenario), we try to find the best combination of controllable input values

for the simulated system of stage 1. This optimization is challenging, since this simulation is

stochastic, non-linear, and multi-response. This is a well-known issue; no solution technique is

known to be superior (see the references in §1).

In our case study, we consider four PPCS types. Each type requires optimization (namely,



-6-

quantification of the number of cards or kanbans per control loop; each PPCS type has differ-

ent control loops; see §3). We use a Genetic Algorithm (GA) combined with Response Surface

Methodology (RSM); see Gaury (2000) and Gaury et al. (1999). However, other optimization

techniques might be applied, as part of our methodology.

Stage 3: Apply risk analysis (RA) to estimate the probability of a specific system perfor-

mance (output). RA uses the Monte Carlo method (i.e., random numbers) to sample from an

assumed distribution of environmental inputs. RA is also called risk assessment, risk manage-

ment, or uncertainty analysis; see Granger Morgan and Henrion (1990). 

We feed this RA sample into the ‘optimized’ simulation model that results from stages 1 and

2. More specifically, our RA consists of the following three steps.

(3a) First we sample a value for each environmental input variable (e.g., the demand rate)

from its input distribution; for simplicity we suppose that the inputs are independent. To

increase the accuracy (i.e., reduce statistical variation), we do not use crude Monte Carlo but

Latin hypercube sampling (LHS); LHS gives better coverage of the total sample space. LHS is

a standard option in the @Risk software, which we use. Also see McKay, Beckman, and

Conover (1979), and also Helton (1997).

(3b) Next we feed these sampled RA input values into the ‘optimized’ simulation model that

resulted from stage 2. We run this simulation model to obtain one new realization of the

(multiple) performance measures. Because we wish to minimize computer time, we do not

replicate the simulation run for a particular scenario.

(3c) To estimate the distribution of the outputs, we repeat the RA steps (3a) and (3b) a

number of times; this number is the LHS sample size (say) n. All these n runs with the simula-

tion model start with the same initial conditions. In the case study we use different random

numbers from run to run (common random numbers would have been an option). The resulting
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distribution may be characterized by a single statistic such as the average or a specific quantile.

Note that RA is a standard technique in nuclear engineering (Helton et al. 1997, and also

Balson, Welsh, and Wilson 1992 and Breeding et al. 1992). Recently, RA has become accepted

by management too, because of the widespread availability of software - such as @Risk,

Crystal Ball, and XLSim - that supplements popular spreadsheet programs (Sugiyama and

Chow 1997). However, RA has been applied mainly to investment analysis (see Krumm and

Rolle 1992) - not to PPCSs.

Stage 4: To estimate a (say) 90% confidence region for the performance measures, we

apply bootstrapping. The bootstrap is a resampling technique, using Monte Carlo. We do not

know of many bootstrap applications in OR, but in mathematical statistics it is a well-known

technique. The seminal book on bootstrapping (outside simulation and RA) is Efron and

Tibshirani (1993).

Note that bootstrapping in simulation raises an interesting question: instead of using the

computer to generate responses through bootstrapping, the computer may be used to generate

more simulation responses. In practice, however, replicating a simulation generally requires

much more computer time than bootstrapping a simulation.

Stage 5: Let the managers select a particular control system - for example, a specific PPCS -

that fits their specific risk attitude.

Risk management may be further supported as follows. Once we have finished the RA

(stage 3), we try to identify the important environmental inputs. In RA it is customary to make

scatter plots per input. Details on the statistical analysis of such scatter plots are given in

Kleijnen and Helton (1999).

3. Case study: pull production-control systems 
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Our example concerns an example taken from Bonvik et al. (1997); we do not expect this

particular example to favor our methodology. Bonvik et al. use the following assumptions.

Delivery of raw materials is continuous and infinite. Movements of products and cards are

instantaneous. Inventory value is constant over the production line (value added ignored).

Processing times at each station are lognormal with a mean of 0.98 (minutes) and a standard

deviation of 0.02. Machines have times between failures and repair times that are exponentially

distributed with means of 1,000 and 3 respectively. Demand interarrival time is constant,

namely 1. If no finished product is available, then demand is lost; so it is essential to have a fill

rate close to 100%. Actually the fill-rate target is 99.9%.

Bonvik et al. consider Kanban, Conwip, and Hybrid (besides two more systems that we do

not examine); we add Generic. The first three PPCSs have already been discussed extensively

in the literature, so now it suffices to characterize them as follows. Kanban has control loops

that connect each production stage with its immediate predecessor. Conwip has a single loop,

from the final to the initial production stage (see Spearman, Woodruff, and Hopp 1990).

Hybrid simply combines Kanban and Conwip (see Bonvik et al. 1997). Generic is a general

PPCS introduced by Gaury, Pierreval, and Kleijnen (2000). In principle, Generic connects each

stage with all its predecessors; hence the three other PPCSs as special cases. Actually, Generic

does not implement loops with non-restrictive card numbers; for example, Generic reduces to

Conwip if the only restrictive loop - given the card numbers of the other loops - is the one that

connects the last stage with the first stage. 

Stage 1: First we develop simulation models for Bonvik et al.’s example. We use the

following mathematical notation. Upper case letters denote random variables, lower case

letters denote realizations of random variables and deterministic variables, and Greek letters
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represent parameters to be estimated. We do not explicitly show the dependence on the PPCS

type. We define

: expected average WIP (µ  $ 0 because  $ 0);

Y : fill rate per shift (0 # y # 1; percentage of demand per work shift, satisfied from stock);

: probability of Y dropping below a prespecified managerial threshold (say) .

We speak of a disaster whenever y drops below . We measure the PPCS’s short-term 

performance by B, and its long-term performance by  µ .

To estimate these two measures, we use discrete-event simulation. Our simulation model

produces the following two (autocorrelated) time series:

w : WIP realized at simulated (continuous) time t;t 

y : fill rate realized in shift i.i 

To generate these time series, we need to decide on the simulation’s initialization and termina-

tion. We chose a warming-up period of three days, with each working day having 900 minutes

(15 hours) and two shifts per day. We stop after one simulated month with 22 working days: 0

# t # 19800 and  i = 1, ..., 44. An example of the simulated time series is given in Figure 1.

Note that Bonvik et al. use a longer runlength of 240,000 simulated time units, of which the

first 9,600 time units are estimated to show transient behavior so statistics collected during this

transient period are discarded. Our RA, however, uses a shorter runlength of 19,800 minutes,

plus a start-up period of 2,700 minutes (these shorter runs will turn out to be acceptable; see

below).

INSERT Figure 1: Simulated w  (WIP at time t) and y  (fill rate of shift i)t i

These time series w  and y  give the following estimates for the two performance measures:t i 
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;

 with indicator function I( ). 

This definition implies that it is worse to have (say) two shifts each with one lost sale than one

shift with two lost sales. We use such a definition because we assume that it is psychologically

worse for the manager to underperform  twice.

Figure 2 gives an example of the estimated density function and the corresponding (cumula-

tive) distribution of Y, and the resulting estimated disaster probability  = 0.455 for  = 0.95. 

INSERT Figure 2: Estimated distribution of Y (fill rate per shift) and disaster probability  =

(Y < 0.95): a simulation example

Stage 2: We optimize each PPCS under the base scenario specified by Bonvik et al.’s

assumptions. For this optimization, we use Bonvik et al.’s criteria: satisfy the prespecified fill-

rate target while minimizing WIP. This gives the following numerical results.

 After an exhaustive search, Bonvik et al. estimated the optimal card numbers to be: 15 for

Conwip; 2, 2, 4, and 10 for Kanban; 15 and 2, 3, 5, and 15 for Hybrid (with the first 15 for the

Conwip loop, etc.). Through a GA combined with RSM we find for Generic: 14 cards for the

Conwip loop, 6 cards for stage 1, 3 cards for stage 2, and non-restrictive card numbers for all

other loops so the latter loops are not implemented.

Under Bonvik et al.’s criteria, their ‘optimized’ Hybrid outperforms Kanban. Conwip’s

performance is between Kanban’s and Hybrid’s. Our Generic performs slightly better than

Hybrid.
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Stage 3: In RA we need additional robustness criteria, besides Bonvik et al.’s criteria. We

emphasize that our methodology can be easily adapted to different managerial robustness

criteria.

Traditionally, analysts focus on long-run, steady-state performance metrics. We, however,

also consider the short run: If the managers’ performance is bad in the short run, they will be

fired - at least such performance is not good for their careers.

To define our robustness criteria, we add a subscript (say) s to all symbols introduced in

stage 1 that denotes the (environmental) scenario; that is, in RA we repeat the simulation for

different scenarios S with value s, which gives

;

;

.

In other words, in RA the two performance measures are random variables, because the

scenarios are treated as random input variables. (Bayesians always have such a world view.

Note that, even if the simulation model were deterministic, RA would still give random out-

put.) So, by definition, these measures have a joint statistical distribution function.

 This distribution function might be used by management to select a PPCS (see Figure 7,

discussed below). We, however, think that it is more practical to characterize each of the two 

marginal functions through a single number. More precisely, we characterize the estimated

marginal distribution of the estimated average WIP through its average (say) . The estimated

marginal distribution of the estimated disaster probability , however, we characterize through

the estimated probability of this  being higher than another managerial threshold (say) ;

this single number is the probability (say) . We shall give results for  = 0.9. The latter

number implies that  we assume that the managers have a risk-averse attitude: they wish to
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Â B̂

-12-

avoid high probabilities of high disaster probabilities. (Again, our methodology also accepts

other robustness criteria.) In summary, we define two robustness performance measures:

: mean average WIP averaged over all scenarios (9 has

realizations µ);

D: probability of  exceeding the managerial threshold , under various scenarios.

To estimate this , we use RA with a given input distribution of scenarios, resulting in the

following estimate:

: average WIP (in simulation) averaged over the n scenarios actually sampled

(in RA).

Actually, we should replace µ by the capital letter 9 to denote the random character of this

estimate . (To estimate the randomness of , we use bootstrapping; see stage 4 below)

Analogously, our RA estimate of  is

: fraction of  that exceeds  in RA.

The challenge is to meet the constraint on the short-term fill-rate (see ), at minimal long-term

WIP (see ). 

In our example we have no information on the likelihood of the various scenarios, so we

assume that all scenarios are equally likely. Hence we use a uniform prior distribution per

environmental input, and assume independent inputs. We consider the following 17 inputs: the

processing time’s mean and variance, MTBF (mean time between failures) and MTR (mean

time to repair) per production stage, and the demand rate. In our RA we vary these 17 inputs

over a range of ±5% around their base values. 

An illustration is Figure 3, which concerns Kanban optimized for the base scenario, given a

fill-rate threshold of 97% (  = 0.97). Part (a) shows the estimated marginal density function

of the estimated disaster probability  (with values ); part (b) does the same for the other
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criterion  (average WIP with values ); part (c) gives the scatter plot that indicates the joint

distribution of these two estimators.

INSERT Figure 3: Estimated density function of estimated disaster probability  and average

WIP  - for Kanban, optimized given 97% fill rate target: Bonvik et al’s four-stage example

Figure 3 enables us to estimate the two robustness measures  and D through  and 

defined above. We emphasize that for different target values  and  the simulation does not

need to be run again: Figures 2 and 3(a) demonstrate that the basic information is available to

compute  and  for different target values.

This figure gives quite surprising results, we think. The disaster density function turns out to

have a bathtub shape. So, under many scenarios no disasters occur: left-hand side in part a), at

 = 0. In these scenarios there is ample line capacity. Under many other scenarios the opti-

mized Kanban system never gives the target fill rate of 97%: right hand, at  = 1. In the latter

scenarios there is lack of capacity. Part c shows that - unlike we conjectured - low disaster

probabilities do not necessarily go together with high WIPs; actually, the coefficient of deter-

mination R  is only 0.01 (computed from n = 100 points). One explanation is that some2

scenarios give a maximum disaster probability of one, whatever the WIP is: the production

system does not have enough capacity to satisfy demand.

Moreover, we try to identify the important environmental inputs through scatter plots per

input. Two examples are given in Figure 4. We find that in Conwip the most important param-

eter (with first-order and higher-order effects) is the demand rate: part (a) suggests that a low

demand interarrival time increases the disaster probability. Part (b) indicates that changes in the

average processing time at the last production stage do not have a systematic effect on the



B̂

B̂

cy

cy B̂

B̂

-14-

disaster probability. Part (a) makes sense: high demand tends to decrease the fill rate (this

conclusion support our model’s credibility).

INSERT Figure 4: Scatter plot of (a) an important, and (b) an unimportant input parameter in

RA of Conwip

We illustrate some more characteristics of the PPCSs - through Figures 5 and 6. Figure 5

shows the estimated disaster probability  when we change the number of cards in Conwip.

The optimal number of cards under the base scenario is 15 (computed in stage 2). Of course,

the probability of zero disaster probability is highest when the number of cards is largest: see c

= 50 at the left-hand side. Nevertheless, even with this number of cards, 18 out of 100 scenar-

ios lead to a disaster probability of 1: see the right-hand side.

INSERT Figure 5: Effect of number of cards c on estimated disaster probability , in Conwip,

estimated from n = 100 scenarios

Figure 6 shows the estimated ‘disaster’ probability - for several fill-rate target values ,

namely 95%, 97%, and 99.9%. Obviously, the lower the threshold is, the higher is the proba-

bility of no ‘disaster’: see the left-hand side of the figure.

INSERT Figure 6: Effect of fill-rate target  on estimated disaster probability 

 Figures 3 and 5 have already illustrated the bathtub shape of the estimated density function

of the estimated disaster probability  in Kanban and Conwip respectively. However, to
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compare the four PPCSs, we prefer the cumulated density functions; see Figure 7 (which uses

a fill-rate target value  of 0. 97). This figure shows that - whatever PPCS is used - some

scenarios certainly give a disaster: see the right-hand side. (Actually, most disaster scenarios

are characterized by mean demands that exceed production rates; see again Figure 4.)

INSERT Figure 7: Estimated density function of estimated disaster probability  and average

WIP  for four PPCSs

 As we said before, the distribution functions in Figure 7 might enable management to select

a PPCS but we prefer to characterize each function through a single number: the average 

for WIP and the probability  for fill rate (with threshold  = 0.9).

Stage 4: We apply bootstrapping to estimate a 90% confidence region for the two performance

measures.  A particular scenario s - in the LHS sample of size n = 100 - gives the so-called

‘original’ multivariate output (say)  = . Bootstrapping means that this original

sample is resampled randomly with replacement, while the total sample remains n = 100. This

gives the bootstrap output  =  (s = 1, ..., n). In other words, the original output for

(say) scenario 1 - denoted by  =  - may occur 0, 1, ..., or n times in the bootstrap

sample, provided the total sample size remains n (for example, the event ‘ occurs n times in a

particular bootstrap sample’ implies that the other n - 1 observations , ...,    do not occur

at all in this sample - a very unlikely event, namely an event with probability n ). From the-n

bootstrap sample , ..., , ...,  we compute the average  and the

probability . To estimate the distribution of these two criteria ( , ), we repeat this

bootstrap sampling (say) b times; we select b = 200. This gives ( , ) with j = 1, ..., b; also

see Figure 8.
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(1)

INSERT Figure 8: Bootstrapped joint density function of the two robustness criteria ( , )

for Generic

We wish to estimate a 90% simultaneous confidence region for the two estimated robust-

ness criteria of a specific PPCS. Therefore we hypothesize that the bootstrapped variables are

bivariate normal. To test this hypothesis, we apply Johnson and Wichern (1992, pp. 158-164),

as follows. We denote the sampled multi-variate observations by X  with j = 1, ..., b; in ourj

example x = ( , ) and b = 200. We define the squared generalized distance as

with bold letters for matrices and vectors, and the classic estimators  =  and  =

. Then the hypothesis of  L-variate normality (in our

example L = 2) is not rejected if the following two conditions hold:

(i) roughly half of the  are less than the 50% quantile of the chi-square statistic with L

degrees of freedom (say) , and 

(ii) a plot of the b ordered    versus the b quantiles  gives a straight line; see

Figure 9, part c.

Visual inspection of the two upper parts of Figure 9 suggests that normality holds for the

estimated marginal density functions of the two individual criteria (even for the estimated

probability ). The lowest part of this figure corresponds with the test defined in equation (1),

and does not lead to rejection of the normality assumption for Generic. For simplicity’s sake

we do not test normality for the other three PPCSs, but simply assume that this assumption

also holds for these PPCSs.
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(2)

INSERT Figure 9: Testing normality of the bootstrapped   and  for Generic

Next we apply Johnson and Wichern (1992, p. 189), to derive a 1 -  confidence region for

the two bootstrapped robustness criteria (say) .. = ( , ):

where denotes the 1 -  quantile (upper  point) of the F-statistic with degrees

of freedom 2 and b - 2.

We might apply equation (2) to each of the four PPCSs with a type-I error rate of ".

However, our selection of a PPCS depends on all four confidence regions simultaneously.

Therefore we use Bonferroni’s inequality: we replace " by " /4, which keeps the overall type-I

error rate below ". Taking " = 0.10 yields Figure 10. This figure shows that - even though

Bonferroni’s inequality is conservative - our example gives four non-overlapping confidence

intervals for the WIP criterion . However, the differences for the fill-rate criterion  are not

significant. (Again, the two performance measures seem uncorrelated, as Figure 3 with its R  =2

0.01 has already suggested: the ellipsoids in Figure 10 are not ‘tilted’ - that is, the estimated

covariance matrix S in equation 2 is nearly diagonal.)

INSERT Figure 10: Estimated 90% simultaneous confidence regions for the two criteria ( ,

) for the four PPCSs

Stage 5: We consider our methodology as a decision support system (DSS); that is, the

methodology does not make the final selection of a particular PPCS. Instead, short-term risk

(in terms of fill rate) versus long-term costs (in terms of WIP) are presented to the managers so
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that they can select a particular PPCS that fits their specific risk attitude.

Figure 10 suggests that Hybrid dominates the other PPCSs: it minimizes both criteria (any

reasonable risk attitude implies that managers prefer low WIP, provided the risk is acceptable).

Nevertheless, since Hybrid requires the implementation of both Kanban and Conwip, managers

might prefer Kanban: the latter is easier to implement in practice, and only slightly increases

both criteria values. Obviously, Conwip gives excessive WIP (Conwip has a single control

loop), without decreasing the risk of a ’disaster’. Generic gives a WIP that is relatively high

compared with Hybrid and Kanban, while it does not decrease risk. However, were risk

ignored, then the ranking from best to worst PPCS would be: Generic, Hybrid, Conwip,

Kanban; for details we refer to Gaury (2000) and Gaury et al. (1999). So risk considerations

do make a difference.

What if management cannot accept the fill rate risk quantified in Figure 10? Managers might

be prepared to change their threshold value; see Gaury (2000, p. 94). Alternatively, we may

add more WIP - by increasing the number of cards of a specific PPCS. This higher WIP (higher

 values in Figure 10) may decrease the fill rate risk (  in Figure 10), but it is more expensive.

A final alternative is to try and change the environment such that a lower risk results. Which

environmental inputs are important, can be detected through the techniques that lead to Figure

4.

4. Conclusions

In this paper we emphasize that the robustness of the ‘optimum’ solution is of utmost impor-

tance. Yet, most academics and practitioners try to optimize their simulation models for a base

scenario only. To incorporate robustness, we propose  to add risk analysis; that is, we develop
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a methodology that is a stagewise combination of (1) discrete-event simulation, (2) heuristic

optimization, (3) risk analysis, and (4) bootstrapping.

We illustrate this methodology through an example on production pull control systems

(PPCSs), namely Kanban, Conwip, Hybrid, and Generic. In that study we define robustness as

the PPCS’s capability to maintain short-term service while minimizing long-term work-in-

process,  under a variety of scenarios. These PPCSs control a production line with four sta-

tions and a single product, originally studied by Bonvik et al. (1997). The conclusion of this

example is that risk considerations may indeed lead to the selection of a different PPCS.

Selecting the appropriate PPCS may affect a manager's survival of bad times! Therefore we

conclude that methods for performance analysis in operations management should account for

robustness when recommending a specific PPCS.

Note that our example is merely an illustration. In practice, robustness depends on the real

production system and its control system (for example, a proprietary software system), its

particular environment (specified through the RA input distribution), its simulation model (is

that model validated?), its optimization (does the heuristic search give the true optimum?), and

the managers’ performance measures and risk attitude.

In future research, our methodology may be improved by optimizing not for the base

scenario only. Instead, the derivation of the optimal values for the control parameters should

account for the uncertainty of the environmental inputs; also see Mulvey et al. (1995). Actu-

ally, this requires very much computer time; see Gaury (2000, p. 97) for an application of this

approach to the simplest production control system, namely Conwip. This computer time

problem may be solved in the following ways: (i) program the simulation model such that the

simulation runs faster (for example, replace Arena by the approach in Hyden and Schruben,

2000), (ii) apply faster optimization heuristics (GAs are notoriously slow), (iii) explore fewer
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scenarios, (iv) use more powerful computers including parallel computers and web-based

simulation.
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