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Abstract

The design of computer experiments is an important step in black box evaluation and optimization
processes. When dealing with multiple black box functions the need often arises to construct designs
for all black boxes jointly, instead of individually. These so-called nested designs are used to deal
with linking parameters and sequential evaluations. In this paper we discuss one-dimensional nested
maximin designs. We show how to nest two designs optimally and develop a heuristic to nest three and
four designs. Furthermore, it is proven that the loss in space-fillingness, with respect to traditional
maximin designs, is at most 14.64 percent and 19.21 percent, when nesting two and three designs,
respectively.

Keywords: Maximin design, space-filling, linking parameter, black box, computer simulation, mixed
integer programming.
JEL Classification: C90.

1 Introduction

Maximin designs play an important role in the field of (deterministic) black box evaluation and opti-
mization. By nature, a black box function is not given explicitly, however, we may perform function
evaluations. Based on these evaluations an approximation model for the black box can be constructed,
gaining insight in the black box and opening the way for optimization techniques. Unfortunately, func-
tion evaluations often constitute time-consuming computer simulations, thereby limiting the number of
evaluations performed. A proper design of computer experiments then becomes vitally important. See,
e.g. [1], [2], [4], [7], and [8].

We will use the term design to denote the set of points that will be evaluated. Such a design should
at least be space-filling in some sense to provide information about the entire black box domain. Several
space-filling measures are used in the literature, like minimax, maximin, IMSE, and maximum entropy.
See, e.g. [5], [6], and [8]. A good survey of these criteria can be found in [9], in which it is also shown that
the maximin measure, which maximizes the minimal distance among all pairs of points, is preferable to
the other criteria when conducting computer experiments. Therefore, we will use the maximin criterion
in this paper.

In real-life problems there is often a need for nested maximin designs. Consider the case where we want to
construct two maximin designs, such that one design is a subset of the other design. Due to this restriction
the resulting designs will be nested and we will therefore call the combination of the two designs a nested
maximin design. Such nested maximin designs can be found by mixed integer programming, however,
this takes a lot of computation time. This paper shows how to construct one-dimensional nested maximin
designs. Furthermore, it is proven that the loss in space-fillingness of this type of maximin design is at
most 14.64% and 19.21%, when nesting two and three designs, respectively. There are two main reasons
for nesting maximin designs: linking parameters and sequential evaluations.

To start with the first; consider a product that consists of two components, each of them represented
by a black box function. In practice it often occurs that the functions have an input parameter in common,
also called a linking parameter, see [3]. Evaluating such a linking parameter at the same setting in both
functions (i.e. component-wise) leads to an evaluation of the product. Not only do product evaluations
provide a better understanding of the product, they are also very useful in the product optimization

1The research of E.R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy of Arts and
Sciences.

2The research of B.G.M. Husslage is funded by the SamenwerkingsOrgaan Brabantse Universiteiten (SOBU).
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process. Another reason for using the same settings for (linking) parameters is due to physical restrictions
on the simulation tools. Setting the parameters for computer experiments can be a time-consuming job
in practice, since characteristics, like shape and structure, have to be redefined for every new experiment.
Therefore, it is preferable to use the same settings as much as possible. By constructing nested maximin
designs we can determine the settings for linking parameters.

Sequential evaluations are a second reason for using nested maximin designs. In practice it is common
that after evaluating an initial set of points, extra evaluations are needed. As an example, suppose we
construct an approximation model for a black box function based on n1 function evaluations. However,
after validating the obtained model it turns out that an extra set of, say, n2 − n1 function evaluations is
needed to build a proper model. We then face the problem of constructing a maximin design on n2 points,
given the initial maximin design on n1 points. It would be better to anticipate on the possibility of extra
evaluations. This can be accomplished by constructing the two maximin designs (on n1 and n2 points) at
once, hence, by constructing a nested maximin design.

We will now give a more strict formulation of our problem. Let there be m ∈ N nested sets X1 ⊆
X2 ⊆ · · · ⊆ Xm and index sets I1 ⊆ I2 ⊆ · · · ⊆ Im = {1, . . . , nm}, where Xi = {xj |j ∈ Ii} and |Ii| = ni,
i = 1, . . . , m. Thus Ii tells us which xj are contained in set Xi, and the Xi define the nested design.
We assume without loss of generality that all points xj ∈ [0, 1]. Note that when we consider a set Xi

independently, a space-filling distribution of the xj over the [0, 1] interval is obtained by spreading the
points equidistantly over the interval, resulting in a minimal distance of 1

ni−1 among the points. Our
aim is to determine xj and Ii such that every set Xi is as much as possible space-filling with respect to
the maximin criterion. To this end we define di as the minimal scaled distance among all points in the
set Xi, i.e. di = minj,k∈Ii, j 6=k(ni − 1)|xj − xk| for all i. Then we have to maximize d = mini di over
all I1 ⊆ I2 ⊆ · · · ⊆ Im, with |Ii| = ni, and xj ∈ [0, 1]. This will yield the maximin distance d and a
corresponding nested maximin design in terms of the Ii and xj .

This paper is organized as follows. In Section 2 we derive an exact formula for the maximin distance
of two nested sets. This derivation also shows how to construct the corresponding nested maximin de-
signs. In Section 3 we continue with three nested sets, for which we prove a lower bound on the maximin
distance and develop a heuristic to construct good nested designs. Section 4 shows that the heuristic for
three nested sets can also be used to construct good nested designs for four nested sets. Furthermore,
in this section we prove a lower bound on the maximin distance for all m ∈ N that fulfill the restriction
nm < 2n1. Finally, Section 5 gives the conclusions and some topics for further research.

2 Two nested sets

We first discuss the case of two nested sets, i.e. m = 2. In Section 2.1 we start with the general problem
formulation and show how to nest two sets optimally. Furthermore, in this section we derive a formula
for the maximin distance and prove a tight lower bound on this distance. In Section 2.2 we introduce the
notion of dominance and discuss the trade-off between d1 and d2.

2.1 Maximin distance

The general problem for two nested sets can be formalized as the following mathematical program:

max min
j,k∈Ii

i=1,2; j 6=k

(ni − 1)|xj − xk|

s.t. I1 ⊆ I2

|I1| = n1

0 ≤ xj ≤ 1, j ∈ I2.

(1)

To obtain a feasible solution that maximizes the objective function in (1), we may choose without loss of
generality x1 = 0, xn2 = 1, xi < xi+1, 1 ∈ I1, and n2 ∈ I1. For a given I1, containing the indices, say,
1 = a1 < a2 < · · · < an1 = n2 we introduce the sequence v = (v1, . . . , vn1−1) given by vi = ai+1 − ai.
Thus vi − 1 gives the number of additional points of X2 between the i-th and (i + 1)-st point of X1. It
is clear that the set of possible I1 is in one-one correspondence to the set of positive integral sequences
v, summing to n2 − 1. Now the approach to solve problem (1) is to first fix I1, and its corresponding
a = (a1, . . . , an1) and v, and obtain an expression for the maximal distance δv, subject to the remaining
constraints, and then to maximize δv over all v. It turns out that finding δv is rather simple.
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Lemma 1 For fixed I1, and corresponding a, v, the optimal value δv equals

(
n1−1∑

i=1

max{ vi

n2 − 1
,

1
n1 − 1

})−1.

Proof. Fix a, v, and let δv be the corresponding maximal distance. Since xi+1 − xi ≥ δv

n2−1 for all i, we
have that xai+1 − xai

≥ vi
δv

n2−1 . We also have that xai+1 − xai
≥ δv

n1−1 , hence

xai+1 − xai
≥ max{vi

δv

n2 − 1
,

δv

n1 − 1
}.

From this we find that 1 = xan1
− xa1 ≥ δv

∑n1−1
i=1 max{ vi

n2−1 , 1
n1−1}, which shows that the stated expres-

sion for δv is an upper bound. It is clear from the above that, and how, this upper bound can be attained,
which proves the lemma. 2

We now have to maximize δv over all appropriate sequences v. For ease of notation define c2 = n2−1
n1−1 .

Proposition 1 Let 2 ≤ n1 ≤ n2. The maximin distance in (1) is given by

d =
1

1 + bc2c+ dc2e − c2 − bc2cdc2e 1
c2

. (2)

Proof. As mentioned before, we have to maximize δv, which is equivalent to minimizing

n1−1∑

i=1

max{ vi

n2 − 1
,

1
n1 − 1

}

over all integer-valued v, such that
∑n1−1

i=1 vi = n2 − 1.
We claim that it is optimal to let v only take values bc2c and dc2e. This is clearly true if n2 − 1 is

a multiple of n1 − 1, since in that case picking a larger value than c2 for any of the vi will increase the
objective function. Therefore, assume now that n2−1 is not a multiple of n1−1. To prove our claim, first
assume that vi ≤ bc2c−1 for some i. Let j be such that vj ≥ dc2e (such a j exists). Then by adding 1 to vi,
and subtracting 1 from vj , we obtain v′ for which the objective function is strictly smaller than for v. This
follows from the inequality max{ vi

n2−1 , 1
n1−1}+max{ vj

n2−1 , 1
n1−1} > max{ vi+1

n2−1 , 1
n1−1}+max{ vj−1

n2−1 , 1
n1−1},

which is easily checked to be true. Hence, the original v is not optimal. Similarly, the case where
vi ≥ dc2e+ 1 for some i is ruled out.

Thus it follows that the optimal v has vi = bc2c for p = (n1 − 1)(dc2e − c2) values of i, and vi = dc2e
for the remaining i. The value for d now easily follows from Lemma 1. 2

Figure 1: Maximin distance as function of n1 and n2.
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For a graphical representation of the maximin distance as function of n1 and n2, see Figure 1. Using
above results, a nested maximin design, with maximin distance as in (2), can easily be constructed:

xj+1 =

{
d

n1−1
j
bc2c j = 0, . . . , pbc2c;

d
n1−1p + d

n2−1 (j − pbc2c) j = pbc2c+ 1, . . . , n2 − 1;

(I1)j+1 =
{

1 + jbc2c j = 0, . . . , p;
1 + pbc2c+ (j − p)dc2e j = p + 1, . . . , n1 − 1.

(3)

As an example, we construct a nested maximin design for n1 = 4 and n2 = 8. From (2) we get that the
maximin distance equals d = 21

23 ' 0.9130. Substituting d and p = 2 in (3) results in the points x1 = 0,
x2 = 7

46 , x3 = 14
46 , x4 = 21

46 , x5 = 28
46 , x6 = 34

46 , x7 = 40
46 , and x8 = 1, and yields the set I1 = {1, 3, 5, 8},

implying that X1 = {x1, x3, x5, x8}. See Figure 2 for a graphical representation of this nested maximin
design.

0

x1

x1

1

x2

7
46

x3

14
46

x3

x4

21
46

x5

28
46

x5

x6

34
46

x7

40
46

x8

x8

X1

X2

Figure 2: A nested maximin design for n1 = 4 and n2 = 8, with d = 21
23 ' 0.9130.

Besides computing the maximin distance for a given n1 and n2, (2) can also be used to prove a general
lower bound on the maximin distance.

Proposition 2 Let 2 ≤ n1 ≤ n2. Then 1 ≥ d > (4− 2
√

2)−1 ' 0.853553.

Proof. Consider the function z : [1,∞) → R given by

z(c2) = 1 + bc2c+ dc2e − c2 − bc2cdc2e 1
c2

= 1 +
(c2 − bc2c)(dc2e − c2)

c2
≥ 1.

If c2 ∈ N then z(c2) = 1, i.e. z is minimal and hence d = z(c2)−1 ≤ 1, else

z(c2 + 1) = 1 +
(c2 − bc2c)(dc2e − c2)

c2 + 1
< z(c2); c2 6∈ N.

Therefore, in this case z is maximal for some c2 ∈ (1, 2). Restrict z to (1, 2):

z(c2) = 1 + 1 + 2− c2 − 2
c2

= 4− c2 − 2
c2

,

which is maximal for c2 =
√

2. For c2 ∈ Q, c2 ≥ 1:

z(c2) < z(
√

2) = 4− 2
√

2, and then d >
1

z(
√

2)
=

1
4− 2

√
2

=
1
2

+
1
4

√
2 ' 0.853553. 2

Note that the obtained lower bound is tight since we can take c2 arbitrarily close to
√

2. The interpretation
of this lower bound is that for all values of n1 and n2, by nesting the sets X1 and X2 we will never lose
more than 14.64%, with respect to the “restriction free” maximin distance. In practice this implies that
a linking parameter can be included in the maximin designs, at a cost of using designs that are at most
14.65% worse with respect to space-fillingness.

In case of sequential evaluations the interpretation is somewhat different. A standard way to perform
(two-stage) sequential evaluations is to first choose n1 points, equidistantly distributed over the interval
[0, 1]. After the evaluations, if needed, n2−n1 extra points are taken, resulting in d′ = c2

dc2e ; see Section 2.2.
Clearly, d ≥ d′ and d′ = c2

dc2e ≥
c2

c2+1 > 1
2 , for c2 > 1. If one evaluation stage turns out to be sufficient,

using the points in (3) will result in a design that is at most 14.65% worse than the (standard) equidistant
design (since we lose 1 − d). However, if a second evaluation stage is needed then our approach results
in a better space-filling design (since we win d − d′). Figure 3 shows the net gain of our approach, i.e.
(d− 1) + (d− d′), as function of c2. For n2 ≤ 100 the net gain takes values in the interval [−0.07, 0.48].
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Figure 3: Net gain of our approach as function of c2.

2.2 Dominance

In the last section we appraised the sets X1 and X2 to be equally important. What if one set is more
important than the other? Or, given a fixed value for d1, what is the corresponding maximal value of d2?
To examine this, we first introduce the notion of dominance. We will call a combination (d1, d2) dominant
if it is not possible to improve one of the coordinates, without deteriorating the other coordinate. Knowing
the dominant combinations is very useful in practice. It enables us to determine the trade-off between
d1 and d2, i.e. it helps us finding a combination that best satisfies our requirements, like “X2 is twice
as important as X1”. Note that the maximin combination (d, d), with d as in (2), is dominant. The
combinations (1, c2

dc2e ) and ( bc2c
c2

, 1) are also dominant, which can be argued as follows:

• Fixing d1 = 1, the points of X1 must be equidistantly distributed, i.e. X1 = {0, 1
n1−1 , 2

n1−1 , . . . , 1}.
Due to the restriction I1 ⊆ I2 we need to find settings for the n2−n1 extra points in X2, such that d2

is maximal. This is accomplished by choosing these n2−n1 points as equally as possible spread over
the n1 − 1 intervals formed by the points in X1, which corresponds to v taking only the values bc2c
and dc2e, as before. Hence, after scaling, this gives a distance of d2 = (n2 − 1) 1

n1−1dc2e−1 = c2
dc2e .

• Fixing d2 = 1, the points of X2 must be equidistantly distributed, i.e. X2 = {0, 1
n2−1 , 2

n2−1 , . . . , 1}.
To maximize d1, the n2 − 1 intervals must as equally as possible be spread over the n1 − 1 intervals
that are to be formed by the points in X1. Every interval of X1 will then contain either bc2c or dc2e
intervals of length 1

n2−1 , and the distance, after scaling, will be given by d1 = (n1−1) 1
n2−1bc2c = bc2c

c2
.

Since (1, c2
dc2e ) and ( bc2c

c2
, 1) bound the values of d1 and d2 we will call them extreme dominant combinations.

Moreover, note that these bounds imply that d ≥ max{ c2
dc2e ,

bc2c
c2
}. For a given n1 and n2 all dominant

combinations can be characterized by the following linear function.

Proposition 3 Let 2 ≤ n1 ≤ n2. All dominant combinations (d1, d2) are characterized by the linear
function f : [ bc2c

c2
, 1] → [ c2

dc2e , 1], where

d2 = f(d1) = ((c2 − dc2e)d1 + 1)
c2

dc2e(c2 − bc2c) . (4)

Proof. Like in Lemma 1, we have for a given I1, and corresponding a, v, that

1 ≥
n1−1∑

i=1

max{ vi

n2 − 1
d2,

1
n1 − 1

d1}. (5)

Hence, for a given a, v, and d1 ≤ 1, it is optimal to choose d2 as large as possible, such that equality is
attained in (5).
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We claim that for any d1, with bc2c
c2

≤ d1 ≤ 1, a maximal d2 is obtained by letting v take only the

values bc2c and dc2e, just like in Proposition 1. Note that this needs no further proof for d1 = bc2c
c2

and

d1 = 1, therefore we may assume that bc2c
c2

< d1 < 1, and, hence, that c2 is not an integer.
To prove the claim, fix d1, and suppose that there is a v giving an optimal d2 with vi ≥ dc2e + 1 for

some i. Let j be such that vj ≤ bc2c (such a j exists). Since d2 is optimal we may assume that d2 ≥ c2
dc2e .

Now let v′ be obtained from v by subtracting 1 from vi, and adding 1 to vj . Since d2 is optimal, the d′2
corresponding to v′ is at most d2.

From the equalities in (5) for the pairs (v, d2) and (v′, d′2), and the inequality d′2 ≤ d2, we obtain that
max{ vi

n2−1d2,
1

n1−1d1}+max{ vj

n2−1d2,
1

n1−1d1} ≤ max{ vi−1
n2−1d2,

1
n1−1d1}+max{ vj+1

n2−1d2,
1

n1−1d1}. Because

of the inequalities vi ≥ dc2e + 1, vj ≤ bc2c, 1 ≥ d2 ≥ c2
dc2e , and bc2c

c2
< d1 < 1, this reduces to vi

n2−1d2 +
1

n1−1d1 ≤ vi−1
n2−1d2 + max{ vj+1

n2−1d2,
1

n1−1d1}. Now this implies that vj+1
n2−1d2 ≥ 1

n1−1d1, and, hence, the

inequality further reduces to 1
n1−1d1 ≤ vj

n2−1d2. Using that bc2c
c2

< d1 and d2 ≤ 1, this implies that
vj > bc2c, which is a contradiction, hence, the considered v does not give an optimal d2. Similarly, it can
be shown that the case where vi < bc2c for some i is not optimal.

Thus, for any d1 it is optimal to take a such that vi = bc2c for p = (n1 − 1)(dc2e − c2) values of i, and
vi = dc2e for the remaining i. The value for d2 as a function of d1 now easily follows from equality in (5). 2

We remark that for fixed a and v, the relation between d1 and d2 can be found by considering equal-
ity in (5). This relation will be a piece-wise linear function. Further, note that for c2 ∈ N the graph
of (4) results in the single point (1, 1), and that setting d1 = d2 in (4) yields the maximin distance d,
with d as in (2). See Figure 4 for a graphical example of the linear function f . This figure shows the
set of dominant combinations for n1 = 4 and n2 = 8, including the two extreme dominant combinations
(1, c2

dc2e ) = (1, 0.7778) and ( bc2c
c2

, 1) = (0.8571, 1). Moreover, the line d1 = d2 intersects the dominant set
exactly in the maximin combination (d, d) = (0.9130, 0.9130).

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

d
1

d
2

Figure 4: All dominant combinations (d1, d2) for n1 = 4 and n2 = 8, and the line d1 = d2.

3 Three nested sets

We now discuss the case of three nested sets, i.e. m = 3. Section 3.1 starts with the general problem
formulation. Since we are not able to come up with an explicit formula for the maximin distance we
use mixed integer linear programming to solve the problem for several n1, n2, n3. Fortunately, a lower
bound on the maximin distance can still be proven. Section 3.2 discusses dominant combinations and in
Section 3.3 a heuristic that yields extremely good nested designs is developed.
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3.1 Maximin distance

The general problem for three nested sets can be formalized as the following mathematical program:

max min
j,k∈Ii

i=1,2,3; j 6=k

(ni − 1)|xj − xk|

s.t. I1 ⊆ I2 ⊆ I3

|Ii| = ni, i = 1, 2
0 ≤ xj ≤ 1, j ∈ I3.

(6)

As in Section 2.1 we may choose without loss of generality x1 = 0, xn3 = 1, xi < xi+1, 1 ∈ I1, n3 ∈ I1,
1 ∈ I2, and n3 ∈ I2. For a given I2, containing the indices, say, 1 = b1 < b2 < · · · < bn2 = n3 we
introduce the sequence w = (w1, . . . , wn2−1) given by wj = bj+1 − bj . Given an I1 contained in this I2 we
let 1 = a1 < a2 < · · · < an1 = n2 be such that bai

∈ I1 for i = 1, . . . , n1. We warn the reader that in this
case {ai|i = 1, . . . , n1} 6= I1. As before, we let vi = ai+1 − ai. Thus vi − 1 gives the number of additional
points of X2 between the i-th and (i + 1)-st point of X1, while wj − 1 gives the number of additional
points of X3 between the j-th and (j + 1)-st point of X2. Now the analogue of Lemma 1 is the following.

Lemma 2 For fixed I1, I2, and corresponding a, b, v, w, the optimal value δa,w equals

(
n1−1∑

i=1

max{
ai+1−1∑

j=ai

max{ wj

n3 − 1
,

1
n2 − 1

}, 1
n1 − 1

})−1.

We would now have to maximize δa,w over all appropriate sequences a and w. Unfortunately, we are
not able to come up with an explicit formula for the maximin distance, as we did for two nested sets in
Section 2.1. However, we can rewrite (6) as a mixed integer linear program:

max d
s.t. d ≤ (n3 − 1)(xj+1 − xj), j ∈ I3 \ {n3}

d ≤ (ni − 1)(xk − xj) + 2− zik − zij , i = 1, 2; j, k ∈ I3; j < k
n3∑

j=1

zij = ni, i = 1, 2

z1j ≤ z2j , j ∈ I3

0 ≤ xj ≤ 1, j ∈ I3

zij ∈ {0, 1}, i = 1, 2; j ∈ I3.

(7)

Here, zij = 1 if j ∈ Ii, and zij = 0 otherwise. The constraints
∑n3

j=1 zij = ni and z1j ≤ z2j insure that
|Ii| = ni and I1 ⊆ I2, respectively. Using (7) and the XA Mixed Integer Solver we found results up to
n3 = 25, with computation times varying from 1 second to almost 2.5 hours for some instances, on a PC
with a 2000-MHz Pentium IV processor.

As an example of a nested maximin design, take n1 = 4, n2 = 8, and n3 = 18. Solving (7) for
this instance yields the sets I1 = {1, 7, 12, 18} and I2 = {1, 4, 7, 10, 12, 14, 16, 18}, implying that X1 =
{x1, x7, x12, x18} and X2 = {x1, x4, x7, x10, x12, x14, x16, x18}, which gives d = 357

398 ' 0.8970. See Figure 5
for a graphical representation of the design.
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Figure 5: A nested maximin design for n1 = 4, n2 = 8, and n3 = 18, with d = 357
398 ' 0.8970.

Although we do not have an explicit formula for the maximin distance, we can prove a general lower bound
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on this distance. To accomplish this, let d(n1, n2, n3) be the optimal value for d as function of n1, n2, n3,
and consider the following lemma.

Lemma 3 Let 2 ≤ n1 ≤ n2 ≤ n3. Then d(n1, n2, n3) ≤ d(n1, n2, n3 + n2 − 1).

Proof. Consider any a and w for the problem of (n1, n2, n3). For the problem of (n1, n2, n3 + n2 − 1) we
consider the same a, and w′ which is given by w′j = wj + 1 for all j. Since

max{ wj + 1
n3 + n2 − 1− 1

,
1

n2 − 1
} ≤ max{ wj

n3 − 1
,

1
n2 − 1

},

which is easy to show, this implies that δa,w′(n1, n2, n3 +n2−1) ≥ δa,w(n1, n2, n3), and the result follows.
2

Proposition 4 Let 2 ≤ n1 ≤ n2 ≤ n3. Then 1 ≥ d(n1, n2, n3) > (6− 3 3
√

4)−1 ' 0.807887.

Proof. Let (again) c2 = n2−1
n1−1 and c3 = n3−1

n2−1 . First, note that d(n1, n2, n3) = 1 if and only if c2, c3 ∈ N.
Because of Lemma 3 we may assume without loss of generality that c3 < 2. To prove the stated inequality,
we shall give an a and w such that δa,w(n1, n2, n3) > (6− 3 3

√
4)−1.

Let a be such that the corresponding v takes the value vi = bc2c for i = 1, . . . , p, with p = (n1 −
1)(dc2e − c2), and vi = dc2e for the remaining i, i.e. it is the optimal a for two nested sets. Since c3 < 2,
it is possible to take w such that wj is one or two for all j, and we shall do so. To further describe w, we
distinguish between two cases.

If n3 − n2 ≥ bc2c(n1 − 1)(dc2e − c2), then we let w be such that wj = 2 for j = 1, . . . , n3 − n2, and
wj = 1 for the remaining j. Since max{ 2

n3−1 , 1
n2−1} = 2

n3−1 , we have that

δ−1
a,w = (n1 − 1)(dc2e − c2)max{ 2bc2c

n3 − 1
,

1
n1 − 1

}+

(n3 − n2 − bc2c(n1 − 1)(dc2e − c2))
2

n3 − 1
+ (n2 − 1− (n3 − n2))

1
n2 − 1

= (dc2e − c2)max{0, 1− 2bc2c
c2c3

}+ 4− c3 − 2
c3

.

Thus, if 2bc2c < c2c3, then δ−1
a,w = (dc2e − c2)(1− 2bc2c

c2c3
) + 4− c3 − 2

c3
. Call this expression f(c2), then it

is easy to see that f(c2 + 1) < f(c2), hence, we may restrict our attention to the case where 1 < c2 < 2.
From the above we now obtain that δ−1

a,w = 6− c2− c3− 4
c2c3

. This expression is at most 6− 3 3
√

4, a value
that is attained only if c2 = c3 = 3

√
4. The case 2bc2c ≥ c2c3 is straightforward (then δ−1

a,w ≤ 4− 2
√

2), so
for the case n3 − n2 ≥ bc2c(n1 − 1)(dc2e − c2) we have proven the lower bound on d.

If n3 − n2 < bc2c(n1 − 1)(dc2e − c2), then we may assume that c2 is not an integer. Let p = (n1 −
1)(dc2e − c2), and introduce t = n3−n2

p = c2(c3−1)
dc2e−c2

. It follows that dte ≤ bc2c. We now take w as follows:
for m(t − btc) values of i = 1, . . . ,m we have dte values of j, ai ≤ j < ai+1 for which wj = 2, and the
remaining bc2c − dte of such j-s have wj = 1; for the other values of i = 1, . . . , m we have btc values of j,
ai ≤ j < ai+1 for which wj = 2, and the remaining bc2c−btc of such j-s have wj = 1; and for all j ≥ am+1

we have wj = 1. From Lemma 2 we now find that

δ−1
a,w = m(t− btc)max{dte 2

n3 − 1
+ (bc2c − dte) 1

n2 − 1
,

1
n1 − 1

}+

m(1− t + btc)max{btc 2
n3 − 1

+ (bc2c − btc) 1
n2 − 1

,
1

n1 − 1
}+

(n1 − 1)(c2 − bc2c)dc2e 1
n2 − 1

=
dc2e − c2

c2
(t− btc)max{dte( 2

c3
− 1), c2 − bc2c}+

dc2e − c2

c2
(1− t + btc) max{btc( 2

c3
− 1), c2 − bc2c}+ 1.

We now assume that btc( 2
c3
− 1) < c2−bc2c < dte( 2

c3
− 1). In the other cases it is straightforward to show

that δ−1
a,w ≤ 4− 2

√
2. Then

δ−1
a,w =

dc2e − c2

c2
(t− btc)dte( 2

c3
− 1) +

dc2e − c2

c2
(1− t + btc)(c2 − bc2c) + 1. (8)
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Using the left inequality in above assumption we find that

δ−1
a,w <

dc2e − c2

c2
(t− btc)( 2

c3
− 1) +

dc2e − c2

c2
(c2 − bc2c) + 1

≤ (c3 − 1)(
2
c3
− 1) +

dc2e − c2

c2
(c2 − bc2c) + 1

≤ 4− 2
√

2 +
dc2e − c2

c2
(c2 − bc2c).

If c2 > 4, then this upper bound suffices (its maximum is attained at c2 =
√

20), as one can easily check.
For c2 < 4, fix k = dte (≤ 3), and let c2 > k. Then (8) reduces to

δ−1
a,w = 1 + 3k − kc3 − 2k

c3
− (c3 − 1)(c2 − bc2c) + k

dc2e − c2

c2
(c2 − bc2c − (k − 1)(

2
c3
− 1)),

the maximum of which is attained for some c2 between k and k+1, i.e. bc2c is minimal. For each k = 1, 2, 3
(separately) it is now possible to obtain an appropriate upper bound on δ−1

a,w, under the assumptions that
k ≤ c2 ≤ k + 1 and 1 ≤ c3 ≤ 2. For k = 1, this upper bound is 6 − 3 3

√
4, and it is attained when

c2 = c3 = 3
√

2. 2

Note that the obtained lower bound is tight since we can take c2 and c3 arbitrarily close to 3
√

2, and
in these cases the given a and w are optimal; see Proposition 6. The interpretation of this lower bound is
that for all values of n1, n2, n3, by nesting the sets X1, X2, X3 we will never lose more than 19.21%, with
respect to the “restriction free” maximin distance. In practice this implies that a linking parameter can
be included in the maximin designs, at a cost of using designs that are at most 19.21% worse with respect
to space-fillingness.

Applying our approach in case of (three-stage) sequential evaluations incurs a loss of 1− d when one
stage suffices. If two stages are sufficient we obtain a net gain of d− d′, where d′ = c2

dc2e (see Section 2.1),
and when all three stages are needed we gain d− d′′, where d′′ ≤ d′ ≤ d and d′′ > 1

2 for c3 > 1. Thus, the
net gain of our approach equals (d−1)+(d−d′)+ (d−d′′) and it takes values in the interval [−0.19, 0.84]
for n3 ≤ 25.

3.2 Dominance

The notion of dominance was introduced in Section 2.2. Similar as before, we will call a combina-
tion (d1, d2, d3) dominant if it is not possible to improve one of the coordinates, without deteriorating
another coordinate. Unlike with two nested sets, the maximin combination (d, d, d) is not necessar-
ily dominant, e.g. d(4, 8, 17) = 0.9130, however, (0.9130, 0.9130, 0.9275) is dominant. In Section 2.2
we showed that (1, c2

dc2e ) and ( bc2c
c2

, 1) are extreme dominant combinations for two nested sets. Ex-
tending these ideas to three nested sets, i.e. fixing di = 1 and maximizing dj , j 6= i, leads to ex-
treme dominant combinations. Note that the extreme dominant combinations are again lower bounds
on the maximin distance d = d(n1, n2, n3). An upper bound on d is obtained by the simple obser-
vation that d(n1, n2, n3) ≤ max{d(n1, n2), d(n1, n3), d(n2, n3)}. Furthermore, it is easily shown that
d(n1, n2, n3) = d(n2, n3) if and only if c2 ∈ N, and d(n1, n2, n3) = d(n1, n2) if and only if c3 ∈ N.

All this may lead to the believe that we can extend the idea of finding the maximin distance by
means of extreme dominant combinations, like we did for two nested sets. As an example, from Fig-
ure 6 it can be seen that the dominant combinations for n1 = 4, n2 = 8, and n3 = 18, lie in a plane
through the extreme dominant combinations (1, 0.7778, 0.9444), (0.8571, 1, 0.8095), and (0.8824, 0.8235, 1).
This plane intersects the line d3 = d2 = d1 exactly in the maximin combination (0.8970, 0.8970, 0.8970),
strengthening the believe that this method also works for three nested sets. Unfortunately, the dominant
combinations will not always fall in a plane through the extreme dominant points; see Figure 7 for an
example of this. Furthermore, this plane can not always be used to find the maximin combination. For
example, take n1 = 6, n2 = 8, and n3 = 12. Then the plane through the extreme dominant combina-
tions (1, 0.7, 0.7333), (0.7143, 1, 0.7857), and (0.9091, 0.6364, 1), results in the unattainable combination
(0.8324, 0.8324, 0.8324), when intersected with the line d3 = d2 = d1, thereby “missing” the correct max-
imin combination (0.8262, 0.8262, 0.8262).

3.3 Heuristic

In the previous section we showed that, when dealing with three nested sets, the maximin distance cannot
always be found by means of extreme dominant combinations. Note that even when this method would
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Figure 6: Dominant combinations for n1 = 4,
n2 = 8, and n3 = 18.

0.80

0.90

1.00
0.80

1.00

0.80

0.90

1.00

d
1

d
2

d
3

Figure 7: Dominant combinations for n1 = 4,
n2 = 9, and n3 = 14.

work, we still had to find a way to construct the corresponding nested maximin designs. Mixed integer
programming can be used; however, it was found to be too slow in finding nested maximin designs for
large values of n1, n2, n3. To deal with these problems we built a heuristic that searches for a good nested
design, and, hence, a good distance.

Our heuristic is based on the observation that all nested maximin designs that were found by solving
(7) contained the corresponding two nested sets assignments, as given in (3), as part of their solutions,
e.g. compare Figure 2 and 5. Therefore, for given n1, n2, n3 (c2, c3 6∈ N), we first use (3) to construct
a nested maximin design on n1, n2. Every interval [xl, xl+1], l ∈ I2 \ {n2}, then will have a width of at
least d

n2−1 , where d = d(n1, n2) is as in (2). This implies that we can add up to q points to each interval
without decreasing d, as long as q fulfills the inequality

d(q + 1)
n3 − 1

≤ d

n2 − 1
, or equivalently q + 1 ≤ c3,

which results in at most q = bc3c − 1 additional points per interval, or (bc3c − 1)(n2 − 1) in total. Hence,
if n3 − n2 ≤ (bc3c− 1)(n2 − 1), we are finished, since spreading the n3 − n2 points equally over the n2 − 1
intervals will yield a nested maximin design with distance d(n1, n2, n3) = d(n1, n2).

If n3 − n2 > (bc3c − 1)(n2 − 1), we add q points to every interval and have r = (n3 − n2) − (bc3c −
1)(n2 − 1) < (n3 − n2)− (c3 − 2)(n2 − 1) = n2 − 1 points remaining. These remaining r points are then
sequentially added to one of the n2 − 1 intervals as follows. Consider the case where s points are already
assigned, s ∈ {0, . . . , r − 1}, and consider the index sets Is

1 ⊆ Is
2 ⊆ Is

3 = {1, . . . , n′3}, which describe the
current nested design on n1, n2, n

′
3, where n′3 = n2 + (bc3c − 1)(n2 − 1) + s. Then the corresponding

maximal distance can readily be computed using Lemma 2.
When assigning the (s+1)-st point we first compute for each of the n2−1 intervals what the maximal

distance will be if the point is assigned to that particular interval, again using Lemma 2. Naturally, the
interval for which this distance is the largest is chosen and the corresponding Is+1

1 ⊆ Is+1
2 ⊆ Is+1

3 describe

the new nested design. In case of a tie we choose that interval for which max{ (Is+1
2 )i+1−(Is+1

2 )i

n3−1 , 1
n2−1} −

max{ (Is
2 )i+1−(Is

2 )i

n3−1 , 1
n2−1} is the smallest, i = 1, . . . , n2 − 1; see (3), where (Is

2)i is the i-th element of set
Is
2 . This value can be seen as the relative cost of adding an extra point to a particular interval. Leaving

out this second objective may result in bad nested designs.
For given index sets I1, I2, I3 it takes O(n1n2) time to compute the maximal distance, using Lemma 2.

There are s ≤ r < n2 extra points to be added and for each of these points n2 − 1 index sets have to be
considered, hence, we have to apply Lemma 2 O(n2

2) times. Therefore, a nested design for n1, n2, n3 is
found in O(n1n2

3) time. Note that the complexity does not depend on n3. Moreover, it turns out that
our heuristic yields an optimal nested design for all values of n1, n2, n3 we solved so far, i.e. for n3 ≤ 25.
We conjecture that the heuristic will find a nested maximin design for all n1, n2, n3.

10



4 Four or more nested sets

In this section we discuss the case of m ≥ 4 nested sets. This can be formalized as the following mathe-
matical program:

max min
j,k∈Ii; j 6=k

i=1,...,m

(ni − 1)|xj − xk|

s.t. I1 ⊆ I2 ⊆ · · · ⊆ Im

|Ii| = ni, i = 1, . . . , m− 1
0 ≤ xj ≤ 1, j ∈ Im.

(9)

Furthermore, Lemmas 2 and 3 can easily be generalized to more nested sets. In particular,

Lemma 4 Let 2 ≤ n1 ≤ · · · ≤ nm. Then d(n1, . . . , nm−1, nm) ≤ d(n1, . . . , nm−1, nm + nm−1 − 1).

Now, we consider the case nm < 2n1. Let ci = ni−1
ni−1−1 , i = 2, . . . , m, and d = d(n1, . . . , nm). For fixed I1,

let it contain the indices 1 = a1 < a2 < · · · < an1 = nm. Note that this a is somewhat different from a in
the previous section, in the sense that it here gives the relation between I1 and Im, instead of between I1

and I2. As before, let the sequence v = (v1, . . . , vn1−1) be given by vi = ai+1 − ai. Thus vi − 1 gives the
number of additional points of Xm between the i-th and (i + 1)-st point of X1.

Proposition 5 Let m ≥ 3 and 2 ≤ n1 ≤ · · · ≤ nm < 2n1. Then the maximal value for d equals

1
2m− 2

c2
− · · · − 2

cm
− c2c3 · · · cm

.

Proof. Consider an I1 such that the corresponding v takes only values 1 and 2, i.e. between two neighbor-
ing points from X1 there is at most one point from Xm. Since max{ 2

nj−1 , 1
n1−1} = 2

nj−1 , and since the
number of i such that vi = 1 equals 2n1 − nm − 1, it follows that δv = ((2n1 − nm − 1) 1

n1−1 +
∑m

j=2(nj −
nj−1) 2

nj−1 )−1 = (2m−2c−1
2 −· · ·−2c−1

m −c2c3 · · · cm)−1. That this v gives the optimal d can be shown by
comparing δ−1

v′ , for a v′ with v′i ≥ 3 for some i, to δ−1
v′′ , where v′′ is obtained from v′ by letting v′′i = v′i−1,

and taking v′′j = 2 for a j with v′j = 1. Such a j exists because of the condition nm < 2n1. We omit
further technical details. 2

Using Proposition 5, it is easy to show that the following holds:

Proposition 6 Let m ≥ 2 and 2 ≤ n1 ≤ · · · ≤ nm < 2n1. Then 1 ≥ d > (2m(1− m

√
1
2 ))−1.

The lower bound for d is attained when ci = m
√

2 for all i. We conjecture that this lower bound for d
holds in all cases. This conjecture is supported by the results for m = 2 and m = 3, see Proposition 2 and
Proposition 4, respectively.

We remark further that the sequence (2m(1− m

√
1
2 ))−1 is decreasing in m, and converges to 1

2 log 2 '
0.721348. Hence, if our conjecture is true we will never lose more than 27.87%, with respect to the “re-
striction free” maximin distance, when nesting the sets X1, . . . , Xm.

For the case m = 4 we extended the mixed integer linear program for three nested sets, see (7), and
found results up to n4 = 19. Unfortunately, as n4 gradually increases, the computation time rapidly
grows, leading to some instances that take 4 hours to solve. Therefore, we built a heuristic that searches
for good nested designs for given n1, n2, n3, n4. This heuristic first constructs a nested design for n1, n2, n3,
see Section 3.3, which is conjectured to be an optimal nested design. Then the n4 − n3 extra points are
sequentially added, in the way described in Section 3.3. As can be observed from Figure 8, for n4 ≤ 19
our heuristic often finds the maximin distance (and thus the corresponding nested maximin design), and
is not too far off in most other cases. Unfortunately, there is an instance, i.e. (4, 6, 9, 14), for which the
maximal distance found by the heuristic has a value that is less than the (conjectured) lower bound in
Proposition 6 (the dotted lines in the figure). For this instance the heuristic finds a maximal distance of
0.7796, which is smaller than the lower bound of 0.7857 and the maximin distance d(4, 6, 9, 14) = 0.7923.
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Figure 8: Maximal distance found by heuristic versus the maximin distance for n4 ≤ 19.

5 Conclusions and further research

In this paper we discussed the construction of nested maximin designs. Such designs play an important
role in the design of computer experiments in black box evaluation and optimization processes. The
two main reasons for using nested maximin designs are linking parameters and sequential evaluations.
Linking parameters occur when several black box functions share the same input parameters, or when
uniformity in parameter settings is needed. We speak of sequential evaluations when an initial set of
function evaluations is followed by extra sets of evaluations, as is often the case in practice.

Constructing a maximin design for two black box functions that share a single linking parameter,
or for two-stage sequential evaluations, can be considered as constructing a nested maximin design for
two nested sets X1 ⊆ X2 = {x1, . . . , xn2}, with xj ∈ [0, 1]. In this case, the maximin distance equals
d = (1 + bc2c+ dc2e − c2 − bc2cdc2e 1

c2
)−1, where c2 = n2−1

n1−1 , and a corresponding nested maximin design
is given by (3). It is shown that due to the restriction X1 ⊆ X2 the resulting designs are at most 14.64%
less space-filling than standard maximin designs, in case of linking parameters. For sequential evaluations
Figure 3 shows the net gain of using nested maximin designs. In both cases, it turns out that using nested
maximin designs instead of traditional maximin designs is very profitable.

Although we lack an explicit formula for the maximin distance of three nested sets it is proven that
this distance is at least 0.807887. Furthermore, for small instances nested maximin designs can be found
by mixed integer programming. Fortunately, we developed a fast heuristic that constructs nested designs
for larger instances, too. Based on the results, it is conjectured that this heuristic is optimal, i.e. it will
yield a nested maximin design for all instances. An extension of the heuristic to four nested sets often
finds nested maximin designs and is not too far off in most other cases.

To investigate the trade-off between nested sets dominant combinations are introduced. In case of two
nested sets this relation is linear and is given by (4). For three nested sets the behavior of these dominant
combinations is not always that simple, e.g. see Figure 7. Finally, it is proven that a lower bound on

the maximin distance for the general problem of m nested sets is given by (2m(1 − m

√
1
2 ))−1, under the

restriction nm < 2n1. It is conjectured that this lower bound also holds for all other instances, as is
supported by the results for m = 2 and m = 3.

Besides considering the maximin criterion, the concept of nested designs could also be applied to other
distance measures, like minimax, IMSE, and maximum entropy. Furthermore, the one-dimensional results
in this paper could be extended to more dimensions, i.e. constructing multi-dimensional nested maximin
designs, which is subject of current research.
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