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Abstract: This contribution discusses experiments with many factors: the 

case study includes a simulation model with 92 factors. The experiments 

are guided by sequential bifurcation. This method is most efficient and 

effective if the true input/output behavior of the simulation model can be 

approximated through a first-order polynomial possibly augmented with 

two-factor interactions. The method is explained and illustrated through 

three related discrete-event simulation models. These models represent 

three supply chain configurations, studied for an Ericsson factory in 

Sweden. After simulating 21 scenarios (factor combinations) – each 

replicated five times to account for noise – a shortlist with the 11 most 

important factors is identified for the biggest of the three simulation 

models.
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and its applications 
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Fredrik Persson 
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1 Introduction 

In this introductory section we discuss our definition of screening; our view on 
simulation versus real-world experiments, screening procedures, including our 
procedure called sequential bifurcation, and our case study 

1.1 A definition of screening 

We define screening as the search for the ‘most important’ factors among a ‘large’ 
set of factors in an experiment. For example, in our case study  (see Section 1.4) 
the number of factors is 92 - but we find only 11 factors to be important: so-called 
‘effect sparsity’. The simplest definition of importance occurs when the factors 
have additive effects only and when the experiment has a single response (output); 
i.e., the input-output relation is a first-order polynomial in regression terminology 
or a ‘main effects only’ model in analysis of variance (ANOVA) terminology 
(also see Schonlau and Welch 2003). In such a case, the most important factor is 
the one with the largest absolute value of its first-order effect or main effect; the 
least important factor is the one with the effect closest to zero.  

The goal of screening is to come up with a shortlist of important factors from a 
long list of potential factors.   Depending on the application, this shortlist might 
lead to a more thorough investigation via additional experiments; see Kleijnen et 
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al. (2002). In the case study discussed in Section 1.4, we first performed screen-
ing; next we did an optimization and robustness analysis for the most important 
factors; see Kleijnen et al. (2003). In an ecological case study, Bettonvil and Klei-
jnen (1997) identified a shortlist of factors, including some factors that the eco-
logical experts had not expected to have important effects! 

It is also important to know which factors are ‘certainly’ unimportant so the cli-
ents of the simulation analysts are not bothered by details about these factors.  Of 
course, the importance of factors depends on the experimental domain (experi-
mental area to be explored; also called ‘experimental frame’ by Zeigler et al. 
2000).  The clients must supply information on this domain, including realistic 
ranges of the individual factors and limits on the admissible scenarios or combina-
tions of factor levels; for example, some factor values must add up to 100%. Note 
that we distinguish between on one hand the simulation analysts, who develop the 
simulation model and run experiments with this model, and on the other hand their 
clients, who may be the managers and other users of the real system being simu-
lated. 

We view the real or the simulated system as a black box: it transforms inputs 
into outputs. Experiments with such a system are often analyzed through a regres-
sion or an ANOVA model. We call such a model a metamodel; other names are: 
auxiliary model, emulator, response surface, etc. Other metamodel types are: 
Kriging, neural nets (NN), radial functions, splines, etc.  Of course, the simulation 
is itself a model of some real-world system. Hopefully, a parsimonious metamodel 
can be built that describes the input-output relationship in simple terms (much 
simpler than the full simulation model). We emphasize the following chicken-and-
egg problem: once the design is specified and simulated, metamodel parameters 
can be estimated; however, the types of metamodels that the analyst desires to in-
vestigate should guide the selection of an appropriate design. 

1.2 Simulation versus real-world experiments 

Classic design of experiments focuses on real-world experiments; see the classic 
textbook by Box, Hunter, and Hunter (1978) or the recent textbook by Myers and 
Montgomery (2002). We, however, focus on experiments with computer or simu-
lation models, which may be either deterministic or stochastic; also see Kleijnen et 
al. (2002). For an introduction to simulation modeling we refer to the most popu-
lar textbook (80,000 copies sold), namely Law and Kelton (2000). 

In simulation—with its advances in computing power—the analysts are no 
longer bound by some of the constraints that characterize real-world experiments.  
This is a challenge, as it requires a new mindset: we argue that the way simulation 
experiments should be approached is fundamentally different from the way in 
which real-world experiments should be approached.  We now discuss three as-
pects (labeled a, b, c). 
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a. In real-world experiments, the analysts must often select a design that is 
executed in one shot (say, one growing season in an agricultural experiment).  In 
simulation, however, the data are collected sequentially because a standard com-
puter operates sequentially (a parallel computer is still an exception). Conse-
quently, the analysts may examine the most recent observation before selecting the 
next design point. For example, the analysts may start with a relatively small de-
sign for a very simple metamodel; then test (validate) the adequacy of that model; 
and only if they reject that model, they augment the original design to enable the 
estimation of a more complicated model—this is a two-stage design. In this paper, 
however, we present a design that analyzes each new observation before selecting 
the next design point—except for the first two observations (which correspond 
with the two extreme scenarios). Also see Kleijnen et al. (2002) and Kleijnen and 
Sargent (2000). 

When analysts must take samples sequentially in real-world experiments, then 
the experiment is viewed as prone to validity problems. Hence, the analysts ran-
domize the order of sampling to guard against time-related changes in the experi-
mental environment (such as temperature, humidity, consumer confidence, and 
learning effects), and perform appropriate statistical tests to determine whether or 
not the results have been contaminated.  

However, most simulation experiments are implemented sequentially.—
without requiring explicit randomization. An input file can be generated, once a 
particular design type has been chosen—as we did indeed in our case study.  Such 
a file can be executed sequentially (and efficiently) in batch mode; that is, no hu-
man intervention is required while the computer executes the sequential design 
(including rules for selecting the next design point, based on all preceding obser-
vations). 

b. In real-world experiments, only a small number of factors are typically var-
ied: it is a challenge to control more than, say, ten factors. Actually, many pub-
lished experiments deal with fewer than five factors (however, several chapters of 
this book do deal with many more than ten factors in real-world experiments). We 
emphasize that - in simulation - good computer programming avoids fixing the 
factors at specific numerical values within the code; instead the computer reads 
factor values so that the program can be run for many combinations of values.  (Of 
course, the computer should check whether these values are admissible; that is, do 
these combinations fall within the experimental domain?) Such a practice can 
automatically provide a long list of potential factors.  Next, the users should con-
firm whether they indeed wish to experiment with all these factors or whether they 
wish to a priori fix some factors at nominal (or base) levels.  This type of coding 
helps unfreeze the mindset of users who would otherwise be inclined to focus on 
only a few factors. (For example, Persson and Olhager 2002 simulate only nine 
combinations of factor levels.) 

However, a large set of factors implies that computer time may again become a 
bottleneck: if a single simulation observation takes (say) one hour, then traditional 
design of experiments fails and we must use special screening procedures. (In our 
case study one run originally took three hours; after modification of our simulation 
code, this became 40 minutes.) 
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c. Randomness occurs is real-world experiments because the experimenters 

cannot control all factors that affect the experiment’s response; for example, hu-
man participants have ambition levels that cannot be fully controlled by the ex-
perimenters. In computer simulation, these effects can be modeled through ran-
dom input variables; for example, the arrivals of customers may be modeled as a 
Poisson process—so the time between two successive arrivals is exponentially dis-
tributed. Values for random variables are generated through pseudorandom num-
bers. (There are also deterministic simulation models, but we focus on random 
simulation models.) A single simulation run gives an observation on each of the 
responses of interest to the analysts; for example, in our supply chain simulation 
(detailed in Section 3), one simulation run represents the operations of that chain 
during seventeen weeks; the major response is the average costs per week. To ob-
tain independently and identically distributed (i.i.d.) observations, the analysts 
generate several simulation runs or replicates, which all start in the same initial 
state of the simulated system and use different pseudorandom numbers.  

1.3 Screening procedures for simulation 

The contributors of this book present various screening methods; two chapters 
closely related to this chapter are Morris (2003) and Schonlau and Welch (2003). 
Further, Campolongo, Kleijnen, and Andres (2000) discuss screening methods in a 
simulation (not real-world) context: one-factor-at-a-time (OAT), Morris’s OAT, 
Cotter’s design, Andres’s Iterated  Fractional Factorial design (IFFD), and sequen-
tial bifurcation. They refer to available software, and emphasize key assumptions. 
Some of these methods – including sequential bifurcation - require fewer observa-
tions than there are factors: supersaturated designs. However, the term ‘supersatu-
rated’ is usually reserved for single-shot designs; see above (Section 1.2) and also 
Westfall, Young, and Lin (1998). 

In this chapter, we explain the procedure of sequential bifurcation. We 
add some new results for sequential bifurcation in random (not deterministic) 
simulations, and apply the resulting method to a simulation model developed for 
Ericsson in Sweden. 

1.4 The Ericsson case study: supply chain simulation 

 
 
By definition, a supply chain consists of several ‘links’, which are separate com-
panies or independent business units of a single large company.  Example links are 
retailers, wholesalers, distributors, and factories. Common sense strategies may 
amplify fluctuations in the demand by final customers—up the supply chain; Lee 
et al. (1997) identify this amplification as one of the bullwhip effects. Banks et al. 
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(2002) and Kleijnen (2004) discuss simulation in supply chain management. Sup-
ply chain management is a hot topic in Operations Research (OR), including simu-
lation; see for example the Proceedings of the 2002 Winter Simulation Conference 
and Simchi-Levi, Kaminsky, and Simchi-Levi (2000).  

In this section, we discuss a recent example of simulation that models three al-
ternative configurations for a supply chain in the mobile communications industry 
in Sweden—centered on the Ericsson company. A central issue in supply chain 
management is the lean and mean strategy; that is, the elimination of links or steps 
within links hopefully improves the total chain’s performance. In the Ericsson 
case, three supply chain configurations are studied. Each configuration is actually 
the same chain—‘simplified’ over time. The Old configuration—existing in 
1998—consists of many operations and test stations. The Current (1999) configu-
ration has fewer operational steps. The Next Generation chain is a future scenario 
with a minimum of operations and tests. Figure 1 shows simplified pictures of the 
three configurations. We now discuss this figure in some detail. 

In Figure 1, a square denotes a test of the products produced by the preceding 
operation, which is denoted by a circle. There are several types of tests and opera-
tions, as the names in the figure show. Products flow through the chain, from left 
to right in the figure. The chain starts by buying ‘raw’ products; next, it processes 
these products; the chain finishes by assembling components into ‘final’ products 
(which are sold). The abbreviation SMD stands for ‘surface mounted devices’ 
(these electronic devices are mounted on the surface on a circuit board—which is 
a modern technology compared with devices that are mounted in holes on the 
board). In Figure 1, the dotted boxes box indicate that the mounting and testing of 
the circuit board is integrated in the same machine (in this case a very fast mount-
ing machine with integrated vision control of device placements; into this machine 
is also integrated the heating to make the soldering paste melt and connect the 
board to the electronic device). 

Figure 2 shows the Current simulation model. This figure illustrates that buffers 
(inventories) are located before and after each test station and operation; products 
are transported between all operations and test-stations. 

The goal of the simulation study is to quantify the relationships among the 
simulation output—namely, the steady-state mean costs of the whole supply 
chain—and the simulation inputs (or factors)—such as lead-time and quality. Our 
ultimate goal (reported in Kleijnen et al. 2003) is to find robust solutions for the 
supply chain problem, so we distinguish two types of factors: 
1. Factors that are controllable by the company; for example, Ericsson can ma-

nipulate the manufacturing processes and select logistic partners for transporta-
tion. 

2. Factors that are determined by the environment; examples are demand for 
products, process yield or percentage of faulty products, and scrap percentage 
at each test station. 
The simulation model of the Old supply chain has 92 factors (for example, op-

eration time of an individual process, number of resources). The model of the Cur-
rent and the Next Generation supply chain have 78 and 49 factors respectively. 

More details follow in Section 3.  
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2. Sequential bifurcation (sequential bifurcation) 

Originally, sequential bifurcation was developed in the doctoral dissertation by 
Bettonvil (1990). This dissertation is summarized by Bettonvil and Kleijnen 
(1997), and updated by Campolongo et al. (2000), including a few applications. 
Other authors have also studied sequential bifurcation: Cheng (1997), Cheng and 
Holland (1999). sequential bifurcation is related to binary search, which aims to 
find the single most important factor. First we present the assumptions and nota-
tion of sequential bifurcation (Section 2.1); next we illustrate the sequential bifur-
cation steps (Section 2.2). 

2.1 Assumptions and notation of sequential bifurcation 

The two basic assumptions of sequential bifurcation are: 
Assumption 1: a first-order polynomial possibly augmented with two-factor in-

teractions is an adequate metamodel: 

Exx...xxx...xY kkk);k(:kk +++++++= −− 112121110 βββββ  (2.1) 

where we use capitals for random variables, Greek letters for parameters to be es-
timated, and the following symbols: 

Y: the response of the metamodel (the sequential bifurcation approximation) 
k: the total number of factors in the experiment 

jβ : the first-order or main effect of factor j with  j = 1, …, k 

j;'jβ : the interaction effect of the factors 'j and j with 1 ≤ 'j < j ≤ k 

jx : value of factor j 
E: the noise (randomness caused by both pseudorandom numbers and approxi-

mation error) 
We observe that this metamodel is linear in its parameters jβ and j;'jβ  but non-

linear in its variables jx . At the end of the case study, we shall try to validate the 
assumption; see Section 3. 

To estimate the parameters β in the simple metamodel specified in (2.1), it is 
most efficient to experiment with only two levels (values) per factor (see any text-
book on design of experiments). In practice, it is important that these levels are re-
alistic. 

Assumption 2: the signs of all main effects are known so 

0≥jβ  (j = 1, …, k) (2.2) 

We comment that we need this assumption; otherwise, main effects might can-
cel each other (also see Morris 2003). Our experience is that in practice this as-
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sumption is easy to satisfy; i.e., it is easy to define the upper and lower level of 
each factor such that the upper level does not decrease the expected response. For 
example, in our case study some factors refer to transportation speed: the higher 
this speed, the lower the work in process (WIP); hence the lower the costs. (Other 
examples are provided by Lewis and Dean 2001.) If in a particular case study this 
assumption seems hard to meet for specific factors, then these factors should be 
treated ‘individually’; i.e., none of these factors should be grouped with other fac-
tors.  

Consequently, we call the two factor levels (mentioned above) the low level and 
the high level respectively.  This low level is the factor level that results in the 
lower expected (simulation) response. The simplest experimental domain is a k –
dimensional hypercube - after coding the original factor jz  such that its low value 

jl  corresponds with the value -1 of the standardized factor jx ; likewise, its high 
value jh  corresponds with the value +1 of the standardized factor jx  : 

2
2

/)lh(
/)lh(z

x
jj

jjj
j −

+−
=  

(2.3) 

The scaling in (2.3) implies that we may rank (sort) the factors by their main 
effects; that is, the most important factor is the one with the highest main effect, 
etc. We notice that the larger the range of an untransformed factor is, the larger the 
response  difference and hence the main effect of the transformed factor is. (Also 
see Cheng and Holland 1999 ‘s ‘unit cost’ effects.)  

In our case study, we could not get information on the factor ranges from 
Ericsson. Therefore we decided to change most factors by 5 % of the base values 
reported for the existing system by Persson and Olhager (2002). However, trans-
portation speeds between operations we change by 25 %. (Also see again Cheng 
and Holland, 1999.) 

The efficiency of sequential bifurcation—measured by the number of observa-
tions (simulation runs and hence simulation time)—increases if the individual fac-
tors are listed (numbered) such that factors are placed in increasing order of im-
portance (see Bettonvil 1990, pp. 44) 

)'(' jjjj <≤ ββ  (2.4) 

We try to realize this efficiency gain by applying prior knowledge about the 
simulated real system. Because we think that environmental factors are most im-
portant, we place these factors last in the list of factors. 

We try to increase the efficiency further, and use our knowledge about the 
simulated real system to keep similar factors together; for example, we group all 
test yield factors together. We conjecture that if one yield factor is unimportant, 
then all yield factors are likely to be unimportant too. Bettonvil (1990, pp. 40-43) 
divides factor groups such that the number of factors per resulting subgroup is a 
power of two. We use his approach as a secondary guideline; for example, in our 
sequential bifurcation for the Old supply chain we split the first 48 factors into a 
group of 32 (= 25) factors and a group of the remaining factors; see Figure 3, 
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which shows the results of applying sequential bifurcation to our Ericsson case 
study; its factors are labeled from 1 through 92, and the continuous horizontal 
band at the top of the figure indicates that all factors have been grouped together 
in the first step. (We do not follow Bettonvil’s approach if it implies splitting up a 
group of related factors. Cheng (1997) splits groups into two groups of equal size.) 

To explain the sequential bifurcation procedure, we initially assume that a first-
order polynomial is an adequate metamodel; i.e., the interactions in (2.1) are zero 
and the expected value of the noise E is zero: 

.);j'j( Ej:'j 00 =≠= µβ  (2.5) 

Based on Bettonvil (1990) we introduce the following additional sequential bi-
furcation notation adapted for replicated random responses. 

y(j); r : observed (simulation) output with the factors 1 through  j set to their high 
levels and the remaining factors set to their low levels, in replication r of factor 
combination i with  r = 1, …, mi ; to simplify the notation we assume a constant 
number of replications for all factor combinations so mi = m 

We now define j_'jβ as the sum of main effects for factor j′  through  j: 

∑
=

=
j

'jh
hj_'j ββ  

(2.6) 

An estimate of this aggregated main effect jj _'β  - based on replication r - is  

( ) ( )

2
ˆ ;1;'

;_'
rjrj

rjj

yy −−
=β  

(2.7) 

For example, we start with observing (simulating) two extreme scenarios (see be-
low: Section 2.2): in scenario 1 all factors are at their low level; in scenario 2 all 
factors are high. Using the metamodel in (2.1), we obtain  

k)( ...)Y(E βββ −−−= 100  (2.8) 

k)k( ...)Y(E βββ +++= 10  (2.9) 

so 

)...(2)()( 1)0()( kk YEYE ββ ++=−  (2.10) 

 
which explains that the estimator following from (2.7) is unbiased. 

For the individual main effect the estimator is 
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( ) ( )

2
1 r;jr;j

r;j

yyˆ −−
=β  

(2.11) 

From the m replicates we compute the average and the sample variance for each 
(aggregated or individual) estimated effect; for example, for the individual main 
effect j we obtain 

;
m

ˆ
ˆ

m

r r;j
j
∑ == 1

β
β

)1(
)ˆˆ(

)ˆ(

2

1 ;2

−
−

= ∑ =

mm
s

m

r rj
j

ββ
β  

(2.12) 

where the factor m in )ˆ(2
js β is needed because it estimates the variance of jβ̂ , 

which is an average effect computed from m replicates. 
The variance estimators of the estimated effects in (2.12) allow unequal re-

sponse variances and the use of common pseudorandom numbers, which is a well-
known variance reduction technique in simulation. This technique uses the same 
pseudorandom numbers to simulate various factor combinations. When this tech-
nique creates positive correlations between the responses of these various factor 
combinations, then the variances of the estimated main effects are obviously re-
duced. (This technique is similar to blocking in real-world experiments; also see 
Morris 2003.) 

2.2 The steps of sequential bifurcation 

A formal description of sequential bifurcation can be found in Bettonvil (1990). 
Here we illustrate sequential bifurcation through the Old simulation model, which 
has 92 factors. As Table 1 shows, we start sequential bifurcation finding )(y 0 = 
3,981,627 and )(y 92  = 34,013,832 where the overline denotes the average com-
puted from the m replicates; this table also displays the individual five replicates. 

So, the estimated effect of all 92 factors together is 92_1̂β = (34,013,832 – 
3,983,627)/2 = 15,016,102; also see Figure 3 immediately below the first shaded 
line listing all factor labels from 1 though 92. The standard error of this estimated 

aggregated effects is )ˆ( 92_1βs = 128,508. 
To test the importance of estimated (either aggregated or individual) main ef-

fects statistically, we assume that the (simulated) outputs per scenario are nor-
mally and independently distributed. Different scenarios may give different vari-
ances. Sequential bifurcation allows the analysts to use common pseudorandom 
numbers for different scenarios. We apply Student’s statistic, which is known not 
to be very sensitive to violation of the normality assumption; we ignore variance 
heterogeneity when determining the degrees of freedom (see Kleijnen 1987, pp. 
14-23). We apply a one-sided test because we assume that all individual effects 
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are non-negative. We conclude that the sum of 92 main effects is significantly dif-
ferent from zero. Our heuristic uses a fixed t–value throughout the whole sequen-
tial bifurcation procedure; we do not adjust for multiple testing (see Kleijnen 
1987, pp. 41-45). In practice, significance is not essential; importance is: we 
search for a shortlist of important factors. 

In hindsight, we might have used fewer replications in the early stages, as these 
stages have higher signal/noise. (The noise remains constant - if for simplicity’s 
sake we assume that all outputs have the same variance - whereas the signal de-
creases during the sequential bifurcation procedure as this signal is the sum of 
fewer main effects; i.e., as sequential bifurcation proceeds, less aggregation oc-
curs.) 

Some reflection proves that this group effect is also an upper limit for any indi-
vidual main effect. The goal of sequential bifurcation is to find the most ‘impor-
tant’ factors; that is, the factors that have significant main effects. If, however, we 
terminate our screening prematurely (for example, because the computer breaks 
down or our clients get impatient), then sequential bifurcation still estimates the 
factors with the largest main effects – as we shall see next. 

The next step is to divide the current group (of 92 factors) into two subgroups; 
this explains the term sequential bifurcation. Into one subgroup we place all the 79 
controllable factors; so into the other subgroup we put all 13 environmental fac-
tors; see the next shaded line in Figure 3. Simulation of this scenario gives the 
third observation )(y 79  = 9,250,034 (with standard error 14,127). This )(y 79  lies 
between )(y 0  and )(y 92 , as the sequential bifurcation assumptions imply. Compari-

son of )(y 79  and )(y 0  gives 791−β
�

ˆ  = 2,634,203  (s = 16,534).  Comparison of )(y 92  

and )(y 79  gives 9280−β̂  = 12,381,899  (s = 128,220). So, this step splits the total ef-

fect of the first step ( 921−β̂  = 15,016,102) into its two additive components. This 
step decreases the upper limit for any individual effect in the first subgroup to 
2,634,203; for any individual effect in the second subgroup this limit is 
12,381,899.  

To decide where to split a group into its two subgroups, we use several princi-
ples—meant to increase the efficiency of our procedure, as explained between 
(2.4) and (2.5). 

Figure 3 also shows our remaining sequential bifurcation steps. We do not split 
a group any further, when its estimated (aggregated) effect is either non-
significant or negative. For example, the estimated effect of factors 50 through 79 
is –3,230 with standard error 31,418 

Sequential bifurcation stops after 21 steps. The upper limit for any remaining 
individual factor – denoted by U(21) (also see Figure 5, discussed below) - is then 
reduced to 12,792. Our list of the 11 most important factors is shown in the bot-
tom-left part of the figure. This list shows that factor 92 is the most important fac-
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tor (its estimated main effect is 8,087,149); the smallest factor in this shortlist is 
factor 88 (its effect is 241,809). (The meaning of these factors in the case study 
will be presented in Section 3). Remembering that we tried to label the factors 
such that equation (2.4) is satisfied, we now conclude that indeed factor 92 turns 
out to be the most important factor; no factor labeled with a number smaller than 
42 is significant. 

The figure also shows another list of the 11 most important factors – called 
gamma, not beta. We obtain this list through the more realistic metamodel includ-
ing interactions, discussed next. 

2.3. Two-factor interactions and foldover design in sequential 
bifurcation 

Groups of main effects are estimated without bias by two-factor interactions if se-
quential bifurcation uses a foldover design (also see Morris 2003). By definition, 
such a design also observes (simulates) the mirror scenario of each scenario ob-
served when (as in Section 2.2) assuming no interactions. By definition, a mirror 
scenario switches all individual factors that were at the high value in the original 
scenario to the low value. We let y-(j); r denote the observed output with the factors 
1 through j set to their low levels in replication r and the remaining factors set to 
their high levels. (This y-(j); r is the ‘mirror’ observation of y(j); r.) As an example we 
consider the second shaded line in Figure 4: 
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whereas the original observation gives 
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Subtracting these two equations demonstrates that all interactions cancel out. 
Bettonvil (1990) shows that the following estimated group effects are unbiased 

by two-factor interactions:  
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Likewise, the individual main effect estimate is 
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Note that the foldover design doubles the number of scenarios. This principle is 
also well known in classic design of experiments, and is due to Box and Wilson 
(1951); see Kleijnen (1987, p. 303). 
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Sequential bifurcation may give misleading results if (say) two factors have un-

important main effects but an important interaction (also see Lewis and Dean 
2001). Therefore we add the following assumption (which Wu and Hamada 2000 
call the ‘strong heredity’ assumption).  

Assumption 3: if a factor has no main effect, then this factor does not interact 
with any other factor: 

)'jj('j;jj ≠=⇒= 00 ββ  (2.17) 

If a priori we suspect that this assumption is violated, then we should investi-
gate such a factor after the screening phase.  

The foldover design does not enable us to estimate individual interactions, but 
it does enable us to estimate whether interactions are important – as follows. We 
estimate the main effects from the original scenarios, ignoring the mirror scenar-
ios. If the foldover design and the ‘original’ design give the same conclusions, 
then interactions are unimportant. Interactions were indeed unimportant in the 
ecological simulation reported by Bettonvil (1990) and Bettonvil and Kleijnen 
(1997). In the present case study, however, we shall see that interactions are im-
portant. (In a follow-up experiment that includes only the factors declared to be 
important, we estimate the individual interactions from a so-called resolution-V 
design; see Kleijnen et al. 2003.) 

Analogous to Figure 3, Figure 4 shows the sequential bifurcation steps when 
we do allow for interactions. Comparing these two figures (or comparing the two 
lists in the bottom-left part of Figure 3) shows that in this case we find the same 
shortlist. The individual values, however, do differ: interactions are important. 

Next we apply sequential bifurcation to the other two supply chain configura-
tions (Current and Next generations), and we interpret these sequential bifurcation 
results through our knowledge of the simulated real system 

3 Case study: Ericsson’s supply chain simulation models 

First we discuss some programming issues. Then we define the inputs and outputs 
of the three simulation models. Finally, we present results. 

3.1 Programming the three simulation models 

We give only a short description of the three supply chain configurations and their 
simulation models; for details we refer to Persson and Olhager (2002). At the start 
of our sequential bifurcation, we had three simulation models programmed in the 
Taylor II simulation software for discrete event simulations; see Incontrol (2003). 
We conduct our sequential bifurcation via Microsoft Excel, using the batch run 
mode in Taylor II. We store input-output data in Excel worksheets. This set-up fa-
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cilitates the analysis of the simulation input-output data, but it constrains the ex-
periment’s set-up. For instance, we cannot control the pseudorandom numbers in 
the batch mode of Taylor II. Hence, we cannot guarantee absence of overlap in the 
pseudorandom numbers; we conjecture that the probability of overlap is negligible 
in practice. Neither can we apply common pseudorandom numbers. 

To validate the resulting simulation models, Person and Olhager (2002) exam-
ined the simulation of the Current supply chain configuration. They could validate 
this model, since the real-world supply chain existed at that time, and data were 
available. Next, they developed the other two models, using the Current system’s 
model. (More precisely, they validated the model of the Current configuration 
through a structured walkthrough with the engineers and managers who are famil-
iar with the system being modeled; also see Balci (1998). Next they developed the 
other two models from this model. They validated the model of the Old supply 
chain configuration through a less thorough walkthrough. The model of the Next 
Generation supply chain was not validated at all: Ericsson deemed this acceptable 
since this model was built from a validated Current model and this supply chain 
did not even exist at that time.) 

Each simulation model gives several outputs, but we focus on a single output, 
namely the total cost. (This cost is calculated from inventory-related costs and 
quality-related costs. The inventory related costs are calculated from the inventory 
levels throughout the supply chain and the current value of each product at each 
step in the chain. The quality-related costs concern yield, scrap, and modification 
time multiplied by the modification cost. The rework affects the inventory related 
costs with higher levels of inventory as the reworked products once again flow 
through the supply chain.)  

3.2 Inputs and outputs of the three simulation models 

In this case study, we apply sequential bifurcation assuming a metamodel consist-
ing of a first-order polynomial augmented with two-factor interactions. This 
metamodel requires a foldover design, as described in Section 2.3. For example,  
after the start of our procedure, we set the first 79 factors at their individual high 
levels, so in the corresponding foldover design point we set these factors at their 
low levels; the remaining factors are at the levels opposite of the first 79 factors in 
the same factor combination. At the start of the procedure, we take only two com-
binations—which happen to form a foldover design. (We could have reduced the 
number of simulation observations by 50%, had we assumed a first-order polyno-
mial. However, we felt almost certain that interactions are important in this case 
study. Had we assumed a first-order polynomial, we would have followed differ-
ent paths towards the important factors. Had we obtained additional observations 
at the end of the sequential bifurcation to check for interactions, then the path 
might be rather different so the analysis would have to be done all over again.) 

The environmental factors (labeled 80 through 92 in Section 2) are the demand 
of products, the process yield, and the percentage of scrap at each test-station.(It 
can be proven that creating one cluster of environmental factors and one cluster of 
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controllable factors enables estimation of sums of interactions between controlla-
ble and environmental factors.) 

In this case study, we assume that the outputs of interest are steady-state out-
puts; see Persson and Olhager (2002). Therefore we use a warm-up period. To de-
termine this period, we apply Welch’s procedure described by Law and Kelton 
(2000). This procedure gives a warm-up period of four weeks. (The warm-up pe-
riod used by Persson and Olhager was only one week; they determined this period 
through a rule-of-thumb, namely the warm-up period should be three times the 
longest lead-time in the simulation. Gunn and Nahavandi 2002 show that initial 
conditions are important in manufacturing simulations.) After this warm-up pe-
riod, we run each scenario for sixteen weeks of production (we found substantially 
different outputs for four and eight weeks). We assume that this runlength indeed 
gives steady-state output. 

We label the factors such that all factors have the same meaning in the three 
simulation models. Therefore, we introduce dummy factors for the Current and the 
Next Generation models that represent those factors that are removed as the sup-
ply chain is changed. These dummy factors simplify the calculations and interpre-
tations of the sequential bifurcation results; they have zero effects.  

In conclusion, we focus on a single output, namely the expected weekly cost of 
the total supply chain in the steady state. (Different outputs may have different 
important factors so the sequential bifurcation paths differ.)  

3.3. Results for three simulation models 

The aggregated effects of the Old supply chain exceed those of the New supply 
chain, because the former aggregates more (positive) individual effects. For ex-
ample, the Current simulation model has 14 dummy factors (which have zero ef-
fects), so the first sequential bifurcation step gives a smaller main (group) effect:  
for the Current model this effect is 7,101,983, whereas it is 15,016,102 for the Old 
model. 

Furthermore, the shortlists are slightly shorter for the Current and New Genera-
tion models. The individual factors on the three shortlists are the same - except for 
the factors 91 (product demand),  44 and 46 (the latter two factors represent trans-
portation between operations) of the Next generation model. The most important 
factor (92) is the demand for one of Ericsson’s fast selling products. The other fac-
tors represent transportation and yield.  

Figure 5 illustrates how the estimated upper limits U for main effects decrease 
as new observations are obtained. Furthermore, this figure shows that the most 
important individual main effect – that of factor 92 - has already been identified 
and estimated after only ten steps. The next important factor - factor 49 – shows 
up after sixteen observations, etc. 

To verify sequential bifurcation’s shortlist, we test the effects of the remaining 
‘unimportant’ factors in the Current model, for the following two scenarios. First, 
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we set all unimportant factors at their low values, while keeping the important fac-
tors fixed. Secondly, we switch all unimportant factors to their high values, while 
keeping the important factors fixed. (These two scenarios are not used in sequen-
tial bifurcation to reach the shortlist.) We fix the important factors at their base 
values. These base levels are coded as zero because all the important factors are 
quantitative; see equation (2.3). We again replicate these scenarios five times. 
These replicates give averages, standard deviations, and the t statistic. This statis-
tic is 1.53, which is non-significant for any reasonable type-I error rate and any 
reasonable approximation for the correct number of degrees of freedom (see Sec-
tion 2.2). So we conclude that the sequential bifurcation shortlist seems valid. 

Persson (2003) gives many more details on both the case study and the applica-
tion of sequential bifurcation to create the shortlists for this case study.  

4 Conclusions 

The technique of sequential bifurcation is an important and useful method for ex-
periments with simulation models that involve a large number of factors. We have 
demonstrated the steps of this technique through a case study on three supply 
chain configurations in the Swedish mobile communications industry. We formal-
ized the assumptions of the technique, and found that in practice these assump-
tions may not be too restrictive– as our case study illustrates. 

In a companion paper—namely, Kleijnen et al. (2003)—we change the meta-
model in (2.1) after the screening phase, as follows. For those controllable factors 
found by sequential bifurcation to be important, we augment (2.1) with quadratic 
effects (for optimization). For those environmental or noise factors identified by 
sequential bifurcation as important, we create environmental scenarios through 
Latin Hypercube Sampling (for robustness analysis).  Note that Lewis and Dean 
(2001) also distinguish between controllable and noise factors. 

Further research is needed to derive the overall probability of correctly classify-
ing the individual factors as important or unimportant: in our sequential procedure, 
which tests each factor group individually; also see Lewis and Dean (2001, pp. 
663-664), Nelson (2003), and Westfall et al. (1998). 

Finally, the extension of sequential bifurcation from a single to multiple re-
sponses is an important practical and theoretical problem. 
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Figure 1: The three supply chain configurations: (a) the old, (b) the current, (c) 

the Next Generation  
 
Figure 2: The simulation model of the Current supply chain configuration  
 
Figure 3: Sequential bifurcation assuming a first-order polynomial metamodel, 

applied to the Old supply chain simulation; displays the parameter estimates at 
each step 

 
Figure 4: Sequential bifurcation assuming a first-order polynomial plus two-

factor interactions metamodel, applied to the Old supply chain simulation; in-
cludes upper limits for parameter values 

 
Figure 5. Upper limit U(i) after step i (i = 9, …, 21) and individual main effect es-
timates (shaded bars) versus  the factor label j (j = 1, …, 92) in the Old supply-
chain simulation 
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Figure 1: The three supply chain configurations: (a) the old, (b) the current, (c) the 
next generation 
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Figure 3: Sequential bifurcation assuming a first-order polynomial metamodel, 

applied to the Old supply chain simulation; displays the parameter estimates at 
each step 
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Figure 4: Sequential bifurcation assuming a first-order polynomial plus two-factor 
interactions metamodel, applied to the Old supply chain simulation; includes up-
per limits for parameter values 
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Figure 5. Upper limit U(i) after step i (i = 9, …, 21) and individual main effect es-
timates (shaded bars) versus  the factor label j (j = 1, …, 92) in the Old supply-
chain simulation 
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Table 1: Observations for the first two scenarios simulated in sequential bifur-
cation for the Old supply chain  

Replication y(0) y(92) 
1 3,954,024 34,206,800 
2 3,975,052 33,874,390 
3 3,991,679 33,775,326 
4 4,003,475 34,101,251 
5 3,983,905 34,111,392 
Average 3,981,627 34,013,832 
Standard Error 18,633 180,780 

 
 
 
Table 2. Important factors identified in sequential bifurcation for the Old sup-

ply chain; N/A denotes  a dummy factor; � denotes an important factor 
Model  

 
Factor 

Old Current Next  
Generation 

92 Demand � � � 
90 Yield (Circuit board) � � � 
89 Yield (Vision test) � � � 
88 Yield (SMD test) � � N/A 
86 Yield (Function test) � � � 
85 Yield (Time test) � � N/A 
87 Yield (Test, after wave soldering) � N/A N/A 
47 Transportation (internal, circuit board 

factory) 
� � � 

49 Transportation (between factories) � � � 
45 Transportation (between SMD and 

test) 
� � � 

42 Transportation (between wave solder-
ing and test) 

�   

  
 


