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Assessing the effects of using demand parameters
estimates in inventory control

Elleke Janssen∗† Leo Strijbosch∗ Ruud Brekelmans∗

Abstract

Inventory models need some specification of the distribution of demand in order to
find the optimal order-up-to level or reorder point. This distribution is unknown in real
life and there are several solutions to overcome this problem. One approach is to assume
a distribution, estimate its parameters and replace the unknown demand parameters by
these estimates in the theoretically correct model. Earlier research suggests that this
approach will lead to underperformance, even if the true demand distribution is indeed
the assumed one. This paper directs the cause of the underperformance and quantifies it in
case of normally distributed demand. Furthermore the formulae for the order-up-to levels
are corrected analytically where possible and otherwise by use of simulation and linear
regression. Simulation shows that these corrections improve the attained performance.

Keywords: Unknown Demand Parameters, Inventory Control, Normal Distribution, Service
Level Criterion

JEL-classification: C13, C53.

1 Introduction

Inventory control involves decisions on what to order, when, and in what quantity. The models
dealing with these decisions need information about the distribution of demand during some
period, e.g. the demand during lead time or during the review period. Bulinskaya (1990)
discriminates between three situations: (a) the type of distribution is known, but its parameters
are unspecified; (b) only several first moments of the demand distribution are known; and (c)
their is no prior knowledge about the demand. The third situation is of course the most
realistic and different approaches to deal with situation (c) have been proposed in literature.
These approaches can be categorized into parametric and nonparametric methods. Examples
of the first category are assuming a distribution and using Bayesian models; examples of the
second category are using order statistics, the bootstrap procedure and kernel densities.

One of the most widespread approaches to deal with unknown demand is assuming a distri-
bution, estimating its parameters and replacing the unknown parameters by its estimates in the
theoretically correct formulae in which distribution and parameters are supposed to be known.
Sani and Kingsman (1997), Artto and Pylkkänen (1999), Strijbosch et al. (2000) and Syntetos
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and Boylan (2006) use this approach with different inventory models, while Kottas and Lau
(1980) provide a short discussion on estimating the parameters needed for their model. An-
other parametric approach is the Bayesian approach; Azoury and Miller (1984), Azoury (1985)
and Karmarkar (1994) are three examples of the Bayesian approach. Also Larson et al. (2001)
use this approach, but they introduce a nonparametric form. Other nonparametric approaches
involve order statistics, references include Lordahl and Bookbinder (1994) and Liyanage and
Shanthikumar (2005), the bootstrap procedure, see e.g. Bookbinder and Lordahl (1989) and
Fricker and Goodhart (2000), or using kernel densities, see Strijbosch and Heuts (1992).

Consider the approach of assuming a distribution and let the assumed distribution be the
normal, since it is often used both in research and in practice, cf. Zeng and Hayya (1999).
Furthermore, see Strijbosch and Moors (2006) for references to recent articles that involve the
normal distribution. The assumption of normality is made because it yields tractable results
and it seems to give quite good approximations when used on data with a low coefficient of
variation (cf. Silver et al. (1998) and Zipkin (2000)). However, the normal distribution has
two major disadvantages: it is symmetric and can take on negative values, while demand
is nonnegative and often skewed to the right. This may not impose serious problems if the
coefficient of variation is low (Zipkin, 2000) or if the demand during review/lead time consists
of many individual and independent demands (Silver et al., 1998). However for high values
of the coefficient of variation, these disadvantages get more important; hence Strijbosch and
Moors (2006) suggested two simple modifications of the normal distribution. Tyworth and
O’Neill (1997) and Lau and Lau (2003) investigate the (non)robustness of using the normal
approximation with an (s,Q) inventory policy.

This paper will not deal with situation (c), but with the less realistic situation (a): the
true distribution is known, but its parameters are unspecified, so that the effect of estimating
them can be studied. Silver and Rahnama (1986, 1987) have investigated this effect in an
(s,Q) inventory policy with a cost criterion. They constructed a function that determined the
expected cost of estimating the demand distribution rather than knowing it and they concluded
that this function is not symmetrical: underestimating causes larger costs than overestimating.
In the second article they propose a method that deliberately biases the reorder point upwards.
Strijbosch et al. (1997) and Strijbosch and Moors (2005) have investigated the same effect for
an (R,S) inventory policy with a service level criterion. Both papers concluded that also in
this case the order-up-to level needed to be biased upwards. Note that the (s,Q) and (R,S)
policies are equivalent (see Silver et al., 1998), so the results of Silver and Rahnama (1986,
1987) apply for the (R, S) policy and the results of Strijbosch et al. (1997) and Strijbosch and
Moors (2005) for the (s,Q) policy as well.

This paper will focus on two service level criteria within an (R, S) inventory policy with zero
lead time, so every R time units the inventory is replenished up to the order-up-to level S and
the order is delivered instantaneously. The i.i.d. demands during review periods have a normal
distribution with mean µ and standard deviation σ, which leads to a coefficient of variation
ν = σ/µ. As mentioned before the normal distribution could lead to negative demand and in
our model this is interpreted as returned goods, so demand is actually net demand (demanded
goods minus returned goods). In addition the goods returned by customers can be sent back
to the supplier, thus the inventory level at the start of a review period will always equal S.
Furthermore, demand during t + 1 consecutive review periods is assumed to be stationary, and
the first t periodic review demands are used to estimate the mean and standard deviation of
the demand in review period t + 1. We prefer using sample statistics instead of exponential
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smoothing, since derivations are more tractable, while the conclusions will be similar.
The next section lists the notation used in this paper. Section 3 discusses the P1 service

criterion in short. An analytical correction of the order-up-to level is given for the case that only
µ is unknown. Section 4 focusses on the P2 service criterion. First two theoretical situations
are considered for illustrative purposes: the cases that µ (µ and σ) are unknown, but σ and
ν (ν) are known. The main Sections 4.3 and 4.4 treat the important case that these three
parameters are all unknown. We show by simulation that just plugging in estimates leads
to serious underperformance. Besides, we derive a correction function for the safety factor
that nearly gives the desired fill rates. The last section concludes this research and provides
directions for further research.

2 Notation

Xi Demand during review period i

µ Mean of demand during review period

σ Standard deviation of demand during review period

ν Coefficient of variation of demand during review period

t Number of review periods with useful historical demand information

µ̂t Sample mean based on t observations

σ̂t Sample standard deviation based on t observations

ν̂t Estimated coefficient of variation of demand during review

φ(Φ) The pdf (cdf) of standard normal distribution

Gu (x) Loss function of standard normal distribution

(x)+ Short notation for max(x, 0)

S(µ, σ, c) Order-up-to level as a function of mean µ, standard deviation σ and safety
factor c, i.e., S(µ, σ, c) = µ + σc

α Desired P1-service level

cα Safety factor for P1-service level

β Desired P2-service level

cβ, cτ
β, ĉτ

β Safety factors for P2-service level

κ (ν, t, β) Correction needed to attain desired service level

κ̂ (ν, t, β) Estimate of correction needed to attain desired service level

3 P1 service criterion

This section considers the P1 service criterion. This criterion states that the fraction of periods
in which inventory is sufficient to satisfy demand, is at least α. It is common to express the
order-up-to level as a function of the mean µ, the standard deviation σ and a safety factor cα.

3



Since demand is normally distributed, the order-up-to level should be as defined below (see
e.g. Silver et al., 1998).

S(µ, σ, cα) = µ + cασ

The safety factor cα is Φ−1(α). S without arguments is used to denote the theoretically correct
order-up-to level when all parameters are known, so S = S(µ, σ, cα) in case of a P1 service
criterion.

In practice the mean and variance are unknown, which means that S is unknown too. The
common solution is to substitute the parameters µ and σ by its estimates. If we (unrealistically)
assume that only µ is unknown and use the sample mean to estimate it, the resulting order-up-
to level is S(µ̂t, σ, cα) with µ̂t = 1

t

∑t
i=1 Xi. This order-up-to level, although unbiased, will not

meet the service requirements in the long run. Consider Figure 1. Since S(µ̂t, σ, cα) is normally

µ

S(µ
t
, σ, cα)^

S

X
t+1

Figure 1: The PDF of demand during review Xi and order-up-to level S(µ̂t, σ, cα).

distributed, with mean S and variance σ2/t, it is symmetric and a shift from S to the right
is equally probable as a shift of the same size to the left. The shift to the right decreases the
probability of having backorders with the darker area, while the shift of the same size to the
left will increase the probability of having backorders with the lighter area. The surface of the
lighter area is larger than the surface of the darker area and this implies that in the long run,
the achieved service level will fall short of the desired one. This phenomenon is mathematically
explained by considering the following.

P (Xt+1 < S(µ̂t, σ, cα)) = P

(
Xt+1 − 1

t

t∑
i=1

Xi < cασ

)
= Φ

(
cα√

1 + 1/t

)
< Φ (cα) = α

Now let Z be a general biased estimator of S and let Z ∼ N(S + bσ, (d2 − 1)σ2), so Z has
a normal distribution. Note that d ≥ 1. The probability of not having backorders in a review
period is given below.

P (Xt+1 < Z) = Φ

(
cα + b

d

)
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In general this will not equal α, unless b and d are chosen according to the relation b = (d−1)cα

(see also Strijbosch et al., 1997). This phenomenon is depicted in Figure 2. The gray surface

Figure 2: Attained P1 service level (α = 0.95) for estimator Z depending on b and d.

depicts the attained service level at values of 0 ≤ b ≤ 1.6 and 1 ≤ d ≤ 1.5. The fine grid
depicts the desired service level. The attained service is below this level in some cases, while
it is above in others. The attained service will only reach the required one on the solid line,
for which obviously holds b = (d− 1)cα. Furthermore, if an unbiased estimator is used (b = 0,
the dashed line), the desired service will only be reached if d = 1. That case corresponds to
having an estimator with standard deviation equal to 0, which is not possible in practice. So,
an unbiased normally distributed estimator will lead to underperformance.

Now consider the order-up-to level S(µ̂t, στ, cα), where τ denotes
√

1 + 1/t. This order-
up-to level is normally distributed with mean µ + cαστ and variance σ2/t, so it is a special
case of Z with d = τ and b = (d − 1)cα. Hence the performance of this order-up-to level will
be satisfactory. The sample mean µ̂t can be interpreted as a forecast of demand during the
subsequent review period with forecast error variance σ2τ 2. So replacing the standard deviation
of demand during review by the square root of the forecast error variance results in attaining
the desired service. Note that σ is replaced by στ , although this parameter is known. This
may seem counterintuitive, but replacing σ only increases the expected value of the order-up-to
level; it does not change its variance.

The next step is to assume that also σ is unknown, but since the P1 criterion is of lesser
interest compared to the P2 criterion, only the latter will be considered in more depth.

4 P2 service criterion

This section focusses on the P2 service criterion, also known as the fill rate. This criterion
states that at least a fraction β of total demand has to be satisfied immediately from stock.
Using again that demand is normally distributed, the order-up-to level in this case should be
(see e.g. Silver et al., 1998) as follows.

S(µ, σ, cβ) = µ + cβσ (1)

5



The safety factor cβ is given by cβ = G−1
u

(
1−β

ν

)
, where Gu (·) denotes the loss function of

the standard normal distribution (Gu (x) = E [(Y − x)+] with Y a standard normal random
variable), which is equal to Gu (x) = φ(x) − xΦ(−x). As in the previous section, S without
arguments again denotes the correct order-up-to level. Furthermore, the service level attained
by using an order-up-to level Z is given below.

1− E
[
(Xt+1 − Z)+]

E [Xt+1]
= 1− E

[
(Xt+1 − Z)+]

µ

Note that if the order-up-to level Z is constructed using estimates instead of the true values of
the mean, standard deviation and coefficient of variation, it is a random variable. When using
a P2 service criterion, one needs values of µ and σ, and in contrast to the P1 criterion, also the
coefficient of variation ν plays a role, as can be seen from the safety factor in (1). In practice
these parameters have to be estimated. The next two sections illustrate the effect of estimating
µ and σ in the case where the correct safety factor is used, i.e., when ν is known. Section 4.3
considers the more realistic case where also the coefficient of variation needs to be estimated,
and hence the safety factor as well.

4.1 Only µ unknown

This section assumes that only µ is unknown and thus that σ and ν are known. This is a purely
theoretical assumption, since if σ and ν are known, µ can easily be determined. However, this
case is interesting since even now the commonly used order-up-to level will not guarantee the
desired service level. If the sample mean is used to estimate µ, the order-up-to level will be
S(µ̂t, σ, cβ). Note that S(µ̂t, σ, cβ) is normally distributed with mean S and variance σ2/t.
Using S(µ̂t, σ, cβ) will not result in attaining the desired service level β in the long run, which

is shown below1. The Greek letter τ still denotes
√

1 + 1/t.

1− E
[
(Xt+1 − S(µ̂t, σ, cβ))+]

µ
= 1− στGu (cβ/τ)

µ
< 1− ντGu (cβ) = 1− ντ

1− β

ν
< β

Again, even in this simple case, using the most obvious estimator for S, however unbiased, leads
to a lower service level than β. In case of the P1 criterion, the problem of underperformance was
solved by replacing the standard deviation σ by the square root of the forecast error variance,
στ . So it is obvious to apply the same adjustment in this case. Note however that σ has to be
replaced twice: once explicitly and once implicitly, as the safety factor cβ depends on σ via ν.
Now let us denote the new safety factor by cτ

β.

cτ
β = G−1

u

(
1− β

ντ

)

Obviously cτ
β > cβ. Upwards biasing the safety factor or the standard deviation has been

mentioned in literature; see Section 1. However, to our knowledge, applying the factor τ both
to the explicit and the implicit standard deviation has never been mentioned. Now consider
the attained service level when using the order-up-to level S(µ̂t, στ, cτ

β).

1−
E

[(
Xt+1 − S(µ̂t, στ, cτ

β)
)+

]

µ
= 1− ντGu

(
cτ
β

)
= 1− ντ

1− β

ντ
= β

1Note that the derivative of Gu (x) is −Φ(−x) < 0, so Gu (x) is a strictly decreasing function.
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So using S(µ̂t, στ, cτ
β) will indeed result in attaining the desired service level in the long run.

4.2 Both µ and σ unknown

Now assume that only ν is known, so σ has to be estimated using the sample standard deviation
σ̂t. One could also use the known ν and the estimate of µ to estimate the value of σ, but since
the next step is to assume that ν is also unknown, we do not use that approach. The sample

standard deviation is determined by σ̂t =
√

1
t−1

∑t
i=1 (Xi − µ̂t)

2. Substituting this estimate

yields the order-up-to level S(µ̂t, σ̂tτ, c
τ
β). Consider the expected value of this order-up-to level

and note that σ̂2
t is a unbiased estimator of σ2, so E [σ̂2

t ] = σ2. However from Jensen’s Inequality
it follows that E [σ̂t] < σ. This implies the following.

E
[
S(µ̂t, σ̂tτ, c

τ
β)

]
= E

[
µ̂t + σ̂tc

τ
βτ

]
= E [µ̂t] + cτ

βτE [σ̂t] < µ + σcτ
βτ = E

[
S(µ̂t, στ, cτ

β)
]

Thus the expected value of S(µ̂t, σ̂tτ, c
τ
β) is lower than the expected value of the order-up-to level

in the case where σ is known. Furthermore, σ being unknown will result in extra variability,
so the performance of S(µ̂t, σ̂tτ, c

τ
β) will probably be lower than desired. Since we want to

quantify the underperformance simulation runs have been performed for different values of t,
ν and β. There are n = 1, 000, 000 samples of t + 1 normally distributed observations with
mean 1/ν and standard deviation 1 randomly generated. The mean µ and standard deviation
σ need not to be varied, since the performance does not depend on these parameters separately
(see appendix). The order-up-to levels are determined using S(µ̂t, σ̂tτ, c

τ
β) and subsequently the

attained service, denoted by β̂ (see appendix for definition), is estimated. The estimates of the
attained service are shown in Table 1. The left part of Table 1 displays the attained service

β̂
(1− β̂)− (1− β)

1− β
· 100%

ν = 0.2 ν = 0.5 ν = 0.8 ν = 0.2 ν = 0.5 ν = 0.8
β = 0.90 t = 2 0.9007 0.8640 0.8252 -0.72 35.99 74.76

t = 6 0.9008 0.8934 0.8849 -0.80 6.57 15.06
t = 10 0.9006 0.8961 0.8919 -0.57 3.91 8.11
t = 15 0.9002 0.8974 0.8945 -0.21 2.61 5.52

β = 0.95 t = 2 0.9386 0.8999 0.8625 22.80 100.15 174.97
t = 6 0.9480 0.9397 0.9322 3.91 20.57 35.62
t = 10 0.9489 0.9444 0.9398 2.25 11.13 20.36
t = 15 0.9494 0.9462 0.9437 1.23 7.56 12.52

β = 0.99 t = 2 0.9679 0.9349 0.9045 221.12 551.08 854.99
t = 6 0.9855 0.9799 0.9753 44.64 100.52 146.52
t = 10 0.9876 0.9846 0.9824 24.06 54.07 75.64
t = 15 0.9884 0.9867 0.9855 15.98 32.73 45.36

Table 1: Simulated performance of S(µ̂t, σ̂tτ, c
τ
β) for different t, ν and β.

level in simulation. So if one considers the case that β = 0.95, t = 2 and ν = 0.2, one can see
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that the achieved service is 0.9386. The right part of the table gives the percentage deviation
of the backordered demand, so in the example mentioned above backordering is 1.14% higher
than the desired 5%, which is a deviation of almost 23%.

As one can clearly see from Table 1 the underperformance is worse if ν becomes larger. This
is exactly what we expected to happen, since if ν is larger (ceteris paribus), the variability of
the order-up-to level will be larger and hence, the expected amount of backorders will be larger
and thus the achieved service will be less. The same line of reasoning applies to t being smaller.
The only exception is ν = 0.2 and β = 0.90, where the desired service is slightly exceeded and
it does not really matter what value t has. From the right part of the table it is clear that if
β is larger the percentage deviation gets larger as well. So, the underperformance is relatively
larger when β is larger.

Since it is difficult to consider this case analytically and it is not of practical interest (as ν
is assumed to be known), we continue with the most practical case, in which all parameters are
unknown.

4.3 All parameters — µ, σ and ν — unknown

In this section the demand is normally distributed with unknown mean and standard deviation,
and also the coefficient of variation is unknown. Estimates are used for all of these unknowns,
namely µ̂t, σ̂t and ν̂t= σ̂t/µ̂t. Since the safety factor cτ

β depends on ν, this factor also has to be
estimated; ĉτ

β denotes this estimate and it is defined as follows.

ĉτ
β =

{
G−1

u

(
1−β
ν̂tτ

)
if ν̂t > 0

− 1
ν̂tτ

otherwise
(2)

Note that ν is simply replaced by ν̂t if it is possible to do so. Since µ̂t may be negative (the
demand values are generated using a normal distribution), ν̂t can be negative as well. In that
case the function G−1

u (·) has no outcome, as its domain is strictly positive. If µ̂t is negative,
it means that the demand in the next period is forecasted to be negative. So inventory is not
needed in that case and hence ĉτ

β is chosen in such a way that the resulting order-up-to level
equals zero.

For this case the order-up-to level is even more complicated than in the previous section,
so again it is not possible to get analytical results. Therefore simulation is applied; first to
estimate the attained service level when using order-up-to level S(µ̂t, σ̂tτ, ĉ

τ
β) and second to find

a correction to that order-up-to level that would assure that the desired service is reached more
closely. The P2 service using S(µ̂t, σ̂tτ, ĉ

τ
β) is estimated with help of n = 1, 000, 000 simulation

runs for each combination of t, β and ν. Note that again the attained service only depends
on ν and not on µ and σ separately; see the appendix for further details. This simulation is
performed in the same way as described in the previous section; the only difference is that ĉτ

β

is used instead of cτ
β. The results, shown in Table 2, are based on the same samples as used

in the previous section. In most cases the performance is indeed worse, as expected. In a few
cases (t and ν both high and β not), the performance of the S(µ̂t, σ̂tτ, ĉ

τ
β) is slightly better than

the performance of S(µ̂t, σ̂tτ, c
τ
β). Furthermore the same overall results as in Table 1 appear:

the underperformance increases when t decreases and when ν increases. The underperformance
also relatively increases when β increases.
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β̂
(1− β̂)− (1− β)

1− β
· 100%

ν = 0.2 ν = 0.5 ν = 0.8 ν = 0.2 ν = 0.5 ν = 0.8
β = 0.90 t = 2 0.8909 0.8520 0.8005 9.12 47.96 99.47

t = 6 0.8993 0.8924 0.8873 0.74 7.59 12.67
t = 10 0.8998 0.8958 0.8942 0.15 4.19 5.78
t = 15 0.8998 0.8974 0.8961 0.24 2.64 3.90

β = 0.95 t = 2 0.9289 0.8885 0.8345 42.29 122.97 230.97
t = 6 0.9456 0.9373 0.9317 8.72 25.39 36.60
t = 10 0.9476 0.9432 0.9401 4.87 13.62 19.80
t = 15 0.9486 0.9455 0.9440 2.88 9.06 11.96

β = 0.99 t = 2 0.9620 0.9264 0.8733 280.09 635.52 1166.97
t = 6 0.9837 0.9779 0.9734 63.16 120.78 166.33
t = 10 0.9865 0.9835 0.9818 34.66 64.96 82.14
t = 15 0.9877 0.9860 0.9851 22.96 39.80 49.36

Table 2: Simulated performance of S(µ̂t, σ̂tτ, ĉ
τ
β) for different t, ν and β.

4.4 Correction of the order-up-to level

Now the underperformance is quantified, we also want to find a correction to S(µ̂t, σ̂tτ, ĉ
τ
β),

such that the desired service is reached or at least approached more closely. This correction
will depend on ν, t and β and is denoted by κ (ν, t, β). Such a correction function can be
useful in practice, since it provides inventory managers with a simple tool to improve their
easy-to-understand order-up-to levels. After considering several options to correct the order-
up-to level, a dimensionless correction factor is determined in order to provide an upwards bias
to S(µ̂t, σ̂tτ, ĉ

τ
β). The corrected order-up-to level is S(µ̂t + κ (ν, t, β) σ̂t, σ̂tτ, ĉ

τ
β). Note that this

will not be applicable in practice, since ν is unknown. However substituting ν by ν̂t again and
using this correction will improve the attained service.

Simulation is used to estimate the correction needed for various values of ν, t and β. The
two simulations performed earlier only used a limited number of values for the three parameters,
but more values are needed to be able to estimate the correction using ν, t and β. So a new
simulation is performed in which n = 100, 000 samples of t + 1 observations are generated for
each combination of t, ν and β. For each simulation run j (j = 1, . . . , n) the order-up-to level,
denoted by Sj, is calculated using the first t observations and the (t + 1)-th observation xj

is used to quantify the backorders that occurred. The correction needed can be determined
using either the true value σ or the sample standard deviations σ̂tj (j = 1, . . . , n) found in the
simulation. On the one hand using the true value might be better, since it is the true value.
On the other hand, a correction is needed since an estimate is used instead of the true value.
So why not use the estimated value of the standard deviation? It is difficult to decide a priori
which would result in a better correction formula, so both corrections, denoted by k1 and k2
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respectively, are determined, by solving the equations below.
n∑

j=1

(xj − (Sj + k1σ))+ = (1− β)
n∑

j=1

xj

n∑
j=1

(xj − (Sj + k2σ̂tj))
+ = (1− β)

n∑
j=1

xj

The values for k1 and k2 for all combinations of ν, t and β can be found by solving this
equation numerically and the corrections are denoted by ki (ν, t, β) (i = 1, 2). The corrections
for different values of ν, t and β are depicted in Figure 3. For the first three graphs in Figures
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Figure 3: Graphs of corrections needed.

3(a) and 3(b) the corrections needed for different values of β are averaged, since they do not
differ much. One sees that if ν becomes larger, the correction needs to be larger. The same
is true if t decreases and if β increases. These conclusions correspond to the results shown in
Tables 1 and 2.

The simulation resulted in some values k1 (ν, t, β) and k2 (ν, t, β), but a function that is able
to estimate these values is more practical. Therefore linear regression is applied, following the
method described by Strijbosch and Moors (1999). The estimation process is split in three
steps:

1. Fix two of the three parameters and use linear regression to estimate the correction needed
depending on the third parameter (denoted by q1);

2. Fix one of the two parameters fixed in Step 1 and use the other (q2) to estimate the
coefficients found in Step 1;

3. Use the parameter fixed in Step 2 (q3) to estimate the coefficients found in Step 2.

All six orderings in regressing the parameters are examined, both for k1 (ν, t, β) and k2 (ν, t, β).
The three steps are discussed in more detail for k1 (ν, t, β) and with q1 = t, q2 = ν and q3 = β.
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Step 1 For every combination of ν and β the correction needed to attain the
desired service is estimated. Figure 4(a) depicts k1 (ν, t, β) for three combinations
of ν and β.

2 4 6 8 10 12 14 16 18 20
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1
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k
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k
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(a) k1 (ν, t, β) for some values of ν and β.
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(b) SSE(r) depending on the exponent r.

Figure 4: Graphical illustration of the process of choosing the correct value for r.

The graphs suggest a relation of the following form.

k1 (ν, t, β) = γ0(ν, β, r) + γ1(ν, β, r)tr + ε

The value of r depends on the shape of k1 (ν, t, β). The coefficients γ0 and γ1

are estimated using linear regression for values of r running from -20 up to 20 (in
steps of 0.01) and this results in the regression equation k̂ (ν, t, β, r) = γ̂0(ν, β, r) +
γ̂1(ν, β, r)tr . The exponent r was assigned the value that minimized SSE(r), which
is defined as below.

SSE(r) =
∑
t∈T

∑
ν∈V

∑

β∈B

(
k1 (ν, t, β)− k̂ (ν, t, β, r)

)2

(3)

In this definition T , V and B denote the sets of values used for t, ν and β respectively,
which are given below.

T = {2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20}
V = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
B = {0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99}

SSE(r) attains its minimum at r = −1.16 as Figure 4(b) shows. So this value is
used to estimate the coefficients γ0 and γ1 for every combination of ν and β.

Step 2 The next step is to estimate the value of γ̂0 and γ̂1 for every value of
β depending on ν. Using the same approach as described in Step 1 the following
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relations are considered.

γ̂0(ν, β, r) = η00(β, r0) + η01(β, r0)ν
r0 + ε

γ̂1(ν, β, r) = η10(β, r1) + η11(β, r1)ν
r1 + ε

For both γ̂0 and γ̂1 the best fitting exponents r0 and r1 are determined in the same
way as described in Step 1. Using these exponents linear regression determines
estimates for η00, η01, η10 and η11, which are denoted by η̂00, η̂01, η̂10 and η̂11 and
depend on the value of β and r0 or r1.

Step 3 The final step is to estimate the value of η̂00, η̂01, η̂10 and η̂11 depending
on β, thus the relations below appear.

η̂00(β, r0) = ξ000(r00) + ξ001(r00)(1− β)r00 + ε

η̂01(β, r0) = ξ010(r01) + ξ011(r01)(1− β)r01 + ε

η̂10(β, r1) = ξ100(r10) + ξ101(r10)(1− β)r10 + ε

η̂11(β, r1) = ξ110(r11) + ξ111(r11)(1− β)r11 + ε

The independent variable is 1− β instead of β, since it is used in the determination
of the safety factor ĉτ

β, see equation (2). Furthermore, this results in better esti-
mates. The values of the exponents are again found by minimizing the total sum of
squares for errors. These exponents are used to estimate the coefficients in the four
relations above.

Using the steps discussed above to estimate k1 (ν, t, β) results in a R2 (determination coeffi-
cient) of 0.9897, so the fit is good. The fit of all possible orderings of adding the parameters
and for both k1 (ν, t, β) and k2 (ν, t, β) are denoted in Table 3. So using k2 (ν, t, β) instead of

q1 q2 q3 R2 of k1 (ν, t, β) R2 of k2 (ν, t, β)
t ν β 0.9897 0.9960
t β ν 0.9894 0.9962
ν t β 0.9828 0.9963
ν β t 0.9872 0.9889
β t ν 0.9876 0.9958
β ν t 0.9840 0.9900

Table 3: R2 found for different orderings of adding parameters.

k1 (ν, t, β) results in slightly better values of R2, although the determination coefficients for
both corrections are very good. Next a simulation is performed to determine which provides
the best performance. Again the samples of size n = 1, 000, 000 are used, now to determine the
performance of S(µ̂t + κ̂1 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β) and S(µ̂t + κ̂2 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β). The function

κ̂1 (ν̂t, t, β) is based on k1 (ν, t, β) with ordering q1 = t, q2 = ν and q3 = β, while κ̂2 (ν̂t, t, β)
is based on k2 (ν, t, β) with ordering q1 = ν, q2 = t and q3 = β. Also the performance of
these order-up-to levels is independent of σ and µ; see appendix. The results are shown Tables
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β̂
(1− β̂)− (1− β)

1− β
· 100%

ν = 0.2 ν = 0.5 ν = 0.8 ν = 0.2 ν = 0.5 ν = 0.8
β = 0.90 t = 2 0.8945 0.8730 0.8449 5.47 27.04 55.12

t = 6 0.8998 0.8998 0.9005 0.17 0.23 -0.48
t = 10 0.8995 0.8984 0.8985 0.49 1.63 1.53
t = 15 0.8990 0.8973 0.8953 1.04 2.69 4.67

β = 0.95 t = 2 0.9387 0.9143 0.8882 22.65 71.36 123.59
t = 6 0.9497 0.9479 0.9480 0.59 4.29 4.10
t = 10 0.9497 0.9488 0.9485 0.69 2.47 3.08
t = 15 0.9496 0.9483 0.9479 0.81 3.35 4.14

β = 0.99 t = 2 0.9732 0.9525 0.9332 168.11 375.34 568.07
t = 6 0.9883 0.9865 0.9858 17.40 35.19 41.89
t = 10 0.9894 0.9886 0.9890 6.25 13.75 9.73
t = 15 0.9897 0.9895 0.9900 3.32 5.24 0.48

Table 4: Simulated performance of S(µ̂t + κ̂1 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ
τ
β) for different t, ν and β.

β̂
(1− β̂)− (1− β)

1− β
· 100%

ν = 0.2 ν = 0.5 ν = 0.8 ν = 0.2 ν = 0.5 ν = 0.8
β = 0.90 t = 2 0.8990 0.9034 0.9007 0.99 -3.43 -0.69

t = 6 0.8986 0.8968 0.8972 1.45 3.24 2.78
t = 10 0.8986 0.8990 0.9025 1.44 1.03 -2.50
t = 15 0.8984 0.9005 0.9045 1.63 -0.47 -4.48

β = 0.95 t = 2 0.9508 0.9515 0.9506 -1.63 -3.06 -1.29
t = 6 0.9491 0.9479 0.9491 1.86 4.30 1.82
t = 10 0.9506 0.9527 0.9557 -1.13 -5.34 -11.50
t = 15 0.9516 0.9551 0.9597 -3.15 -10.16 -19.40

β = 0.99 t = 2 0.9901 0.9899 0.9898 -1.01 0.67 1.66
t = 6 0.9890 0.9880 0.9879 9.91 19.83 21.36
t = 10 0.9910 0.9908 0.9915 -9.88 -8.45 -15.06
t = 15 0.9921 0.9928 0.9937 -20.52 -27.55 -36.99

Table 5: Simulated performance of S(µ̂t + κ̂2 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ
τ
β) for different t, ν and β.

4 and 5. When comparing Table 2 on the one hand to Tables 4 and 5 on the other it is clear that
the achieved service level is closer to the desired one when using the corrections in most cases.
Comparing Tables 4 and 5 shows that in most cases the order-up-to level based on k2 (ν, t, β)
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performs better, although the differences are not that obvious if t is large. However if t is small,
S(µ̂t + κ̂1 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β) performs far worse compared to S(µ̂t + κ̂2 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β). The

first does not reach the desired service if t is small, while it does approximately if t is large.
The performance of S(µ̂t + κ̂2 (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β) hardly depends on the values of t, ν and β,

so κ̂2 (ν̂t, t, β) seems to be the best correction. The most extreme deviations from the desired
service using this correction are -0.0032 (displayed in italic in Table 5) and +0.0097 (displayed
in bold), so the attained service is close to the desired one. As an extra check, the performance
of using κ̂2 (ν̂t, t, β) is simulated more elaborate and the results are similar. Finally, the formula
for κ̂2 (ν, t, β) is given below.

κ̂2 (ν, t, β) =[ (−0.0669 + 0.00305 · (1− β)−0.95
)

+
(−185.124− 6.359 · (1− β)−1.00

)
t−9.17

]

+
[ (

0.335− 5.671 · (1− β)1.41
)

+
(−3.841 + 4.541 · (1− β)−1.03

)
t−4.19

]
ν0.90

5 Conclusions and further research

Conclusions
This paper has investigated a common approach in inventory management of dealing with
the unknown distribution of demand. This approach is to assume a distribution, estimate its
parameters using historical demand information and replace the parameters in the theoretically
correct inventory model by its estimates. Assuming a distribution provides tractable results,
but it can be too rigid to represent the real demand. However, whether or not a specific
distribution should be assumed is outside the scope of this paper.

We have assumed that the demand during review truly is normally distributed. In steps
the information about the mean and variance is reduced. First, only the mean is assumed to
be unknown and using the just mentioned common approach results in the order-up-to levels
S(µ̂t, σ, cα) for a P1 criterion and S(µ̂t, σ, cβ) for a P2 criterion. Both order-up-to levels will
not ensure that the desired service is reached. This can be resolved by replacing the standard
deviation σ with the square root of the forecast error variance στ , where τ =

√
1 + 1/t.

Second, also the standard deviation becomes unknown, although the coefficient of variation
is assumed to be known. This case is less tractable and, therefore, only the more interesting P2

criterion is considered for this case. The order-up-to level using the correction factor τ becomes
S(µ̂t, σ̂tτ, c

τ
β), for which we have shown that the expected value will be too low. Furthermore,

simulation has shown that indeed the desired service is not reached when using this order-up-to
level.

Finally, also the coefficient of variation ν is unknown and in that case only simulation is used
to find that the performance is again worse compared to the case when ν is known. We have
developed a correction to the order-up-to level with help of simulation and linear regression.
Using this correction, being a function of ν, β and t, ensures that the desired service is reached
closely in general: the largest deviations are 0.0032 below the desired service and 0.0097 above.

It can be concluded that simply replacing the parameters in a theoretical correct inventory
control model by its estimates results in underperformance, even if the true distribution be-
longs to the assumed distribution family. With a simple correction the achieved service can
be improved and using the correction function κ̂2 (ν, t, β) results in closely reaching the desired
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service.

Further research
This paper focussed on normally distributed demand within an (R, S) inventory policy with
zero lead time. Similar results could also be derived for other inventory control policies, e.g. an
(R, s, S) or (R, s,Q) policy, or for other demand distribution, e.g. a gamma distribution. This
is one direction for further research. Another direction lies in the assumption of stationary
demand. This paper assumed that demand during t+1 consecutive review periods is stationary,
but in most real life situations the demand pattern changes over time. We could investigate how
well our method, which assumes stationary demand, works in such a situation. In this paper
only the last t observations are used to estimate the demand parameters, thus non-stationarity
is taken into account to some extent. This forecasting method is known as the moving average.
Another forecasting method, exponential smoothing, is used often in real life, as it reacts better
to changes in the demand pattern compared to the moving average. Using another forecasting
method provides a third direction for further research.

A Independence of achieved performance of µ and σ

This appendix shows that the achieved performance depends on the quotient of σ and µ (and
thus on the coefficient of variation ν), but that it is independent of µ and σ separately. Three
order-up-to levels, S(µ̂t, σ̂tτ, c

τ
β), S(µ̂t, σ̂tτ, ĉ

τ
β) and S(µ̂t + κ̂i (ν̂t, t, β) σ̂t, σ̂tτ, ĉ

τ
β), are considered.

The first is discussed in Section 4.2, the second in Section 4.3 and the third in Section 4.4.

A.1 S(µ̂t, σ̂tτ, cτ
β)

The service achieved in simulation is denoted by β̂ (Sn) where Sn is the vector of the n order-
up-to levels determined for the n samples. It is defined as given below.

β̂ (Sn) = 1−
∑n

j=1 (xj − Sj)
+

∑n
j=1 xj

In this definition xj denotes the observation that is used to check the order-up-to level obtained
in the j-th simulation run (n runs in total). Sj = S(µ̂tj, σ̂tjτ, c

τ
β) is the order-up-to level

determined in the j-th simulation, where µ̂tj and σ̂tj are defined as follows.

µ̂tj = 1
t

t∑
i=1

xij and σ̂tj =

√√√√ 1
t−1

t∑
i=1

(xij − µ̂tj)
2

In the above x1j, . . . , xtj are the t demand observations that are used in the j-th simulation run
to determine the order-up-to level.

Since xj ∼ N(µ, σ2), x∗j =
xj−µ

σ
∼ N(0, 1) and hence x∗j is indeed independent of µ and σ.

Note that the same holds for x∗ij = (xij − µ)/σ. Also S∗j = (Sj − µ)/σ is independent of µ and
σ, as is shown below.

S∗j =
1
t

∑t
i=1 xij + σ̂tjc

τ
βτ − µ

σ
=

1

t

t∑
i=1

(
xij − µ

σ

)
+

σ̂tj

σ
cτ
βτ =

1

t

t∑
i=1

x∗ij + σ̂∗tjc
τ
βτ
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In the above σ̂∗tj = σ̂tj/σ. It suffices to show that σ̂∗tj is independent of µ and σ.

σ̂∗tj =
σ̂tj

σ
=

√
1

t−1

∑t
i=1

(
xij − 1

t

∑t
i=1 xij

)2

σ
=

√√√√ 1
t−1

t∑
i=1

(
xij − µ

σ
− 1

t

t∑
i=1

xij − µ

σ

)2

=

√√√√ 1
t−1

t∑
i=1

(
x∗ij − 1

t

t∑
i=1

x∗ij

)2

Note that xj = x∗jσ + µ and Sj = S∗j σ + µ. If these are substituted in the definition for the
simulated performance the following result appears.

β̂ (Sn) = 1−
1
n

∑n
j=1

(
x∗jσ + µ− (

S∗j σ + µ
))+

1
n

∑n
j=1 x∗jσ + µ

= 1−
1
n

∑n
j=1 σ

(
x∗j − S∗j

)+

1
n

∑n
j=1 x∗jσ + µ

= 1−
1
n

∑n
j=1

(
x∗j − S∗j

)+

1
n

∑n
j=1 x∗j + ν−1

Thus the performance only consists of terms independent of µ and σ. It does, however, clearly
depend on ν: directly through ν−1 in the denominator and indirectly through cτ

β in S∗j .

A.2 S(µ̂t, σ̂tτ, ĉτ
β)

The only thing that changes with respect to the previous section is that now ν has to be
estimated (else ĉτ

β cannot be found). Using the same line of reasoning results in σ̂∗t = σ̂t/σ and
µ̂∗t = (µ̂t − µ)/σ being both independent of µ and σ. So ν̂t = σ̂t/µ̂t is independent of µ and σ,
as is shown below.

ν̂t =
σ̂t

µ̂t

=
σ̂∗t σ

µ̂∗t σ + µ
=

σ̂∗t
µ̂∗t + ν−1

As stated before ĉτ
β is defined as follows.

ĉτ
β =

{
G−1

u

(
1−β
ν̂tτ

)
if ν̂t > 0

− 1
ν̂tτ

otherwise

Thus both for ν̂t > 0 and ν̂t ≤ 0, ĉτ
β purely depends on terms independent of µ and σ. Hence, ĉτ

β

is independent of µ and σ and it is already shown that the other terms in (S(µ̂t, σ̂tτ, ĉ
τ
β)−µ)/σ

are. Hence the performance will again be independent of µ and σ.

A.3 S(µ̂t + κ̂i (ν̂t, t, β) σ̂t, σ̂tτ, ĉτ
β)

So again (S(µ̂t + κ̂i (ν̂t, t, β) σ̂t, σ̂tτ ĉτ
β)−µ)/σ (i = 1, 2) should be independent of µ and σ. This

order-up-to level can be rewritten as below.

S(µ̂t + κ̂i (ν̂t, t, β) σ̂t, ĉ
τ
β) = S(µ̂t, σ̂tτ, ĉ

τ
β) + κ̂i (ν̂t, t, β) σ̂t

Hence it suffices to show that κ̂i (ν̂t, t, β) σ̂t/σ is independent of µ and σ. This is easily seen,
if one realizes that ν̂t and σ̂t/σ are independent of µ and σ. Thus the performance of this
order-up-to level is independent of µ and σ.

16



References

Artto, K. A. and Pylkkänen, E. (1999), An effective procedure for the distribution of magazines,
International Transactions in Operational Research (6), 289–310.

Azoury, K. S. (1985), Bayes solution to dynamic inventory models under unknown demand
distribution, Management Science 31(9), 1150–1160.

Azoury, K. S. and Miller, B. L. (1984), A comparison of the optimal ordering levels of bayesian
and non-bayesion inventory models, Management Science 30(8), 993–1003.

Bookbinder, J. H. and Lordahl, A. E. (1989), Estimation of inventory reorder level using the
bootstrap statistical procedure, IIE Transactions 21, 302–312.

Bulinskaya, E. V. (1990), Inventory control in case of unknown demand distribution, Engineer-
ing Costs and Production Economics 19, 301–306.

Fricker, R. D. and Goodhart, C. A. (2000), Applying a bootstrap approach for setting reorder
points in military supply systems, Naval Research Logistics 47, 459–478.

Karmarkar, U. S. (1994), A robust forecasting technique for inventory and leadtime manage-
ment, Journal of Operations Management 12, 45–54.

Kottas, J. F. and Lau, H.-S. (1980), The use of versatile distribution families in some stochastic
inventory calculations, The Journal of the Operational Research Society 31(5), 393–403.

Larson, C. E., Olson, L. J. and Sharma, S. (2001), Optimal inventory policies when the demand
distribution is not known, Journal of Economic Theory 101, 281–300.

Lau, H.-S. and Lau, A. H.-L. (2003), Nonrobustness of the normal approximation of lead-time
demand in a (Q,R) system, Naval Research Logistics 50, 149–166.

Liyanage, L. H. and Shanthikumar, J. F. (2005), A practical inventory policy using operational
statistics, Operations Research Letters 33, 341–348.

Lordahl, A. E. and Bookbinder, J. H. (1994), Order-statistic calculation, costs and service in
an (s, Q) inventory system, Naval Research Logistics 41, 81–97.

Sani, B. and Kingsman, B. G. (1997), Selecting the best periodic inventory control and de-
mand forecasting methods for low demand items, Journal of the Operational Research Society
48, 700–713.

Silver, E. A., Pyke, D. F. and Peterson, R. (1998), Inventory Management and Production
Planning and Scheduling, third edn, John Wiley & Sons, New York.

Silver, E. A. and Rahnama, M. R. (1986), The cost effects of statistical sampling in selecting
the reorder point in a common inventory model, Journal of the Operational Research Society
37(7), 705–713.

Silver, E. A. and Rahnama, M. R. (1987), Biased selection of the inventory reorder point when
demand parameters are statistically estimated, Engineering Costs and Production Economics
12, 283–292.

17



Strijbosch, L. W. G. and Heuts, R. M. J. (1992), Modelling (s,Q) inventory systems: Paramet-
ric versus non-parametric approximations for the lead time demand distribution, European
Journal of Operational Research 63, 86–101.

Strijbosch, L. W. G., Heuts, R. M. J. and van der Schoot, E. H. M. (2000), A combined
forecast–inventory control procedure for spare parts, Journal of the Operational Research
Society 51, 1184–1192.

Strijbosch, L. W. G. and Moors, J. J. A. (1999), Simple expressions for safety factors in inven-
tory control, CentER Discussion Paper 112, Tilburg University, The Netherlands.

Strijbosch, L. W. G. and Moors, J. J. A. (2005), The impact of unknown demand parameters on
(R,S)-inventory control performance, European Journal of Operational Research 162, 805–
815.

Strijbosch, L. W. G. and Moors, J. J. A. (2006), Modified normal demand distributions in
(R,S)-inventory control, European Journal of Operational Research 172, 201–212.

Strijbosch, L. W. G., Moors, J. J. A. and de Kok, A. G. (1997), On the interaction between
forecasting and inventory control, FEW Research Memorandum 742, Tilburg University, The
Netherlands.

Syntetos, A. A. and Boylan, J. E. (2006), On the stock control performance of intermittent
demand estimators, International Journal of Production Economics 103, 36–47.

Tyworth, J. E. and O’Neill, L. (1997), Robustness of the normal approximation of lead-time
demand in a distribution setting, Naval Research Logistics 44, 165–186.

Zeng, A. Z. and Hayya, J. C. (1999), The performance of two popular service measures on man-
agement effectiveness in inventory control, International Journal of Production Economics
58, 147–158.

Zipkin, P. H. (2000), Foundations of Inventory Management, McGraw-Hill Higher Education,
Boston.

18


