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Abstract: Informationally Robust Equilibria (IRE) are introduced in Robson (1994)

as a refinement of Nash equilibria for e.g. bimatrix games, i.e. mixed extensions of

two person finite games. Similar to the concept of perfect equilibria, basically the idea

is that an IRE is a limit of some sequence of equilibria of perturbed games. Here,

the perturbation has to do with the hypothetical possibility that the action of one the

players is revealed to his fellow player before the fellow player has to decide on his

own action. Whereas Robson models these perturbations in extensive form and uses

subgame perfection to solve these games, we model the perturbations in strategic form,

thus remaining in the class of bimatrix games. Moreover, within the perturbations we

impose two possible types of tie breaking rules, which leads to the notions optimistic

and pessimistic IRE.

The paper provides motivation on IRE and its definition. Several properties will be

discussed. In particular, we have that IRE is a strict concept, and that IRE components

are faces of Nash components. Specific results from potential games and matrix games

are obtained. Possibilities to extend the definition of IRE to more-person games are

proposed.
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1 Introduction

Through the years, a vast stream of literature on refinements of the Nash equilibrium

concept based on the notion of perfectness as introduced by Selten (1975) has been de-

veloped. It culminated into the work of Kohlberg and Mertens (1986), but not before

notions of properness (Myerson (1978)), strictly perfectness (Okada (1984)) and many

others had been introduced. An overview can be found in Van Damme (1991). The

original underlying idea of these concepts is that players undergo a thought experiment

in which all players make mistakes with small but positive probabilities. The current

paper is following a refinement based on a similar but different type of thought exper-

iment suggested by Robson (1994). Here, the idea is that there is a small but positive

probability that one of the players’ action is revealed (‘leakage of information’). Let us

elaborate on this idea by means of an example.

Example 1: Consider the bimatrix game:4

[
(1, 1) (0, 0)

(1, 0) (0, 2)

]
.

The row player has no direct influence on his payoff by his own action. He can however

have the following line of thought:

”If there would be a slight chance that my opponent can act upon my action, then

I’d better play the top row; my opponent’s best reply to this action is playing the

left column. This leads to a benefit of 1.”

It is not difficult to provide contexts in which leakage of information is relevant, e.g. in

a poker game it is crucial to hide (the strength of) your hand, and in a ‘battle-of-the-

sexes’-game it is beneficial to be able to reveal your action.

Our approach is very similar to the one of Robson; two person games are considered in

which the players act simultaneously. The main differences in the models are that we

restrict ourselves to games in which the players have finitely many pure strategies and

secondly we introduce two optional behavioral tie breaking rules, an optimistic and a

pessimistic one.

The games are perturbed by allocating small percentages to two (disjoint) events. With

large probability the original game is played. There is a small probability that one of

the players acts first. If, say, player one acts first, player two receives the information of

the decision of player one. If player one plays a mixed strategy, player two is informed

about the outcome of the chance mechanism. Thereafter, he can base his decision on

this information. Player one cannot distinguish between this case and the regular one,

i.e., he does not know if he is revealing his action or not.

4We refer to section 2 for the definition of a bimatrix game.
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Figure 1: The perturbation of Example 1 in extensive form

Similarly, player two may act first (not knowing this himself) and player one can respond.

The events player one acts first and player two acts first do not necessarily have the same

probabilities.

To illustrate this setting, the extensive form of the perturbation of Example 1 is depicted

in Figure 1, in which εi denotes the probability that player i’s action is revealed to the

other player (i = 1, 2).

Two-person games with finitely many pure strategies, or bimatrix games, in which play-

ers act simultaneously can be represented very efficiently in normal form. This is not

the case however for the perturbed games; e.g. if the players initially both have 3 pure

strategies, they both have 81 pure strategies in the perturbations. To avoid this expo-

nential growth, we will put restrictions on the behavior of the players in such a way

that the perturbed games have the same size as the original one. These restrictions are

based on the following. In a subgame in which a player must act secondly, he has full

information and the situation has the nature of a one-person game. We assume from a

rational player that he chooses a strategy that maximizes utility. To diminish the strat-

egy spaces, we delete all other strategies beforehand. In order to decrease the number
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of options in such a subgame to just one, we will either assume that the player chooses

a best strategy for himself that maximizes the payoff to the other one (the optimistic

approach), or the player chooses a best strategy for himself that minimizes the payoff

to the other (the pessimistic approach). If this setup still does not discriminate which

strategy will be played, we take an arbitrary remaining one; for both players it is of no

importance at all which it will be.

Now that we have established in this way that the perturbed games have the same size

as the original game, the definition of an informationally robust equilibrium becomes

straightforward. It is a profile that is the limit of a series of equilibria of perturbed

games. We will formalize this concept in the next section.

Let us highlight the differences between the approaches of Robson (1994) and ours.

Robson considers ’two person games with simultaneous moves’. The set of pure strategies

of a players is assumed to be compact. The set of bimatrix games can be considered to

be the subclass of this type of games at which the pure strategy spaces of the players

are finite. Furthermore, Robson requires that the perturbed equilibria must be subgame

perfect. This requirement, translated to our setting, boils down to a commitment that

players must maximize their payoff in each subgame in which they have full information,

even if the subgame is played with probability zero. Our behavioral approach is even

more restrictive, since the players must choose a particular optimal strategy.

The paper has been organized as follows. Section 2 formalizes the ideas displayed in

this introduction and settles notations. Furthermore, it provides an alternative way

to describe informationally robustness (Lemma 4) and shows the non-emptiness and

closedness of the set of IRE (Theorem 5). Section 3 questions whether one of the

versions (optimistic vs. pessimistic) of IRE is superior to the other, section 4 defines the

notion of strict IRE and shows that it is coincides with IRE itself. The sections 6 and

7 deal with the classes of potential and matrix games respectively. Section 8 discusses

ways to generalize informationally robustness to n-person games.

2 IRE

Let us fix the notations that are used throughout the paper. A bimatrix game is the

mixed extension of a finite two person noncooperative game. It is characterized by a pair

(A,B) of real valued matrices of equal, finite, size. The players are called one and two.

Player one chooses a row and player two chooses a column. We use m for the number

of rows and n for the number of columns. The index sets of the rows and columns are

denoted by M and N respectively:

M := {1, . . . ,m} and N := {1, . . . , n}.
Typical characters to index rows are i and k, typical characters to index columns are j

and `. The spaces of mixed strategies are called ∆m and ∆n respectively. Furthermore,
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∆ := ∆m × ∆n; the space of strategy profiles. The unit vectors of ∆m and ∆n (i.e.

the pure strategies) are denoted by ei (i ∈ M) and fj (j ∈ N). A typical element of

∆m will be denoted by p, a typical element of ∆n by q. Players have a pure best reply

correspondence:

PB1(A, q) := argmax
i∈M

eiAq and PB2(B, p) := argmax
j∈N

pBfj.

The correspondences are upper semi continuous in both coordinates, e.g. if (At, qt) tends

to (A, q), then PB1(At, qt) ⊆ PB1(A, q) for sufficiently large t.

The carrier C(x) of a vector x is the set of its non-zero coordinates, i.e.:

C(x) := {i | xi 6= 0}.
A Nash equilibrium (p, q) is a profile of mixed strategies such that C(p) ⊆ PB1(A, q)

and C(q) ⊆ PB2(B, p). The set of all Nash equilibria of the game (A,B) is denoted by

E(A, B).

In principle, three extra parameters are needed to give the perturbations of A and B.

The probability that the action of player one is revealed to player two is called ε1.

The probability that the action of player two is revealed to player one is called ε2.

Furthermore, if the optimistic approach is chosen, the perturbations are labelled with a
+. If the pessimistic approach is chosen, they are labelled with a −. So, what will e.g.

A+
ij(ε1, ε2) be? It is the payoff player one receives in an optimistically perturbed game

when player one chooses strategy ei and player two chooses fj. With large probability

(1 − ε1 − ε2) he receives the original amount Aij. With probability ε1, player two

can respond optimal to ei. In the optimistic case he will play one of the strategies

f` ∈ PB2(B, ei) that maximizes Ai`. With probability ε2, player one can react optimally

against strategy fj of his opponent, resulting in maxk∈M Akj. This leads to the following

definition:

Definition 2: Let (A,B) be an m×n-bimatrix game and let ε1 and ε2 be positive real

numbers satisfying ε1 + ε2 < 1. The optimistic perturbed game (A+(ε1, ε2), B
+(ε1, ε2))

is the bimatrix game given by:

A+
ij(ε1, ε2) := (1− ε1 − ε2)Aij + ε1 max

`∈PB2(B,ei)
Ai` + ε2max

k∈M
Akj and

B+
ij (ε1, ε2) := (1− ε1 − ε2)PBij + ε1max

`∈N
Bi` + ε2 max

k∈PB1(A,fj)
Bkj.

Similarly, the pessimistic perturbed game (A−(ε1, ε2), B
−(ε1, ε2)) is defined by:

A−
ij(ε1, ε2) := (1− ε1 − ε2)Aij + ε1 min

`∈PB2(B,ei)
Ai` + ε2max

k∈M
Akj and

B−
ij (ε1, ε2) := (1− ε1 − ε2)Bij + ε1max

`∈N
Bi` + ε2 min

k∈PB1(A,fj)
Bkj.

We now have made all preparations to define informationally robust equilibria.

Definition 3: Let (A,B) be an m× n-bimatrix game. A profile (p, q) is an optimistic

informationally robust equilibrium or IRE+ if there exist sequences (εt
1)t∈IN and (εt

2)t∈IN
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of positive real numbers converging to zero, and a sequence (pt, qt)t∈IN in ∆ converging

to (p, q) such that for all t ∈ IN:

(pt, qt) ∈ E(A+(εt
1, ε

t
2), B

+(εt
1, ε

t
2)).

Similarly, a profile (p, q) is an pessimistic informationally robust equilibrium or IRE− if

there exist sequences (εt
1)t∈IN and (εt

2)t∈IN of positive real numbers converging to zero,

and a sequence (pt, qt)t∈IN in ∆m ×∆n converging to (p, q) such that for all t ∈ IN:

(pt, qt) ∈ E(A−(εt
1, ε

t
2), B

−(εt
1, ε

t
2)).

The sets of optimistic and pessimistic informationally robust equilibria of (A,B) are

denoted by IRE+(A, B) and IRE−(A,B) respectively.

Let us give an alternative, convenient characterization of IRE+ and IRE− by means of

best reply equivalent perturbed games. Two bimatrix games (A,B) and (C,D) of equal

size are called best reply equivalent if their pure best reply functions coincide:

PB1(A, ·) = PB1(C, ·) and PB2(B, ·) = PB2(D, ·).
We will denote this type of equivalence by (A,B) ≡b (C, D).

Fix an m× n-bimatrix game (A, B). Let R+ and R− ∈ IR
m×n

be defined by:

R+
ij := max

`∈PB2(B,ei)
Ai` and R−

ij := min
`∈PB2(B,ei)

Ai`.

So, rows of R+ and R− are constant. Similarly, define S+, S− ∈ IR
m×n

by:

S+
ij := max

ek∈PB1(A,fj)
Bkj and S−ij := min

ek∈PB1(A,fj)
Bkj.

The alternative perturbations of A and B will be:

A+(ε1) := A + ε1R
+,

B+(ε2) := B + ε2S
+ and

A−(ε1) := A + ε1R
−,

B−(ε2) := B + ε2S
−.

Lemma 4: Let (A,B) be an m×n-bimatrix game. A profile (p, q) is IRE+ if and only

if there exist sequences (εt
1)t∈IN and (εt

2)t∈IN of positive real numbers converging to zero,

and a sequence (pt, qt)t∈IN in ∆ converging to (p, q) such that for all t ∈ IN:

(pt, qt) ∈ E(A+(εt
1), B

+(εt
2)).

Similarly, a profile (p, q) is IRE− if and only if there exist sequences (εt
1)t∈IN and (εt

2)t∈IN

of positive real numbers converging to zero, and a sequence (pt, qt)t∈IN in ∆ converging

to (p, q) such that for all t ∈ IN:

(pt, qt) ∈ E(A−(εt
1), B

−(εt
2)).

6



Proof: We will only prove this result for the optimistic case; the other case can be

proved similarly. Let ε1, ε2 > 0. Best reply equivalent games have identical equilibrium

sets. Since the definition of IRE+ concerns equilibrium sets of perturbed games, we

might as well use other perturbations as long as they are best reply equivalent. It is

easy to verify that (A,B) and (tA, uB) are best reply equivalent for any positive real

numbers t and u, and so are (A,B) and (A + T, B + U) if T is a matrix with constant

columns and U is a matrix with constant rows. When defining T, U ∈ IR
M×N

by:

Tij := ε2max
k∈M

Akj and Uij := ε1max
`∈N

Bi`,

results in:

(A+(εt
1, ε

t
2), B

+(εt
1, ε

t
2)) = ((1− εt

1 − εt
2)A + εt

1R
+ + T, (1− εt

1 − εt
2)B + εt

2S
+ + U) ≡b

(A +
εt
1

1− εt
1 − εt

2

R+, B +
εt
2

1− εt
1 − εt

2

S+) = (A+(
εt
1

1− εt
1 − εt

2

), B+(
εt
2

1− εt
1 − εt

2

)).

Define for all t ∈ IN and i ∈ {1, 2}: εt
i :=

εt
i

1− εt
1 − εt

2

. Then one might as well use the

sequences (εt
1)t∈IN and (εt

2)t∈IN in combination with perturbed games of the form:

(A + εt
1R

+, B + εt
2S

+). ¤

Let us apply the previous lemma to Example 1 from the introduction. The game

(A+(ε1, ε2), B
+(ε1, ε2)) is given by:

(1− ε1 − ε2)

[
(1, 1) (0, 0)

(1, 0) (0, 2)

]
+ ε1

[
(1, 1) (1, 1)

(0, 2) (0, 2)

]
+ ε2

[
(1, 1) (0, 2)

(1, 1) (0, 2)

]
=

[
(1 , 1 ) (ε1, ε1 + 2ε2)

(1− ε1, 2ε1 + ε2) (0, 2 )

]
,

and the alternative perturbation (A + ε1R
+, B + ε2S

+) is:
[
(1 + ε1, 1 + ε2) (ε1, 2ε2)

(1 , ε2) (0, 2 + 2ε2)

]
.

The following theorem is a special case of Theorem 3 of Robson (1994). Because of our

different approach and notations and its plainness, we include a proof.

Theorem 5: Let (A,B) be a bimatrix game. Then IRE+(A, B) and IRE−(A, B) are

non-empty and closed subsets of E(A,B).

Proof: Like the proof of Lemma 4, we only give the optimistic part of the proof. Firstly,

we show the non-emptyness. Let (εt
1)t∈IN and (εt

2)t∈IN be rows converging to 0. Let for all

t in IN: (pt, qt) ∈ E(A+(εt
1), B

+(εt
2)). Because of the compactness of the strategy spaces,

there exists a pair of subsequences converging to, say, (p, q) ∈ ∆, which is thereby by

definition 3 and Lemma 4 an element of IRE+(A,B).
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To show that (p, q) ∈ IRE+(A,B) is an equilibrium, we have to show that C(p) ⊆
PB1(A, q) and C(q) ⊆ PB2(B, p). Obviously, it suffices to prove the first statement.

Take sequences (εt
1, ε

t
2) converging to (0, 0) and (pt, qt) ∈ E(A+(εt

1), B
+(εt

2)) converging

to (p, q). Let i ∈ C(p). Then for sufficiently large t we have that i ∈ C(pt). Hence,

eiA
+(εt

1)q
t > ekA

+(εt
1)q

t for all k ∈ M .

Taking t to infinity, we find:

eiAq > ekAq for all k ∈ M .

Finally, we show the closedness of IRE+(A,B). Take a converging sequence (pt, qt)t∈IN

in IRE+(A,B) with limit (p, q). For every t, there are sequences (εtk
1 , εtk

2 )k∈IN converging

to (0, 0) and (ptk, qtk)k∈IN converging to (pt, qt) with:

(ptk, qtk) ∈ E(A+(εtk
1 ), B+(εtk

2 )).

Consider the sequences (εtt
1 , εtt

2 )t∈IN and (ptt, qtt)t∈IN. They demonstrate that (p, q) is an

IRE+. ¤

3 Optimistic or pessimistic?

In order to get more aquainted with IRE we give two examples. The first one shows that

the optimistic and pessimistic approaches can lead to different outcomes. The optimistic

approach selects the Pareto optimal equilibrium, while the pessimistic approach selects

the (unique) perfect equilibrium.

Example 6: Let (A,B) :=

[
(1, 0) (1, 1) (2, 0)

(0, 1) (1, 0) (2, 1)

]
.

Take ε1 > 0, ε2 > 0 with 1− ε1 − ε2 > 0. Then:

(A+(ε1), B
+(ε2)) =

[
(1 + ε1, 0) (1 + ε1, 1 + ε2) (2 + ε1, ε2)

( 2ε1, 1) (1 + 2ε1, ε2) (2 + 2ε1, 1 + ε2)

]
.

Regardless the values of ε1 and ε2, the first column is strictly dominated by the third

column. Hence, in every optimistic perturbation (e2, f3) is the only equilibrium, so

IRE+(A,B) = {(e2, f3)}.
We have:

(A + ε1R
−, B + ε2S

−) =

[
(1 + ε1, 0) (1 + ε1, 1) (2 + ε1, 0)

(0 , 1) (1 , 0) (2 , 1)

]
.

We find that IRE(A,B)− = {(e1, f2)}.
The following example shows that two best reply equivalent games can have different

IRE’s. As one might have observed at Example 1 in the introduction, best reply equiv-

alence is in our opinion not so innocent.

Example 7: Consider the following best reply equivalent games:

8



(A,B) :=

[
(1, 1) (0, 1)

(0, 0) (0, 0)

]
and (A,B′) :=

[
(1, 0) (0, 0)

(0, 1) (0, 1)

]
.

The equivalence follows by observing that B′ = B +

[−1 −1

1 1

]
. The equilibrium set of

both games equals ({e1} × [f1, f2]) ∪ ([e1, e2] × {f2}). Since the payoff to player two is

independent on his own decision, one might have the opinion that he can play arbitrarily

and should not invest time or effort in his decisions.

However, if there is pre-play communication, in the game (A,B) he could try to convince

player one that it is profitable to play the top row. A pessimistic player would therefore

announce to play the left column. An optimistic player two would not bother; he would

think that player one plays the top row anyhow.

In the game (A,B′), player two could try to convince player one that there is no use

in playing the top row, because he (player two) plays the right column. If player two

succeeds, player one becomes indifferent and can play anything. An optimistic player

two would therefore announce to play the right column. A pessimistic player two would

not bother.

If there is no pre-play communication, but player two takes a slight probability into

account that player one can react on his decisions, he should play, in our opinion, f1 in

the game (A,B) and f2 in the game (A,B′).
The IRE concept rather closely comports with the above ideas. It is easy to verify that:

IRE+(A,B) = {e1} × [f1, f2],
IRE+(A,B′) = {(e1, f2)} and

IRE−(A,B) = {(e1, f1)},
IRE−(A,B′) = E(A,B′).

In the game (A,B), the pessimistic approach selects in our opinion the most natural

outcome. In the game (A,B′) however, this is established by the optimistic approach.

Even though the approaches lead to different outcomes, most results in the paper hold

for both the pessimistic and the optimistic version of IRE. Moreover, many proofs

hardly rely on which of the approaches is chosen. If so, we omit the flag + or −. Hence,

whenever we use the notation IRE, one of the options IRE+ or IRE− is meant. Similarly,

flags on matrices are omitted if it does not matter which option is treated.

4 Strict IRE

Like Robson (1994), we allowed the probabilities with which the respective players act

first to be unequal. It will turn out that if we do require equal probabilities, this will

not change the set of informationally robust equilibria. We can go even further; if there

is some sequence of perturbed games making some profile an IRE, then any sequence

of perturbed games converging to the original game supports this profile being an IRE.

This section proves the above statement. Firstly, the notion of strict IRE is defined,

analogously to the way Okada (1984) has refined perfectness to strict perfectness.
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Definition 8: An equilibrium (p, q) of game (A,B) is called strict IRE if for all

decreasing sequences (εt
1, ε

t
2)t∈IN converging to (0, 0) there is a sequence (pt, qt)t∈IN con-

verging to (p, q) with (pt, qt) ∈ NE(A(εt
1, ε

t
2), B(εt

1, ε
t
2)) for all t ∈ IN.

Theorem 9: For any bimatrix game (A,B) the sets of IRE and strict IRE coincide.

Proof: Obviously strict IRE is a (weakly) stronger property than IRE, so it is suffices

to show that any informationally robust equilibrium is strict. Let (p, q) be an IRE,

with corresponding decreasing rows of perturbations (δt
1)t∈IN and (δt

2)t∈IN. Let the row

of corresponding equilibria be (pt, qt)t∈IN. By using subsequences we can establish that

C(p) ⊆ C(pt) = C(pt′) and C(q) ⊆ C(qt) = C(qt′) for all t, t′ ∈ IN. Take an arbitrary

decreasing sequence (εt
1, ε

t
2)t∈IN converging to (0, 0).

Fix T ∈ IN (think of a large number) with δ1
1 > εT

1 and δ1
2 > εT

2 . Choose a t ∈ IN such

that:

δ1
1 > εT

1 > δt
1 and δ1

2 > εT
2 > δt

2.

Take λ, µ ∈ (0, 1) that are uniquely determined by:

εT
1 = λδ1

1 + (1− λ)δt
1 and εT

2 = µδ1
2 + (1− µ)δt

2.

Define the profile (p̂T , q̂T ) by:

p̂T := µp1 + (1− µ)pt and q̂T := λq1 + (1− λ)qt.

Clearly, it suffices to show that (p̂T , q̂T ) ∈ E(A(εT
1 ), B(εT

2 )). Because of the similarity,

we only show that C(p̂T ) ⊆ PB1(A(εT
1 ), q̂T ). Take i ∈ C(p̂T ).

Because C(p̂T ) = C(p1) = C(pt) and (p1, q1) ∈ E(A(δ1
1), B(δ1

2)), we have for all k ∈ M :

ei(A + δ1
1R)q1 > ek(A + δ1

1R)q1.

Because the rows of R are constant, we can rewrite this to be:

eiAq1 + δ1
1ri > ekAq1 + δ1

1rk, (1)

in which r ∈ IR
m

is any column of R. Similarly, for all k ∈ M :

eiAqt + δt
1ri > ekAqt + δt

1rk (2)

Adding λ times inequality (1) and (1− λ) times inequality (2) results in (k ∈ M):

eiAq̂T + εT
1 ri > ekAq̂T + εT

1 rk,

which boils down to:

ei(A + εT
1 R)q̂T > ek(A + εT

1 R)q̂T

for all k ∈ M . Hence, p̂T is a best response to q̂T in the game (A + εT
1 R, B + εT

2 S). ¤

Because IRE and strict IRE coincide, one might as well only look at the perturbations:

(A(ε), B(ε)) = (A + εR,B + εS):

Corollary 10: (p, q) ∈ IRE(A,B) if and only if it is the limit of some trajectory

(pε, qε)ε↓0 with (pε, qε) ∈ E(A + εR, B + εS).
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5 The structure of IRE

In bimatrix games, the set of Nash equilibria is the union of finitely many Nash compo-

nents (Jansen (1981)) . We show that IRE(A,B) can be decomposed in the same way.

Extreme points of such a component are extreme points of some Nash component. Not

all Nash components contain IRE’s and sometimes two IRE components are situated in

the same Nash component.

Definition 11: Let (A,B) be a bimatrix game. A set G of profiles is called an IRE

component if:

(i) G is a convex subset of IRE(A,B),

(ii) G is a product set, i.e. G = G1 ×G2 for some G1 ⊆ ∆m, G2 ⊆ ∆n.

(iii) G is maximal with respect to properties (i) and (ii),

If we replace IRE(A,B) by E(A,B) in the previous definition, we obtain the definition

of a Nash component. Jansen (1981) has shown that Nash components are polytopes

and that there are finitely many of them. We will show the same for IRE components

with the help of the following claim.

Claim 12: Let (p, q) be an informationally robust equilibrium of the game (A,B). Let

(p′, q′) be an element of the relative interior of the smallest face of the Nash component

in which (p, q) is situated. Then (p′, q′) ∈ IRE as well.

Because IRE is a closed set, we might as well omit the presumption that (p′, q′) is situated

in the relative interior. However, presuming it gives that the carriers and best reply sets

concerning p and p′ coincide (see e.g. Jurg (1993), §2.2).

Proof: Because a component is the cartesian product of two polytopes, (p′, q) is situated

on the same face as (p, q) and (p′, q′) do. Without loss of generality we assume that q

equals q′, since if we can prove that (p′, q) ∈ IRE, we can repeat the argument for (p′, q′),
given that (p′, q) ∈ IRE.

Inside the relative interior of the face of a Nash component the carrier C(·) and pure

best reply correspondence PB2(B, ·) are constant. Hence, we have C(p) = C(p′) and

PB2(B, p) = PB2(B, p′). Furthermore, there is a decreasing sequence (εt)t∈IN with limit

0 and a series of profiles (pt, qt)t∈IN converging to (p, q) such that (pt, qt) is an equilibrium

of the game (A(εt), B(εt)). For all t, define:

p̂t := p′ − p + pt.

Then p̂t converges to p′. For large t, p̂t is a strategy of player 1, because:
∑
i∈M

p̂t
i =

∑
i∈M

p′i −
∑
i∈M

pi +
∑
i∈M

pt
i = 1

11



and if p̂t
i < 0, then i ∈ C(p) = C(p′), so p′i > 0. Hence, increasing t sufficiently will lead

to a positive value of p̂t
i.

The proof is complete when we can show that (p̂t, qt) ∈ E(A(εt), B(εt)). We have:

C(p̂t) ⊆ C(p′) ∪ C(p) ∪ C(pt) = C(pt) ⊆ PB1(A(εt), qt).

Let j be an element of C(qt) and let ` be in PB2(B(εt), p̂t). Since C(qt) ⊆ PB2(B(εt), pt),

we have:

pt(B + εtS)f` 6 pt(B + εtS)fj. (3)

Because pure best reply correspondences are upper semi continuous (see section 2), for

t sufficiently large we obtain:

C(qt) ⊆ PB2(B(εt), pt) ⊆ PB2(B, p) and PB2(B(εt), p̂t) ⊆ PB2(B, p′).

Combining these statements gives:

{j, `} ⊆ PB2(B, p) = PB2(B, p′).

This implies that:

pBf` = pBfj and − p′Bf` = −p′Bfj. (4)

Because the columns of S are constant, we have:

p(εtS)f` = pt(εtS)f` and p(εtS)fj = pt(εtS)fj. (5)

The observations in (3), (4) and (5) together lead to:

(p− p′ + pt)(B + εtS)f` 6 (p− p′ + pt)(B + εtS)fj.

Hence, like `, the strategy j is an element of PB2(B(εt), p̂t). We conclude that (p̂t, qt)

is an element of E(A(εt), B(εt)). ¤
Claim 12 and the fact that IRE(A,B) is a closed set lead to the observation that IRE

components behave like Nash components. We have established the following result:

Theorem 13: The IRE components of a bimatrix game (A,B) are faces of its Nash

components. They are thereby polytopes and there are finitely many of them.

6 Potential games

Potential games have been introduced by Monderer and Shapley (1996). There are many

economic situations that can be modelled by potential games. For an overview we refer

to Voorneveld (1999). The main virtue of having a potential function for a finite game is

that it implies the existence of an (easily traceable) Nash equilibrium in pure strategies.

12



Perhaps the most natural definition of a potential is the cardinal (or exact) potential

function. On the other hand, the ordinal potential generalizes this concept to a much

wider class of games and can still be used to obtain the result of this section. Therefore,

we give the definition of the latter type of potential:

Definition 14: A bimatrix game (A,B) is an ordinal potential game if there exists a

function P : ∆ −→ IR such that for all p, p′ ∈ ∆m and q, q′ ∈ ∆n:

pAq > p′Aq if and only if P (p, q) > P (p′, q)
pBq > pBq′ if and only if P (p, q) > P (p, q′).

and

The function P is called an (ordinal) potential of the game (A, B).

It turns out that IRE and the set of strategy pairs at which the potential is maximal

always have a profile in common.

Theorem 15: Let (A, B) be a bimatrix game with ordinal potential P . Then there

exists a pure informationally robust equilibrium that maximizes the potential.

Proof: Define the m× n-matrix P̄ as the restriction of P to the pure strategy profiles

of (A,B):

P̄ij := P (ei, fj). (i ∈ M, j ∈ N)

By the definition of a potential, for all i, k ∈ M and all j, ` ∈ N :

Aij > Akj ⇐⇒ P̄ij > P̄kj

Bij > Bi` ⇐⇒ P̄ij > P̄i`.
(6)

Let us call a matrix satisfying (6) a potential matrix. Firstly, we show that the pertur-

bation (A + εR,B + εS) has potential matrix P̄ + ε(R + S) if ε is chosen sufficiently

small. Let i, k ∈ M and j ∈ N . If Aij = Akj, then P̄ij = P̄kj and therefore:

(A + εR)ij > (A + εR)kj ⇐⇒ (P̄ + εR)ij > (P̄ + εR)kj. (7)

If Aij > Akj, then P̄ij > P̄kj and we can choose ε sufficiently small to obtain the validity

of the statements (A+εR)ij > (A+εR)kj and (P̄ +εR)ij > (P̄ +εR)kj in (7). Similarly,

(7) holds when Aij < Akj and ε is sufficiently small (switch the roles of i and k). Because

S has constant columns we have Sij = Skj, making (7) equivalent with:

(A + εR)ij > (A + εR)kj ⇐⇒ (P̄ + εR + εS)ij > (P̄ + εR + εS)kj.

Similarly, for all i ∈ M and all j, k ∈ N and sufficiently small ε:

(B + εS)ij > (B + εS)i` ⇐⇒ (P̄ + εR + εS)ij > (P̄ + εR + εS)i`.

13



Hence, the perturbations have potential matrices as well. It is easy to infer that a pure

strategy profile maximizing a potential matrix is a Nash equilibrium. There are finitely

many pure profiles, so for any sequence of perturbed games converging to (A,B), there

exists a subsequence of it and a pure profile (ei, fj) such that (ei, fj) is a ‘potential

matrix maximizer’ in all games in the subsequence. Since the potential matrices of the

perturbed games converge to P̄ , (ei, fj) is a pure IRE maximizing the potential P . ¤

Remark 16: A function P : ∆ −→ IR is called a cardinal or exact potential of (A,B)

if for all p, p′ ∈ ∆m and all q, q′ ∈ ∆n we have:

pAq − p′Aq = P (p, q)− P (p′, q) and pBq − pBq′ = P (p, q)− P (p, q′).

In the case that P is a cardinal potential, then P is the multilinear extension of P̄ . Along

the lines of the proof of Theorem 15 it can be shown that the multilinear extension of

(P̄ + ε(R + S)) is a cardinal potential of (A + εR, B + εS).

In general, not all potential maximizers survive. In the following cardinal potential game,

the set of potential maximizers is the union of two line segments. In the pessimistic

version of IRE, the three pure equilibria survive:

Example 17: Consider the game (A,B) =

[
(2, 2) (1, 2)

(2, 1) (0, 0)

]
with cardinal potential

(matrix) P =

[
1 1

1 0

]
. Then E(A,B) = ([e1, e2]× {f1})∪ ({e1} × [f1, f2]). All equilibria

maximize P . The perturbed game (A−(ε), B−(ε)) =

[
(2 + ε, 2 + ε) (1 + ε, 2 + 2ε)

(2 + 2ε, 1 + ε) ( 2ε, 2ε)

]

has potential matrix P + ε(R− + S−) =

[
1 + 2ε 1 + 3ε

1 + 3ε 4ε

]
. It has three Nash equilibria:

(e1, f2), (e2, f1) and ((1− ε)e1 + εe2, (1− ε)f1 + εf2).

7 Matrix games

A matrix game is a bimatrix game (A,B) with B = −A. It is customary to denote

such a game by A. Two-person zero-sum games can be considered to be the utmost

noncooperative games, since any action of an agent motivated by an increase of utility,

automatically leads to a corresponding decrease of utility to the other one. There appears

to be no room at all for negotiation which profile (equilibrium) should be played. Still,

there is support to play Nash equilibria, without introducing prior beliefs concerning the

opponents plans. The equilibrium set of a matrix game has a product structure, i.e.,

if (p, q) and (p′, q′) are equilibria, then so are (p′, q) and (p, q′). This justifies speaking

about an equilibrium strategy rather than an equilibrium profile. This section shows

that IRE(A) is, like the Nash set, a product set, so we can consider informationally
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robust strategies. It is, again like the Nash set, a polytope, and an element of it can be

found in polynomial time.

In the zero-sum case, the optimistic and the pessimistic view coincide, because playing a

best response determines the payoff to the other player. A+(ε1, ε2) and A−(ε1, ε2) both

equal the zero-sum game defined by (i ∈ M, j ∈ N):

A(ε1, ε2)ij := (1− ε1 − ε2)Aij + ε1min
`∈N

Ai` + ε2max
k∈M

Akj.

The matrices R+ and R− also coincide in a zero-sum game. We denote:

Rij := max
`∈PB2(−A,ei)

Ai` = min`∈N Ai` (i ∈ M)

Similarly:

Sij := max
ek∈PB1(A,fj)

− Akj = min
k∈M

−Akj = −max
k∈M

Akj (j ∈ N)

By Lemma 4 one might as well consider the disturbed game:

(A + ε1R,−A + ε2S).

This game is strategically equivalent with the zero-sum game:

(A + ε1R− ε2S).

Finally, because IRE and strict IRE coincide, one might as well consider the disturbed

game:

A + ε(R− S).

Let r ∈ IR
M

be any column of R (they are identical) and let s ∈ IR
N

be any row of S.

Theorem 18: Let A be a matrix representing a zero-sum game. Let O(A)1 and O(A)2

be the polytopes of optimal strategies of players one and two respectively. Then IRE(A)

is a product set, i.e. it can be decomposed: IRE(A) = IO(A)1 × IO(A)2. IRE(A)1 is

the face of O(A)1 at which the linear function:

O(A)1 −→ IR, p 7→ 〈p, r〉
is maximized.

Similarly, IO(A)2 is the face of O(A)2 at which the linear function:

O(A)2 −→ IR, q 7→ 〈−s, q〉
is minimized.

The proof is based on the following idea. We have seen that IRE(A) ⊆ E(A). It appears

that the primal concern of a player is to play an optimal strategy of the original game

A. The term εR is of secondary concern to player one. Hence, he should, within his

Nash polytope, maximize this term. The term −εS has no strategic influence to player

one since the columns of S are constant.

Because of its technical nature the proof has been postponed to the appendix. It requires

acquaintance with the Simplex method (e.g. Nemhauser and Wolsey (1988)).
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Figure 2: A penalty shot

The nature of zero-sum games supports the refinement of informationally robustness.

For instance, it reduces the harm ’not having a poker face’ can have, or the disutility

that occurs if it is possible to be ’cheaten’ with small probabilities. Let us give as an

illustration a situation in which IRE selects in our opinion the profile that fits best with

the context.

Example 19: Consider a situation in which a penalty shot has been assigned to a

soccer team. Let us give the forward who has to shoot three options; he can aim at the

left corner, the right corner or he can just give a firm kick. If the forward is skilled, it is

obvious that the best thing to do is aim at a corner. If his aiming is poor however and

he faces an excellent keeper, he’d better shoot firmly and hope for the best. The keeper

has three pure strategies as well: dive to the left (from the perspective of the forward),

dive to the right or stand still and react on the shot.

In our example, depicted in Figure 2, the forward is moderate and we have designed

the figures such that he has various optimal strategies. Because the forward cannot aim

perfectly, the figures in the matrix do not represent certain outcomes, but expectations.

The keeper has one optimal strategy: q := 1
2
(f1 + f2). The forward has two extreme

optimal strategies: p1 := 1
2
(e1 + e2) and p2 := 1

6
(e1 + e2 + 4e3). Which one is better?

In spite of the fact that p2 is weakly dominated by p1, the concept of IRE recommends

p2. In the spirit of the concept, p2 should be played according to the following lines of

thought of the forward:

”Suppose the keeper can see which corner I am aiming at. Then my chances reduce.

On the other hand, if the keeper can see I go for the firm kick, this information is

of less value to him.”

By using Theorem 18 it is easy to infer that (p2, q) is indeed the only informationally

robust equilibrium; any row r of R equals (−1,−1,−1
2
) and −1 = 〈r, p1〉 < 〈r, p2〉 = −2

3
.
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8 The n-person case

It is not straightforward how to generalize the concept of information robustness to

games with more than two players, i.e. n-matrix games. We give three options:

(i) Each player, but at most one at a time, hears with a small possibility the strategies

of all of his opponents. The player can adapt his decision to a (specific) best

response.

(ii) Each player, but at most one at a time, reveals with a small possibility his strategy

to all of his opponents. The others play an (n-1)-person game thereafter.

(iii) For each ordered pair of players (i, j), there is a slight chance that i finds out the

action of player j.

The practical advantage of the first option is that the perturbed games are n-matrix

games as well, with the size of the original game. Furthermore, we can again distinguish

between an optimistic and a pessimistic approach. It takes too far to elaborate the

n-person case in this paper. It is an interesting subject for future research. We will

restrict ourselves to one example in which we choose the first of the three options. The

optimistic approach is able to make a strict selection of the equilibrium set.

Example 20: There are three players, each of them takes either 1 or 2 coins in his

hand. If a player chooses differently from the others, he receives the number he has

chosen.

The story can be depicted by the following scheme:

(1, 1) (1, 2) or (2, 1) (2, 2)

1 coin 0 0 1

2 coins 2 0 0

The rows represent the two actions of a player (1 coin or 2 coins). The columns represent

the combined actions of the opponents. There are seven ’Nash components’. Six of them

are segments, one is a singleton:

[(e1, f1, g2), (e2, f1, g2)],
[(e1, f2, g1), (e2, f2, g1)],

[(e1, f1, g2), (e1, f2, g2)],
[(e2, f1, g1), (e2, f2, g1)],

[(e1, f2, g1), (e1, f2, g2)],
[(e2, f1, g1), (e2, f1, g2)]

and {(p, p, p)}, in which p = λe1 + (1− λ)e2 and λ is the root in [0, 1] of the expression

x2 + 2x− 1 = 0, i.e. λ =
√

2− 1.

Let us assume that each agent hears the strategies of the other players with a probability

ε, and with probability 1−3ε nobody hears anything. What will be the optimistic payoff

scheme? If A ∈ IR
2×2×2

is the trimatrix of player one, his perturbed payoff trimatrix

will be given by (i, j, k ∈ {1, 2}):
(1− 3ε)Aijk + ε( max

`∈{1,2}
A`jk) + ε( max

`∈PB2(B,ei,gk)
Ai`k) + ε( max

`∈PB3(ei,fj)
Aij`).
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The optimistic payoff scheme becomes:

(1, 1) (1, 2) or (2, 1) (2, 2)

1 coin 2ε ε 1

2 coins 2 2ε ε

.

Four equilibria survive: (e1, f2, g2), (e2, f1, g2), (e2, f2, g1) and (p, p, p).

The pessimistic payoff scheme will be:

(1, 1) (1, 2) or (2, 1) (2, 2)

1 coin 2ε 0 1− 2ε

2 coins 2− 4ε 0 ε

.

All equilibria survive.

Appendix

In order to prove Theorem 18, a result is needed from Linear Algebra, providing sufficient

conditions for convergence of solution sets of perturbed systems of linear equations:

Claim 21: Let D be an m×n-matrix and let (dt)t∈IN be a sequence in IR
m

converging

to d. Let for all t in IN, F t ⊂ IR
n

be the set of feasible points of the system of equations

{x ∈ IR
n
+ | Dx = dt}. Let F be the set of feasible points of {x ∈ IR

n
+ | Dx = d}. Suppose

there exists a uniform bound M ∈ IN, i.e. ‖x‖ 6 M for all x ∈ ⋃
F t. If all solution sets

F t are non-empty, then F t converges to F in the sense that:

(i) if x̂t ∈ F t for all t ∈ IN and lim
t→∞

x̂t = x̂, then x̂ ∈ F ,

(ii) for all x̂ ∈ F there exists a sequence (x̂t)t∈IN in (F t)t∈IN converging to x̂.

Proof: It is easy to infer statement (i) by a continuity argument. The difficult part is

to show that any element of F is the limit of some sequence in (F t)t∈IN. The proof will

be by induction to n; the number of columns. The case n = 1 is left to the reader.

We distinguish between two cases:

Case I: There exists a strictly positive element s ∈ IR
n
++ of F .

Linear operations like adding rows to others, or multiplying a row with a non-zero

number will not change the solutions sets, nor the feature that the constraint vectors

converge. Hence, without loss of generality, D has an echelon form: D =

[
Ir M

0̄ 0̄

]
, in

which r is the rank of D, Ir is an identity matrix, M is some matrix with r rows and

n− r columns and the zeros represent zero matrices.

Because F t 6= φ for all t ∈ IN, we have that di = dt
i = 0 for all t ∈ IN and all i > r.

Hence, we might as well remove the m−r zero-rows of D, which boils down to assuming

that D is of full rank: r = m.
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Let q := (d1, . . . , dm, 0, . . . , 0) ∈ IR
n
. Then Dq = d. Similarly, let qt := (dt, 0̄) ∈ IR

n
, so

Dqt = dt. Define st := s + qt − q. Let δ > 0 be such that si > δ for all i 6 n. Then

st
i > 1

2
δ for large t and i 6 n.

Let x̂ be any element of F . Define x̂t := x̂ + qt − q. Then Dx̂t = dt and x̂t −→ x̂. Let

λt := min{λ ∈ [0, 1] | λst + (1− λ)x̂t > 0̄} and define x̃t := λtst + (1− λt)x̂t ∈ F t.

Let ε > 0. Choose t so large that x̂t
i > −ε for all i. If x̂t /∈ IR

n
+, then λt = max

i6n

−x̂t
i

st
i − x̂t

i

6
ε
1
2
δ
. Since δ is fixed and ε can be chosen to be as small as desired, λt tends to 0. Hence,

‖x̂− x̃t‖−→
t→∞

0. This ends Case I.

Case II: For some i 6 n, xi = 0 for all x ∈ F .

Without loss of generality, choose i = n. Let δt := min
x∈F t

xn. Let δ be an accumulation

point of (δt)t∈IN. Because of the uniform bound M , there exists a row xt1 , xt2 , xt3 , . . .

converging to, say, x with xtk
n = δtk and lim

k→∞
δtk = δ. By continuity, x ∈ F and

lim
k→∞

δtk = xn = 0. Hence, 0 is the only accumulation point; lim
t→∞

δt = 0.

Substitute, for all t ∈ IN, xn = δt in the equation set Dx = dt. The solution sets may

become smaller, but remain non-empty. By now, the right column can be removed from

all sets of equations and obtain a setting with one dimension less. Hence, we can apply

the induction hypothesis. For an arbitrary element x̂ = (x̂1, . . . , x̂n−1, 0) of F , we can

give an element (x̂t
1, . . . , x̂

t
n−1, δ

t) in F t close to x̂. ¤

Notice that if the constraint matrix D is perturbed as well, convergence is not guar-

anteed. E.g. if Dt :=

[
1− 1

t
1 + 1

t

1 + 1
t

1− 1
t

]
and dt :=

[
2

2

]
, the solution sets of F t all equal

{(1, 1)}, while the solution set of F equals {(x, 2− x) : x ∈ [0, 2]}.

Proof of Theorem 18: Because for every ε > 0, E(A+ ε(R−S)) is a product set and

a polytope and because IRE(A) coincides with strict IRE(A) (Theorem 9), IRE(A) is

a product set and a polytope as well, say IRE(A) = IO(A)1× IO(A)2 ⊆ ∆m×∆n. The

assertions concerning IO(A)1 and IO(A)2 are so similar that we suffice with the proof

of the latter. Assume without loss of generality that A > 0. Then R is as well a strictly

positive matrix and S is a strictly negative matrix. Furthermore, v(A), the value of the

game, is strictly positive. Let (εt)t∈IN be a decreasing row with limit 0.

O(A + εt(R− S))2 is the set of optimal solutions of the linear program:

minimize v subject to:

v ∈ IR+, q ∈ IR
N
+




0 1 · · · · · · 1

1
... −A + εt(S −R)

1







v

q1

...

qn


 >




1

0
...

0




19



The left column will be referred to as column v, the top row as row 0 and each other

row by its corresponding pure strategy: row i (i ∈ M).

If we would like to apply the Simplex method, for each row a slack variable has to be

added, except for row 0, since
∑

j∈N qj has to equal 1. We get:

minimize 〈ev,




v

q

p


〉 s.t.:

v ∈ IR+, q ∈ IR
N
+ , p ∈ IR

M
+




0 1 · · · · · · 1 0 · · · 0
1
... −A + εt(S −R) −Im

1







v

q

p


 =




1

0
...

0




Here, ev denotes the unit vector of IR× IR
N × IR

M
corresponding to v and Im denotes

the m ×m identity matrix. By adding row 0 of the table εtri times to row i (i ∈ M),

the table becomes independent of the matrix R, except for the constraint vector. The

resulting table will be denoted by LP t:

minimize 〈ev,




v

q

p


〉 s.t.:

v, q, p > 0




0 1 · · · 1 0 · · · 0

1
... −A + εtS −Im

1







v

q

p


 =




1

εtr1

...

εtrm


 (8)

Denote the constraint matrix in the program LP t by Dt. The program and constraint

matrix obtained by substituting εt := 0, will be called LP and D respectively. They

correspond to the non-perturbed game A.

After having performed the Simplex method, the table has become of the following

form:5

minimize 〈at,
[
v, q, p

]|〉 s.t.: Bt
[
v, q, p

]|
= bt.

v, q, p > 0
(9)

Let us recall the features of the Simplex method that are important for our purpose.

The final object vector at ∈ IR+ × IR
N
+ × IR

M
+ is nonnegative and the sum of the original

object vector ev and some linear combination of the rows of LP t. The main principle of

the Simplex method is, that one might as well optimize the final object vector, because

for any row Dt
i·, the inner product 〈Dt

i·, x〉 is independent on x (as long as x is chosen

feasible). The set of optimal points consists of all feasible points with inner product zero

with the final object vector.

Because the tables consists of linear equations, we can normalize them such that for all

t ∈ IN, all numbers in Bt, bt and at are in some compact segment, e.g. [−1, 1]. Hence,

by taking a suitable subsequence of the row (εt)t∈IN, we can accomplish that Bt, bt and

at converge to, say, B, b and a respectively. This limit (minimize 〈a, x〉 s.t. Bx = b)

5The ᵀ denotes that the vector is transposed
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is a table for the original game and could have been obtained by applying the Simplex

method on LP . Hence, a equals ev plus some linear combination of the rows of LP :

a = ev +
m∑

i=0

ciDi· for some c ∈ IR× IR
M

. (10)

Because v(A) is strictly positive, we have that xv = v(A) > 0 for all optimal points, so

av = 0. Focussing at the first column of LP , equation (10) gives:

0 = av = (ev)v +
m∑

i=0

ciDiv = 1 +
m∑

i=1

ci. (11)

We have that at
i > 0 for large t and all i ∈ C(a). Hence, all variables corresponding to

elements of C(a) have value 0 in any optimal point and all corresponding columns can

be removed6 from the tables LP t and LP without changing optimal sets: columns in

C(a)∩M correspond to pure strategies on which player one can put some weight while

playing optimal in the original game A and columns in C(a) ∩ N correspond to pure

strategies on which player two does not put positive weight in any equilibrium of A.

Denote the complement of the carrier of a by Z(a) (the ’zero part’ of a):

Z(a) := {i : ai = 0}.
Denote the matrices Dt and D of which the redundant columns have been deleted by

D̄t and D̄ respectively. Similarly, let ēv := (1, 0, . . . , 0) ∈ IR
Z(a)

be the first unit vector

of IR
Z(a)

, let s̄ ∈ IR
Z(a)

be the restriction of the vector (0, s, 0, . . . , 0) ∈ IR× IR
N × IR

M

and let āt be the restriction of at (so āt = 0̄ for all t). We can omit these columns as

well in equation (10):

0̄ = ā = ēv +
m∑

i=0

ciD̄i·

Adding the rows of D̄t to ēv, weighted by the same combination c, results in:

ēv +
m∑

i=0

ciD̄
t
i· =

m∑
i=0

ci

(
D̄t

i· − D̄i·
)

=
m∑

i=1

ciε
ts̄ = (−1) · εts̄.

To infer the second equality, consider program LP t, (table (8)): the difference between

row i of LP t and row i of LP is εt times the vector (0, s, 0, . . . , 0) for all i > 1. For the

right equality we refer to (11). Hence, for all t ∈ IN, in stead of minimizing 〈ēv, x〉, we

might as well minimize 〈−εts̄, x〉, or 〈−s̄, x〉.
Call the alternative optimization problem ALP t:

minimize 〈−s̄, x〉 s.t.: D̄tx =
[
1, εtr1, . . . , ε

trm

]|
.

x ∈ IR
Z(a)
+

6the removed variables of course still have to be stored and are set to be zero
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Let us repeat the results so far. For all t ∈ IN, the set O(A + εt(R−S))2 is described by

ALP t in the sense that for all q ∈ ∆n, the following statements are equivalent:

(i) q ∈ O(A + εt(R− S))2 and

(ii) qj = 0 for all j ∈ N ∩ C(a) and qj = xj for all j ∈ N ∩ Z(a) and some optimal

solution x ∈ IR
Z(a)
+ of ALP t.

Consequently, the program obtained by substituting εt := 0 in ALP t will be called ALP .

The set of feasible points of ALP corresponds to O(A)2 in the sense that for all q ∈ ∆n:

q ∈ O(A)2 if and only if qj = 0 for all j ∈ N ∩ C(a) and qj = xj for all j ∈ N ∩ Z(a)

and some feasible point x ∈ IR
Z(a)
+ of ALP . The optimal set of ALP corresponds to the

face of O(A)2 of which Theorem 18 claims that it coincides with IO(A)2. Hence, we are

done if we can show that the optimal set of ALP t converges to the optimal set of ALP .

After having performed the Simplex method on table ALP t, we get again a table of the

form:

minimize 〈ht, x〉 s.t.:

x > 0

Gtx = gt.

Here, ht ∈ IR
Z(a)
+ . The following lines of argumentation copies the one just after table

(9), so details are omitted. Assume that ht converges to h. Then:

h = −s̄ +
m∑

i=0

c̄iD̄i· for some c̄ ∈ IR× IR
M

. (12)

We have that ht
i > 0 for large t and all i ∈ C(h). Columns corresponding to elements of

C(h) are removed from the tables ALP t and ALP without changing optimal sets.

Denote the matrices D̄t and D̄ of which the redundant columns have been deleted by

D̂t and D̂ respectively. Similarly, let êv ∈ IR
Z(h)

be the first unit vector of IR
Z(h)

, let

ŝ ∈ IR
Z(h)

be the restriction of s̄. Omit the redundant columns in equation (12):

0̄ = −ŝ +
m∑

i=0

c̄iD̂i·

If we add the rows of D̂t to −ŝ, weighted by combination c̄, we obtain:

−ŝ +
m∑

i=0

c̄iD̂
t
i· =

m∑
i=0

c̄i

(
D̂t

i· − D̂i·
)

=
m∑

i=1

c̄iε
tŝ.

The object vector −ŝ manifests to be a linear combination of the rows of D̂t. Hence, the

linear function 〈−ŝ, ·〉 is constant on the polytope F t := {x ∈ IR
Z(h)
+ | D̂tx =

[
1, εtr

]|},
say kt := 〈−ŝ, x〉 for all x ∈ F t. Add to all rows of ALP t but the first, the equation

εt〈−s, x〉 = εtkt, to obtain:

F t =
{

x ∈ IR
Z(h)
+

∣∣∣ D̂x = [1, εt(r1 + kt), . . . , εt(rm + kt)]|
}

.
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Observe that the constraint matrix of this description is no longer dependent on t.

Conclusion: we have found a description of the form (D̂x = dt, x > 0) of the optimal

set of ALP t and a description (D̂x = (1, 0, . . . , 0), x > 0) of the optimal set of ALP .

Apply Claim 21 and conclude the validity of Theorem 18. ¤

References

Damme, E. van (1991). Stability and perfection of Nash equilibria. Berlin: Springer

Verlag.

Jansen, M.J.M. (1981). Maximal Nash subsets for bimatrix games. Naval Research lo-

gistics quarterly , 28, 85–101.

Jurg, A.P. (1993). Some topics in the theory of bimatrix games. Ph. D. thesis, University

of Nijmegen. ISBN 90-3730204-1.

Kohlberg, E. and J. F. Mertens (1986). On strategic stability of equilibria. Economet-

rica, 54, 1003–1037.

Monderer, D. and L.S. Shapley (1996). Potential games. Games and Economic Behav-

ior, 14, 124–143.

Myerson, R. B. (1978). Refinements of the Nash equilibrium point concept. International

Journal of Game Theory , 7, 73–80.

Nemhauser, G.L. and L.A. Wolsey (1988). Integer and combinatorial optimization. New

York: J. Wiley & Sons, Inc. ISBN 0-471-82819-X.

Okada, A. (1984). Strictly perfect equilibrium points in strategic games. International

Journal of Game Theory , 13, 145–154.

Robson, A. (1994). An ’informationally robust equilibrium’ for two-person nonzero sum

games. Games and Economic Behavior, 7, 233.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in

extensive games. International Journal of Game Theory , 4, 25–55.

Voorneveld, M. (1999). Potential games and interactive decisions with multiple criteria.

Ph. D. thesis, Tilburg University. CentER dissertation series, ISBN 90 5668 060 9.

23


