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Abstract

We introduce generalized Probability-Probability (P-P) plots in order to study
the one-sample goodness-of-fit problem and the two-sample problem, for real valued
data. These plots, that are constructed by indexing with the class of closed inter-
vals, globally preserve the properties of classical P-P plots and are distribution-free
under the null hypothesis. We also define the generalized P-P plot process and the
corresponding, consistent tests. The behaviour of the tests under contiguous alter-
natives is studied in detail; in particular, limit theorems for the generalized P-P plot
processes are presented. By their structure, the tests perform very well for spike (or
pulse) alternatives. We also study the finite sample properties of the tests through a
simulation study.

AMS 2000 subject classification. Primary 62G10, 62G20, 62G30; secondary 60F17.

Key words and phrases. Contiguous alternative, generalized P-P plot, goodness-of-fit,
limit theorem, two-sample problem.

1 Introduction

Graphical methods in nonparametric statistics have a long history and are nowadays com-
monly used for analyzing data. Recent developments in computer science and its interac-
tion with nonparametric statistics made the practical applications of the graphical methods
even more possible. As a result of this interaction, highly developed statistical packages
are used in almost all scientific fields that deal with large quantities of raw, empirical data
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and graphical methods are used to visualize the performed analysis. These methods are
generally applied while investigating location, scale, skewness, kurtosis or other differences
in two-sample problems, symmetry or goodness-of-fit problems, analysis of covariance, and
k-sample or other multivariate procedures. For an extensive review and bibliography of
graphical methods in nonparametric statistics, see, e.g., Doksum [1977], Gnanadesikan
[1977], Fisher [1983], Sawitzki [1994], and Polonik [1999].

Most of the graphical methods are based on diagnostic plots. These plots are often
used for detecting validity of the model or analyzing data in an already defined model.
Therefore fitting diagnostic or other plots is a necessary step during the data analysis.
Citing Fisher [1983]: “in nonparametric statistics probably the most powerful and useful
graphical methods are those based on comparison of the sample distribution functions”.
The most prominent examples of those methods are based on probability-probability (P-P)
plots (see, e.g., Beirlant and Deheuvels [1990], Deheuvels and Einmahl [1992], Hsieh and
Turnbull [1996], Girling [2000]) and related techniques, like quantile-quantile (Q-Q) plots,
pair charts, receiver operating characteristic (ROC) curves, proportional hazards plots, etc.

In this paper we introduce generalized P-P plots in order to study the one- and two-
sample problem for one-dimensional data. These plots, that are constructed by indexing
with the class of closed intervals, globally preserve the properties of the classical P-P plots
and are distribution-free under the null hypothesis. Next, based on the generalized P-P
plot we define the generalized P-P plot process and use it to define our test statistics.
Consequently, these test statistics are distribution-free under the null hypothesis as well
and the corresponding tests are consistent against all fixed alternatives. We also study
in detail the behaviour under contiguous alternatives. Since the proposed test statistics
resemble the classical scan statistic by their structure, so-called spike (or pulse) alternatives
are natural to consider.

The paper is organized as follows. In Sections 2 and 3 we deal with the one- and two-
sample problem, respectively, considering separately fixed and contiguous alternatives. In
Section 4 a simulation study is presented and Section 5 contains the proofs of the main
results.

2 One-sample problem

Let X1, X2, . . ., be a sequence of i.i.d. one-dimensional random variables, defined on a
probability space (Ω,F , IP ). Let B be the σ-algebra of Borel sets on IR. Denote the
unknown common distribution with P and let Pn be the empirical probability measure of
the sample X1, . . . , Xn:

Pn(B) =
1

n

n∑
i=1

IB(Xi), B ∈ B.

Suppose we want to compare P with a given distribution P0, with continuous distribution
function (df) F0. Now in order to compare the two distributions, based on X1, . . . , Xn,
we need to introduce the class of sets on which we compare these measures. Define the

2



generalized P-P plot as

mn(t) := sup{Pn(A) : P0(A) ≤ t, A ∈ A}, t ∈ [0, 1],

where A ⊂ B is the class of all closed or half-open intervals: A = [x, y], (−∞, y] or [x,∞),
with x, y ∈ IR. Although the indexing class is the class of intervals, thus allowing the
detection of only one spike, the procedure can be generalized to the indexing class of unions
of at most k (∈ IN) intervals. Observe that when A would be the class {(−∞, y] : y ∈ IR},
mn would be the classical P-P plot.

Clearly when H0 : P = P0 holds, we obtain that the theoretical version of the general-
ized P-P plot

sup{P (A) : P0(A) ≤ t, A ∈ A}
is equal to t, for t ∈ [0, 1]. Hence in order to see if P deviates from P0, we compare mn

with the diagonal, but note that under H0 typically mn lies above the diagonal, due to
the randomness (see the first plot in Figure 1). Under the alternative we obtain a much
more substantial deviation from the diagonal. A shift of the distribution or a decrease of
scale leads to a generalized P-P plot far above the diagonal, whereas an increase of scale
yields a plot which lies above the diagonal for small values and below for larger values. A
spike alternative yields a plot which lies above the diagonal for small values, but where the
deviation fades out for larger values. (See again Figure 1.)

Now for testing purposes, define the generalized P-P plot process by

Mn(t) :=
√

n
(
mn(t)− t

)
, t ∈ [0, 1].

Based on this process we construct, for c ∈ (0, 1], the test statistic

Tn,c := sup
t∈[0,c]

Mn(t).

We will reject H0 when Tn,c is large (see Section 4). Below we will study the one-sample
problem for fixed and contiguous alternatives and show that Tn,c is distribution-free under
the null hypothesis and that the corresponding test is consistent. We also derive the
limiting distribution of the generalized P-P plot process for contiguous alternatives.

2.1 Null hypothesis and fixed alternatives

Consider the testing problem H0 : P = P0 against H1 : P 6= P0. To study this problem we
will use the generalized P-P plot, the P-P plot process and the test statistic Tn,c.

Let us first investigate the behavior of the generalized P-P plot process under the null
hypothesis. For fixed n ≥ 1, we have

Mn(t) = sup{√n(Pn(A)− P0(A)) : P0(A) = t, A ∈ A}
d
= sup{Γn(A) : V (A) = t, A ∈ A[0,1]},
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Figure 1: Generalized P-P plots mn for 100 observations. For the first 7, P0 is the standard
normal distribution and for the last one it is the Uniform(0, 1) distribution. The distribu-
tions from which the samples are drawn are indicated in the plots; ‘Spike’ means that the
distribution is based on g2 of Section 4.
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where Γn(A) := Γn(v) − Γn(u−), A = [u, v], is a uniform empirical process indexed by
the class A[0,1], that is the restriction of A to [0, 1], and where V (A) denotes the Lebesgue
measure of A. Hence the process Mn, n ≥ 1, is distribution-free under the null hypothesis.
To formulate the limiting results for our processes, let C be the class of all continuous
functions on [0, 1], endowed with the supremum norm metric and let C be the Borel σ-
algebra generated by the open sets from C. Similarly by (D,D) denote the class of all
right-continuous functions having left-hand limits at each point that are defined on [0, 1],
with the supremum norm metric and the σ-field generated by the open balls in D. It is
easy to show that the process Mn takes values in D. Convergence in distribution of our
processes will be meant to take place on (D,D). Using the convergence in distribution of
Γn and the Skorokhod construction, it is rather trivial to obtain the limiting distribution
of Mn.

Theorem 1 When P = P0, we have as n →∞, that

(1) Mn
d→ M0,

where
M0(t) = sup

V (A)=t
A∈A[0,1]

B(A) := sup
0≤u≤1−t

(B(u + t)−B(u))

and B is a Brownian bridge, a mean zero Gaussian process with continuous sample paths
on [0, 1], and covariance s ∧ t− st, for 0 ≤ s, t ≤ 1.

Hence by the continuous mapping theorem for any functional ψ : D → IR, that is (D,B)-
measurable and continuous on C with respect to the supremum metric, we have that

(2) ψ(Mn)
d→ ψ(M0), as n →∞

(see, e.g., Shorack and Wellner [1986]). From (2) one obtains the limiting distributions for
various statistics. Then, under H0, for the test statistic defined above, we have

(3) Tn,c
d−→ sup

0≤u<v≤1
v−u≤c

(B(v)−B(u)), as n →∞.

We now show that the test based on Tn,c is consistent. Write αn =
√

n(Pn−P ). Observe
that when P 6= P0, then there exists a t0 ∈ (0, c], such that for some A∗ ∈ A, P0(A

∗) = t0
and P (A∗) = t0 + ε, for some ε > 0. Then trivially for n large enough, almost surely,

Mn(t0) = sup
P0(A)=t0

A∈A

(
αn(A) +

√
n(P (A)− P0(A))

)

≥αn(A∗) +
√

nε,

and hence
Tn,c = sup

t∈[0,c]

Mn(t)
IP→∞, n →∞.
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For the intuitive understanding of Tn,c we note that, when c = 1, it can be compared
with the Kolmogorov-Smirnov (KS) and the Kuiper (K) statistic, since KS ≤ Tn,1 ≤ K,
and as a consequence, the same relation holds for the limiting distributions under H0 of
KS, Tn,1, and K, which are respectively

sup
0≤u≤1

|B(u)| ≤ sup
0≤u<v≤1

(B(v)−B(u)) ≤ sup
0≤u<v≤1

|B(v)−B(u)|.

2.2 Contiguous alternatives

Suppose that under the null hypothesis each Xi, 1 ≤ i ≤ n, has a known distribution P0,
with continuous df F0, whereas under the alternative each Xi, 1 ≤ i ≤ n, has distribution
P (n) defined by

(4)

(
dP (n)

dP0

(x)

)1/2

= 1 +
1

2
√

n
hn(x).

Here the functions hn, n ≥ 1, satisfy the following necessary and sufficient conditions for
contiguity of the distribution of (X1, . . . , Xn) under P (n) to the distribution under P0:

lim
n→∞

∫

IR

h2
n(x)dP0(x) < ∞,(i)

nIP (n)

{
dP (n)

dP0

(Xi) > Kn

}
→ 0, for any sequence Kn →∞(ii)

(see, e.g., Oosterhoff and van Zwet [1979]), where IP (n) denotes the probability measure on
(Ω,F), when P = P (n). Clearly P (n), n ≥ 1, is absolutely continuous with respect to P0.
Note that for hn ≡ 0, conditions (i) and (ii) remain true. Hence P (n) satisfying (4), (i) and
(ii), includes the null hypothesis. Therefore when dealing with the testing procedures, we
throughout assume that under the alternative hn 6≡ 0. Let us also introduce the notation

Hn(A) :=

∫

A

hn(x)dP0(x)

and
∥∥hn

∥∥
A

:=

[ ∫

A

h2
n(x)dP0(x)

] 1
2

, A ∈ A ∪ {IR}.

The functions Hn are often called shift functions. Also, write d0 for the pseudo-metric on
B, defined by

d0(B1, B2) = P0(B14B2), for B1, B2 ∈ B.

For convenient presentation Theorem 2, Corollary 2, and Theorem 4 are presented in
an approximation setting (with the D-valued random elements involved, defined on one
probability space), via the Skorokhod construction. So the random elements (like Mn) in
these results are only equal in distribution to the original ones, but we do not add the
usual tildes to the notation.
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Theorem 2 When (i) and (ii) hold, we have that

(5) Mn −M1n
d→ 0 as n →∞,

where M1n(t) = sup
{
BP0(A) + Hn(A) : P0(A) = t, A ∈ A}

and BP0 is a P0-Brownian
bridge: i.e., a bounded, mean zero Gaussian process, uniformly continuous on (A, d0), with
covariance P0(A1 ∩ A2)− P0(A1)P0(A2), A1, A2 ∈ A.

Note that, by choosing hn ≡ 0, Theorem 2 implies Theorem 1.
In the literature often a stronger condition than (i) and (ii) is considered: there exists

a function h such that

0 <

∫

IR

h2(x)dP0(x) < ∞ and

∫

IR

(hn(x)− h(x))2dP0(x) → 0 as n →∞.(iii)

It is easy to see that condition (iii) implies (i) and (ii) and hence the following corollary to
Theorem 2 holds true.

Corollary 1 When condition (iii) holds, we have that

(6) Mn
d→ M as n →∞,

where M(t) = sup
{
BP0(A) + H(A) : P0(A) = t, A ∈ A}

, with H(A) :=
∫

A
h(x)dP0(x).

From this we immediately obtain

(7) Tn,c
d→ sup

t∈[0,c]

M(t) as n →∞.

In the second corollary to Theorem 2 we deal with the case of random sample sizes,
which occurs often in practice, and includes the Poisson process situation. Let Nn, n ≥ 1,
be a sequence of random variables, taking values in IN . Suppose also that the Nn, n ≥ 1,
are independent of X1, X2, . . ., and that

Nn
IP→∞ as n →∞.

Let X1, . . . , XNn be our data.

Corollary 2 Suppose conditions (i) and (ii) hold, then

MNn −M1Nn

d→ 0 as n →∞,

where MNn(t) :=
√

Nn

(
sup{PNn(A) : P0(A) ≤ t, A ∈ A} − t

)
, t ∈ [0, 1], and M1Nn(t) :=

sup
{
BP0(A) + HNn(A) : P0(A) = t, A ∈ A}

, t ∈ [0, 1].
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In the following remarks we discuss and compare our generalized P-P plots and corre-
sponding tests.

Remark 1 Scan statistics. Generally, the scan statistic (see Glaz et al. [2001]) is defined
in terms of scanning with a window of one fixed length. Since the scan statistic searches
for the maximum mass it can be used for testing for uniformity (see, e.g., Dijkstra et al.
[1984]). The test statistic Tn,c is an analogue of the scan statistic, though the length of
its scanning window varies and this makes it possible to detect clusters of small, unknown
size.

Remark 2 Chimeric alternatives. In Khmaladze [1998], goodness-of-fit problems are stud-
ied for so-called chimeric, contiguous alternatives. The nature of these alternatives is that
they can not be detected unless the window of the test statistic is in agreement with
their range and convergence rate. In principle, our procedure can be adapted to deal with
chimeric alternatives, but our test statistics as they stand are not suitable for dealing with
these alternatives, since they essentially deal with fixed-length intervals of various lengths,
but not depending on n.

Remark 3 On IRk, k ≥ 2, we could define the generalized P-P plot and the generalized
P-P plot process as above, based on an indexing class G. When G is P0-Donsker we will
have that Theorem 1 remains true. Hence, under H0,

Mn
d→ sup

P0(G)=t
G∈G

BP0(G).

Clearly Mn is asymptotically distribution-free when G is the class of level sets of the density
corresponding to P0. However this class is not large enough in the sense that the tests do not
have good power properties: certain contiguous alternatives satisfying condition (iii) will
lead to the same limiting distribution for Mn as the one under H0. Taking a substantially
larger class G can improve the power of the tests and lead to tests which have similar power
properties as in the one-dimensional case, but then the (asymptotic) distribution-freeness
under H0 will be lost.

3 Two-sample problem

In this section we consider the two-sample problem, i.e., we define a generalized P-P
plot and corresponding testing procedure for comparing two independent random samples.
From a statistical point of view this section is maybe more important than the previous one,
since the two-sample problem occurs more often in practice, than testing goodness-of-fit
with a simple null hypothesis.

Let X11, X12, . . ., and X21, X22, . . ., be two independent sequences of i.i.d. one-dimensional
random variables, defined on a probability space (Ω,F , IP ), from unknown probability mea-
sures P1 and P2, respectively. Let B,A be as in the previous section and let Pjnj

denote
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the empirical distribution of the samples Xj1, . . . , Xjnj
, j = 1, 2. Define the generalized

P-P plot as follows

mn1n2(t) := sup{P1n1(A) : P2n2(A) ≤ t, A ∈ A}, t ∈ [0, 1].

(Observe that when A would be {(−∞, y] : y ∈ IR}, here as well we would get the classical
P-P plot.) Then for each t ∈ [0, 1] and n1, n2 ≥ 1, with n = n1 + n2, define the generalized
P-P plot process as

(8) Mn1n2(t) :=

√
n1n2

n

(
mn1n2(t)− t

)
.

Note that the generalized P-P plot and consequently the generalized P-P plot process are
not symmetrical with respect to interchanging the samples. This can be exploited when
deciding which distribution is P1 and which P2. We now study the two-sample problem
using the generalized P-P plot process Mn1n2 .

3.1 Null hypothesis and fixed alternatives

Consider H0 : P1 = P2 against H1 : P1 6= P2, where P1, P2 have continuous df’s. It is easy
to show that for fixed n1, n2 ≥ 1, Mn1n2 is distribution-free under H0. The following result
provides the limiting distribution of the generalized P-P plot process. Indeed, we have the
same limit as in the one-sample case. Let n = n1 + n2, such that n1 = n1(n) and n1 →∞
if n →∞, and n2 = n2(n) and n2 →∞ if n →∞.

Theorem 3 When P1 = P2 we have as n →∞, that

(9) Mn1n2

d→ M0 .

Define the test statistics Tn1n2,c := supt∈[0,c] Mn1n2(t). Then trivially, under H0,

Tn1n2,c
d→ sup

A∈A[0,1]

V (A)≤c

B(A).

It can also be shown, similarly as for the one-sample case, that the test based on Tn1n2,c is
consistent.

3.2 Contiguous alternatives

Suppose that P
(n)
1 and P

(n)
2 are the distributions of X1i, 1 ≤ i ≤ n1, and X2i, 1 ≤ i ≤ n2,

respectively, and that under the null hypothesis P
(n)
1 = P

(n)
2 = P0, where P0 is a given

probability measure, with continuous df F0. Under the alternative P
(n)
1 6= P

(n)
2 , we have
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(10)

(
dP

(n)
1

dP0

(x)

) 1
2

= 1 +
1

2
√

n1

h1n(x),

(11)

(
dP

(n)
2

dP0

(x)

) 1
2

= 1 +
1

2
√

n2

h2n(x).

We assume, similarly as for the one-sample problem, the following necessary and sufficient
conditions for contiguity of the distribution of the samples under P

(n)
1 and P

(n)
2 to the

distribution under P0:

lim
n→∞

∫

IR

h2
jn(x)dP0(x) < ∞, for j = 1, 2,(iv)

njIP
(n)

{
dP

(n)
j

dP0

(Xji) > Kn

}
→ 0, for j = 1, 2 and any sequence Kn →∞,(v)

where IP (n) denotes the probability measure on (Ω,F), when Xji is distributed according

to P
(n)
j , j = 1, 2. For each n ≥ 1, define the sequence of shift functions

(12) Hn1n2(A) :=

√
n2

n

∫

A

h1n(x)dP0(x)−
√

n1

n

∫

A

h2n(x)dP0(x), A ∈ A.

Our interest lies in obtaining the limiting distribution of Mn1n2 under these alternatives.
With substantially more effort we will establish the analogue of Theorem 2. Again the
result is presented in an approximation setting.

Theorem 4 Assume that the probability measures P
(n)
1 and P

(n)
2 defined by (10) and (11)

satisfy conditions (iv) and (v), then

(13) Mn1n2 −M12n
d→ 0 as n →∞,

where for each n1, n2 ≥ 1, M12n(t) := sup{B(n)
P0

(A) + Hn1n2(A) : P0(A) = t, A ∈ A} and

the P0- Brownian bridge B
(n)
P0

(A) :=
√

n2

n
B1P0(A) −√

n1

n
B2P0(A), A ∈ A, with B1P0 and

B2P0 two independent P0-Brownian bridges.

Clearly Theorem 4 implies Theorem 3. It also easily yields the following result.

Corollary 3 Assume for some function H : A → IR,

(14) sup
A∈A

|Hn1n2(A)−H(A)| → 0 as n →∞,

then (with M as in Corollary 1)

(15) Mn1n2

d→ M as n →∞.
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Note that condition (14) is satisfied if n1/n → p ∈ [0, 1], and for functions h1 and h2

0 <

∫

IR

h2
j(x)dP0(x) < ∞ and

∫

IR

(hjn(x)− hj(x))2dP0(x) → 0 as n →∞ (j = 1, 2).

4 Simulation study

In this section we present simulation results in order to study the small sample behaviour
of our tests statistics. First we give a brief description of an algorithm for computing the
test statistic Tn,c, of Section 3. Rewrite mn as

mn(t) = sup
v−u=t

0≤u<v≤1

P n([u, v]),

where P n([u, v]) is the empirical measure of the interval [u, v], based on the transformed
sample F0(X1), . . . , F0(Xn). It is easy to see that mn is a right-continuous step-function
taking values 1/n, 2/n, . . . , 1. Since each observation can be covered by a closed interval
of length 0,

mn(t) = 1/n for 0 ≤ t < min
1≤i≤n−1

{Y(i+1) − Y(i)},

where the Y(i) are the order statistics of Yi = F0(Xi), 1 ≤ i ≤ n. Similarly, for 0 ≤ k ≤ n−1,

mn(t) =
k + 1

n
, Wk ≤ t < Wk+1,

with W0 = 0 and where Wk = min
1≤i≤n−k

{Y(i+k)−Y(i)}, 1 ≤ k ≤ n− 1, are the jump points of

mn. Now computing Tn,c is trivial. Each simulation below consists of 10,000 replications.
In Table 1 the simulated critical values, corresponding to α = 0.05, for the test statistic

Tn,c, for c = 0.05 and c = 1, respectively, and for the Kolmogorov-Smirnov and Kuiper
statistics are given. We indeed see, as observed in Section 2.1, that the critical values of
Tn,1 are between those of KS and K.

n 10 20 50 100 300 500 ∞
Tn,0.05 1.13 0.98 0.95 0.91 0.87 0.86 0.82
Tn,1 1.58 1.60 1.59 1.60 1.62 1.63 1.64
KS 1.29 1.31 1.34 1.34 1.35 1.35 1.36
K 1.62 1.66 1.69 1.71 1.72 1.73 1.75

Table 1: Critical values for Tn,0.05, Tn,1, KS and K, for α = 0.05.

In Table 2 simulated powers of Tn,c are presented for the following testing problems:

(a) alternative density f(x) = 1
2
√

x
, x ∈ [0, 1], against null distribution Uniform(0, 1);
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(b) alternative Normal(1,1) against null distribution Normal(0,1);

(c) alternative Beta(2,1) against null distribution Normal(2
3
, (3
√

2)−2).

Note that in case (c) the parameters of the Normal distribution have the same mean
and variance as the Beta(2,1)-distribution. As mentioned before the test statistics Tn,c

resemble the scan statistic somewhat and hence can be used for testing uniformity against
spike alternatives (case (a)). Indeed, Table 2 shows that the tests have high power for
case (a). In addition, the shift of case (b) and the - difficult - shape change of case (c) are
detected (very) well.

case (a) (b) (c)
n 10 20 50 100 10 20 50 100 10 20 50 100

Tn,0.05 .20 .39 .82 .99 .36 .68 .97 1.00 .10 .16 .37 .68
Tn,1 .19 .40 .87 1.00 .54 .90 1.00 1.00 .09 .15 .42 .76

Table 2: Power of Tn,0.05 and Tn,1 for fixed alternatives.

Now we consider contiguous alternatives. Consider three examples of the function

g = hn + h2
n

4
√

n
(see (4)):

(d) g1(x) = −I[0, 1
2
)(x) + 9 I[ 1

2
, 3
5
](x)− I( 3

5
,1](x), for x ∈ [0, 1];

(e) g2(x) = −I[0, 1
2
)(x) + 99 I[ 1

2
, 51
100

](x)− I( 51
100

,1](x), for x ∈ [0, 1];

(f) g3(x) = −2 I[0, 1
2
](x) + 2 I( 1

2
,1](x), for x ∈ [0, 1].

In Table 3 simulated powers when testing uniformity against these contiguous alternatives
are presented for Tn,c, KS and K. They show that often our test statistics are outperforming
KS and K. In case of an extreme spike Tn,0.05 is better than Tn,1 and K and KS perform
much worse. For a more moderate spike Tn,0.05 and Tn,1 give almost the same results,
whereas KS and K again perform worse. For a standard-type contiguous alternative Tn,1,
KS and K behave similarly, although KS is slightly better. Tn,0.05 which only looks at small
intervals, does worse here.

In summary our test statistics behave very well to excellent. In particular, when some
indication of a spike-type alternative is available, our test procedures clearly outperform
competing procedures.
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case (d) (e) (f)
n 10 20 50 100 10 20 50 100 10 20 50 100

Tn,0.05 .31 .32 .35 .36 .54 .67 .75 .82 .13 .13 .12 .12
Tn,1 .31 .32 .37 .38 .35 .38 .46 .47 .37 .36 .39 .38
KS .10 .13 .14 .15 .08 .15 .17 .18 .47 .45 .44 .43
K .28 .28 .29 .28 .32 .34 .36 .35 .33 .34 .33 .33

Table 3: Power of Tn,0.05, Tn,1, KS and K for contiguous alternatives.

5 Proofs

Proof of Theorem 2 Since Γn
d→ B, a Skorokhod construction yields the existence of a

probability space (Ω̃, F̃ , ĨP ), carrying Γ̃1, Γ̃2, . . . and B̃, with

L(B̃) = L(B), L(Γ̃n) = L(Γn), for n ≥ 1,

and

sup
t∈[0,1]

|Γ̃n(t)−B̃(t)| → 0 a.s., as n →∞.
(16)

Let F (n) denote the distribution function corresponding to P (n). Define processes α̃n,
n ≥ 1, B̃P (n) , n ≥ 1, and B̃P0 , all indexed by the class A, by

α̃n(A) := Γ̃n(F (n)(y))− Γ̃n(F (n)(x−)),

B̃P (n)(A) := B̃(F (n)(y))− B̃(F (n)(x)),

B̃P0(A) := B̃(F0(y))− B̃(F0(x)), for A = [x, y] ∈ A.

We have that α̃n
d
= αn and that B̃P0 and B̃P (n) are P0- and P (n)-Brownian bridges, indexed

by A. Note that, since P (n) is absolutely continuous with respect to P0, the process B̃P (n)

will be uniformly continuous with respect to d0 on A. Then (16) implies that

(17) sup
A∈A

|α̃n(A)− B̃P (n)(A)| → 0 a.s., n →∞.

Henceforth, for convenience, we will drop the tildes from the notation.
We have, for A ∈ A,

P (n)(A) = P0(A) +
1√
n

∫

A

hn(x)dP0(x) +
1

4n

∫

A

h2
n(x)dP0(x)

= P0(A) +
1√
n

Hn(A) +
1

4n

∥∥hn

∥∥2

A
.

13



By the continuity of F0

Mn(t) =
√

n sup{Pn(A)− t : P0(A) = t, A ∈ A}
= sup

{√
n
(
Pn(A)− P (n)(A)

)
+
√

n
(
P (n)(A)− P0(A)

)
: P0(A) = t, A ∈ A

}

= sup
{

αn(A) + Hn(A) +
1

4
√

n

∥∥hn

∥∥2

A
: P0(A) = t, A ∈ A

}
,

which yields

sup
t∈[0,1]

∣∣∣Mn(t)− sup
P0(A)=t

A∈A

(
BP0(A) + Hn(A)

)∣∣∣

= sup
t∈[0,1]

∣∣∣ sup
P0(A)=t

A∈A

(
αn(A) + Hn(A) +

1

4
√

n
‖hn‖2

A

)− sup
P0(A)=t

A∈A

(
BP0(A) + Hn(A)

)∣∣∣

≤ sup
t∈[0,1]

[
sup

P0(A)=t
A∈A

∣∣αn(A)−BP (n)(A)
∣∣ + sup

P0(A)=t
A∈A

∣∣BP (n)(A)−BP0(A)
∣∣ + sup

P0(A)=t
A∈A

1

4
√

n

∥∥hn

∥∥2

A

]

(18) ≤ sup
A∈A

∣∣αn(A)−BP (n)(A)
∣∣ + sup

A∈A

∣∣BP (n)(A)−BP0(A)
∣∣ +

1

4
√

n

∥∥hn

∥∥2

IR
.

To complete our proof we will show that each term in (18) converges to zero, almost
surely. By (17) and condition (i) it remains to show that

(19) sup
A∈A

|BP (n)(A)−BP0(A)| → 0 a.s., n →∞.

By the uniform continuity of B this follows from

sup
A∈A

|P (n)(A)− P0(A)| → 0 n →∞.

However, this is equivalent to

(20) sup
A∈A

∣∣∣ 1√
n

Hn(A) +
1

4n

∥∥hn

∥∥2

A

∣∣∣ → 0 n →∞.

Observe that

sup
A∈A

∣∣∣∣
1√
n

∫

A

hn(x)dP0(x) +
1

4n

∫

A

h2
n(x)dP0(x)

∣∣∣∣

≤ 1√
n

∫

IR

|hn(x)|dP0(x) +
1

4n

∫

IR

h2
n(x)dP0(x)

≤ 1√
n

√∫

IR

h2
n(x)dP0(x) +

1

4n

∫

IR

h2
n(x)dP0(x),

14



by the Cauchy-Schwarz inequality. Now (20), and hence (19), follows from (i). 2

Proof of Theorem 4 Consider two independent samples Uj1, . . . , Ujnj
, nj ≥ 1, for j = 1, 2,

of i.i.d. uniform random variables defined on some probability space (Ω′,F ′, IP ′) with values
in [0, 1]. Let Γjnj

be the uniform empirical process based on Uj1, . . . , Ujnj
, nj ≥ 1, for

j = 1, 2. The process Γjnj
converges in distribution to a Brownian bridge Bj on (D,D) and

B1 and B2 are independent. Then by a Skorokhod construction there exists a probability
space (Ω̃, F̃ , ĨP ) carrying, for j = 1, 2, processes Γ̃j1, Γ̃j2, . . . on (D,D), with {Γ̃1n}n∈IN and

{Γ̃2n}n∈IN independent, and independent processes B̃j on (C, C) such that

B̃j
d
= Bj, Γ̃jnj

d
= Γjnj

, nj ≥ 1,

and

(21) sup
t∈[0,1]

|Γ̃jnj
(t)− B̃j(t)| → 0 a.s., n →∞.

For j = 1, 2, define the processes α̃jnj
, nj ≥ 1, B̃jPj

, nj ≥ 1, and B̃jP0 indexed with the
class A by

α̃jnj
(A) := Γ̃jnj

(F
(n)
j (y))− Γ̃jnj

(F
(n)
j (x−)),

B̃jPj
(A) := B̃j(F

(n)
j (y))− B̃j(F

(n)
j (x)),

B̃jP0(A) := B̃j(F0(y))− B̃j(F0(x)), A = [x, y] ∈ A,

where F
(n)
j is the distribution function corresponding to P

(n)
j , for j = 1, 2. Note that

(22) α̃jnj
(A) =

√
nj

(
P̃jnj

(A)− P
(n)
j (A)

)
, for j = 1, 2,

where P̃jnj
is the empirical measure of the random variables (F

(n)
j )−1(Ũji), i = 1, . . . , nj.

Then (21) yields

(23) sup
A∈A

∣∣α̃jnj
(A)− B̃jPj

(A)
∣∣ → 0 a.s., n →∞, j = 1, 2.

The processes B̃jPj
and B̃jP0 are P

(n)
j - and P0-Brownian bridges, respectively, and B̃1P1 and

B̃2P2 are independent as are B̃1P0 and B̃2P0 . Observe that for all n1, n2 ≥ 1, the process

(24) B̃
(n)
P0

(A) :=

√
n2

n
B̃1P0(A)−

√
n1

n
B̃2P0(A), A ∈ A,

is a P0-Brownian bridge. From now on we will drop the tildes, for notational convenience.
By (10) and (11) we obtain that

√
n1n2

n

(
P

(n)
1 (A)− P

(n)
2 (A)

)

= Hn1n2(A) +

√
n2

16n1n

∥∥h1n

∥∥2

A
−

√
n1

16n2n

∥∥h2n

∥∥2

A
.

(25)
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Rewrite Mn1n2 as follows,

Mn1n2(t)
a.s.
=

√
n1n2

n
sup

{(
P1n1(A)− t

)
: P2n2(A) =

bn2tc
n2

, A ∈ A
}

.

Using (25) and (22) we obtain that

Mn1n2(t)
a.s.
= sup

P2n2(A)=t
A∈A

[√
n2

n
α1n1(A)−

√
n1

n
α2n2(A) + Hn1n2(A)

+

√
n2

16n1n

∥∥h1n

∥∥2

A
−

√
n1

16n2n

∥∥h2n

∥∥2

A
+

√
n1n2

n

(
t− t

)]
,

(26)

with t := bn2tc
n2

. Set

W
(n1n2)
t (A) :=

√
n2

16n1n

∥∥h1n

∥∥2

A
−

√
n1

16n2n

∥∥h2n

∥∥2

A
+

√
n1n2

n

(
t− t

)
.

Then (26) implies that, almost surely,

sup
t∈[0,1]

∣∣∣Mn1n2(t)− sup
P0(A)=t

A∈A

(
B

(n)
P0

(A) + Hn1n2(A)
)∣∣∣

= sup
t∈[0,1]

∣∣∣∣ sup
P2n2(A)=t

A∈A

[√
n2

n
α1n1(A)−

√
n1

n
α2n2(A) + Hn1n2(A) + W

(n1n2)
t (A)

]

− sup
P0(A)=t

A∈A

(
B

(n)
P0

(A) + Hn1n2(A)
)∣∣∣∣.

(27)

Write A0t := {A ∈ A : P0(A) = t}, A(n)
2t := {A ∈ A : P2n2(A) = t} and consider first

sup
t∈[0,1]

{
sup

A∈A(n)
2t

[√
n2

n
α1n1(A)−

√
n1

n
α2n2(A) + Hn1n2(A) + W

(n1n2)
t (A)

]

− sup
A∈A0t

(
B

(n)
P0

(A) + Hn1n2(A)
)}

,

which, by (24), is equal to

sup
t∈[0,1]

sup
A2∈A(n)

2t

inf
A0∈A0t

{√
n2

n

(
α1n1(A2)−B1P1(A2)

)

+

√
n1

n

(
B2P2(A2)− α2n2(A2)

)
+

√
n2

n

(
B1P1(A2)−B1P0(A2)

)

+

√
n1

n

(
B2P0(A2)−B2P2(A2)

)
+

(
B

(n)
P0

(A2) + Hn1n2(A2)
)

+ W
(n1n2)
t (A2)−

(
B

(n)
P0

(A0) + Hn1n2(A0)
)}

.

(28)
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Observe that this is bounded from above by

sup
A∈A

√
n2

n

∣∣∣α1n1(A)−B1P1(A)
∣∣∣ + sup

A∈A

√
n1

n

∣∣∣B2P2(A)− α2n2(A)
∣∣∣

+ sup
A∈A

√
n2

n

∣∣∣B1P1(A)−B1P0(A)
∣∣∣ + sup

A∈A

√
n1

n

∣∣∣B2P2(A)−B2P0(A)
∣∣∣ + sup

A∈A

∣∣∣W (n1n2)
t (A)

∣∣∣

+ sup
t∈[0,1]

∣∣∣∣∣ sup
A∈A(n)

2t

(
B

(n)
P0

(A) + Hn1n2(A)
)
− sup

A∈A0t

(
B

(n)
P0

(A) + Hn1n2(A)
)∣∣∣∣∣.

(29)

Similarly it can be shown that the ‘negative’ part of the absolute value in (27) is also
bounded by the expression in (29). Using similar arguments as for (19) and the uniform
continuity of BjPj

and BjP0 , respectively, for j = 1, 2, we obtain

(30) sup
A∈A

|BjPj
(A)−BjP0(A)| → 0 a.s., n →∞, for j = 1, 2.

Hence by (23) and condition (iv) it remains to show that almost surely, as n →∞,

sup
t∈[0,1]

∣∣∣∣∣ sup
A∈A(n)

2t

(
B

(n)
P0

(A) + Hn1n2(A)
)
− sup

A∈A0t

(
B

(n)
P0

(A) + Hn1n2(A)
)∣∣∣∣∣ → 0.(31)

On the other hand, since {B(n)
P0

+ Hn1n2}n∈IN is d0-uniformly equicontinuous almost surely
(see Lemma 1 below), using a similar argument as for (28) we have to show that

(32) sup
t∈[0,1]

sup
A2∈A(n)

2t

inf
A0∈A0t

d0(A2, A0) → 0 a.s., n →∞

and

(33) sup
t∈[0,1]

sup
A0∈A0t

inf
A2∈A(n)

2t

d0(A2, A0) → 0 a.s., n →∞.

We can also state (32) as follows: for every ε > 0 we can choose Nε ≥ 1 such that for

n ≥ Nε and for all t ∈ [0, 1], A2 ∈ A(n)
2t there exists an A0 = A0(A2, ε, t) ∈ A0t and

d0(A2, A0) < ε a.s. Take an arbitrary ε > 0. Observe that there exists N
(1)
ε ≥ 1 such

that for n ≥ N
(1)
ε and for all t ∈ [0, 1] and all A2 ∈ A(n)

2t , |P (n)
2 (A2) − t| < ε

2
a.s. Next

choose N
(2)
ε ≥ 1 such that for n ≥ N

(2)
ε and for all A2 ∈ A(n)

2t , |P0(A2) − P
(n)
2 (A2)| < ε

2
.

Let Nε := max(N
(1)
ε , N

(2)
ε ). Then trivially for n ≥ Nε and for all A2 ∈ A(n)

2t , we have
|P0(A2)− t| < ε a.s. So since F0 is continuous there exists a set A0, with P0(A0) = t and
A0 ⊂ A2 or A0 ⊃ A2 and hence d0(A2, A0) < ε a.s. Note that (33) can be treated similarly.
Hence (31) holds true and thus the proof of the theorem is completed. 2

A collection of functions F from some metric space (S, e) into another metric space
(X, d) is d-uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that
e(x, y) < δ implies d(f(x), f(y)) < ε, for all x and y in S and all f in F .
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Lemma 1 The collection of functions {B(n)
P0

+ Hn1n2}n∈IN is d0-uniformly equicontinuous,
almost surely.

Proof We prove the statement using a well-known fact on the modulus of continuity of a
standard Brownian bridge B (see, e.g., Shorack and Wellner [1986]):

lim
a↓0

sup|t−s|≤a |B(t)−B(s)|√
2a log(1/a)

= 1 a.s.

Then by a simple transformation we have for a P0-Brownian bridge that

lim
a↓0

sup
d0(A1,A2)≤a

A1,A2∈A

|BP0(A1)−BP0(A2)| = 0 a.s.

Using (24), we obtain that for any ε > 0 there exists a small a > 0 such that for all n ≥ 1

sup
d0(A1,A2)≤a

A1,A2∈A

|B(n)
P0

(A1)−B
(n)
P0

(A2)| < ε a.s.

and this implies that {B(n)
P0

: n ∈ IN} is d0-uniformly equicontinuous, almost surely.
Let A1, A2 ∈ A. We have

∣∣∣Hn1n2(A1)−Hn1n2(A2)
∣∣∣

≤
√

n2

n

∫

IR

IA14A2(x)
∣∣h1n(x)

∣∣dP0(x) +

√
n1

n

∫

IR

IA14A2(x)
∣∣h2n(x)

∣∣dP0(x).

By the Cauchy-Schwarz inequality, for j = 1, 2,
∫

IR

IA14A2(x)
∣∣hjn(x)

∣∣dP0(x) ≤ ‖hjn‖IR

√
d0(A1, A2).

However, by condition (iv) the sequence ‖hjn‖IR, n ≥ 1, is bounded, hence for any ε > 0
there exists a δ > 0 such that for all n1, n2 ∈ IN and any A1, A2 ∈ A, with d0(A1, A2) < δ,
we will have that

|Hn1n2(A1)−Hn1n2(A2)| < ε.

Thus Hn1n2 is d0-uniformly equicontinuous as well. 2
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