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Abstract

In this paper an algorithm is proposed to find an integral solution of (nonlinear) comple-

mentarity problems. The algorithm starts with a nonnegative integral point and generates

a unique sequence of adjacent integral simplices of varying dimension. Conditions are

stated under which the algorithm terminates with a simplex one of whose vertices is an

integral solution of the complementarity problem under consideration.
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1 Introduction

The complementarity problem is to find a point x∗ ∈ IRn such that

x∗ ≥ 0, f(x∗) ≥ 0, and x∗ · f(x∗) = 0,

where IRn is the n-dimensional Euclidean space and f is a given mapping from IRn into

itself. Specifically, if f is affine, the problem is called the linear complementarity problem.

In general, for an arbitrary function f , the problem is called the nonlinear complementarity

problem. If the solution of the complementarity problem is required to be integral or if

the function f is defined on the integer lattice Zn of IRn instead on IRn, then the problem

is called the discrete complementarity problem, denoted by DCP(f). There is by now a

voluminous literature on the complementarity problem, see Lemke (1965), Cottle (1966),

Eaves (1971), Karamardian (1972), Moré (1974a, b), Kojima (1975), van der Laan and

Talman (1987) among many others. For comprehensive surveys on the subject, see for

example Kojima et al. (1991), Cottle et al. (1992), or Facchinei and Pang (2003).

As the literature indicates, much work has been done to obtain results for the existence

and computation of solutions to the linear and nonlinear complementarity problems, but

far less is known for the discrete complementarity problem, primarily because few methods

currently exist to tackle problems of this nature. In fact, it has been only recently that

researchers have begun to ask under what condition a complementarity problem has an

integral solution. Chandrasekaran et al. (1998) and Cunningham and Geelen (1998) have

independently studied discrete linear complementarity problems and provided sufficient

conditions for the existence of an integral solution. Very recently, Yang (2004a, b) has

investigated discrete nonlinear complementarity problems and established several existence

theorems via a nonconstructive and topological method.

The major objective of this paper is to propose a finite and systematic algorithm for

finding an integral solution of the nonlinear complementarity problem. We will adopt the

2n-ray simplicial algorithm introduced by van der Laan and Talman (1981) to compute an

integral solution of the nonlinear complementarity problem. We show that the algorithm

will find an integral solution of the problem within a finite number of steps under two

different conditions. The two conditions are similar to those given in Yang (2004a, b)
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and might be viewed as discrete versions of conditions given by Moré (1974a, b) and van

der Laan and Talman (1987) for the continuous case. Thus, by this algorithmic approach

we also give a constructive and combinatorial proof for two existence theorems given in

Yang (2004a, b). The algorithm works as follows. First, we describe a triangulation of

IRn

+ so that the set of vertices of the triangulation is equal to Zn+ and the mesh size of

every simplex is equal to one according to the maximum norm. Then, starting with some

given point in Zn+, the algorithm generates a finite sequence of adjacent simplices of varying

dimension and terminates under any of the two conditions with a simplex of which one of

the vertices is an integral solution of the complementarity problem. We wish to emphasize

that our algorithm always finds an exact solution within a finite number of steps. This fact

is in contrast to the simplicial algorithms for the computation of fixed (or zero) points of

arbitrary continuous or u.h.c. mappings, which typically find an approximate solution, see

for instance Todd (1976), Allgower and Georg (1990), or Yang (1999) for comprehensive

treatments on simplicial fixed point algorithms developed at various stages.

In Section 2 we present basic concepts and two existence theorems for the discrete

complementarity problem. In Section 3 we propose a finite algorithm to find a solution,

yielding a combinatorial and constructive proof for the two existence theorems.

2 Existence results

We first give some general notation. Let n be any positive integer and N = {1, 2, · · · , n}.

The notions IRn and Zn denote the n-dimensional Euclidean space and the set of all integral

points in IRn, respectively. Given x, y ∈ IRn, x · y stands for the inner product of x and y.

For i ∈ N , e(i) denotes the ith unit vector of IRn for i ∈ N and e(−i) = −e(i). Given a

set D ⊂ IRn, co(D) and bd(D) denote the convex hull of D and the (relative) boundary of

D, respectively.

Given an integer t ≥ 0, if x1, · · ·, xt+1 in IRn are affinely independent, the convex hull

of these points will be called a simplex or a t-simplex. The points x1, · · ·, xt+1 are called

the vertices of the simplex. The convex hull of any subset of the vertices of a simplex

is called a face of the simplex. A face of a simplex is called a facet if the number of its
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vertices is exactly one less than the number of vertices of the simplex. A simplex is said

to be integral if all its vertices are integral. Given an m-dimensional convex set D in IRn,

a collection T of m-dimensional simplices is a triangulation or simplicial subdivision of the

set D, if (i) D is the union of all simplices in T , (ii) the intersection of any two simplices

of T is either the empty set or a common face of both, and (iii) any neighborhood of a

point in D only meets a finite number of simplices of T . A specific triangulation on IRn,

the so-called K ′-triangulation, was proposed by Todd (1978) for arbitrary mesh size and

arbitrary center point in IRn.

In this paper we apply the K ′-triangulation restricted to IRn

+, with mesh size equal to

1 and center point equal to some specific point v in Zn+. This triangulation, denoted by

K ′(v), is the collection of n-dimensional simplices σ(x1, s, π) with vertices x1, x2, · · ·, xn+1

in IRn

+ such that (i) π = (π(1), · · · , π(n)) is a permutation of the elements in (1, · · · , n),

(ii) s ∈ {−1, 1}n with si = −1 if x1
i
< vi and si = 1 if x1

i
> vi, and (iii) x1 ∈ Zn+ and

xi+1 = xi + sπ(i)e(π(i)) for i = 1, · · ·, n. Notice that all vertices of any simplex of the

K ′(v)-triangulation are integral points.

Two integral points x and y in Zn are said to be cell connected if maxh∈N |xh− yh| ≤ 1,

i.e., their distance is less than or equal to one according to the maximum norm. Observe

that for given v ∈ Zn+ any two vertices of a simplex of the K ′(v)-triangulation are cell

connected. We now have the following definition.

Definition 2.1 A function f : Zn+ → IRn is direction preserving if for any two cell

connected points x and y in Zn+ it holds that fh(x)fh(y) ≥ 0 for all h ∈ N .

The class of direction preserving functions is due to Iimura (2003), see also Iimura,

Murota and Tamura (2004) for a correction of Iimura’s (2003) discrete fixed point theo-

rem. Observe that the property of direction preserving prevents coordinatewisely that the

function jumps from a positive value to a negative value within one cell. In this sense

it replaces continuity for functions on IRn. We state two existence theorems for direction

preserving functions. The first theorem due to Yang (2004a) can be seen as a discrete

analogue of the existence theorem given by Moré (1974a, b) for the continuous case. Yang

(2004a) proves his result via a nonconstructive and topological method. It is known that

Moré’s condition is quite general in the sense that many other conditions are special cases
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of it. In fact, the condition in the theorem below for the discrete case is slightly more

general.

Theorem 2.2 Let f : Zn+ → IRn be a direction preserving mapping. If there exist a

vector w ∈ Zn+ and for every h ∈ N an integer uh > wh such that for every x ∈ Zn+ with

xh = uh for some h ∈ N it holds that maxi∈N (xi − wi)fi(x) > 0, then the DCP(f) has a

solution.

Since the theorem holds for any w, it is also true when w is the origin. This yields the

following corollary.

Corollary 2.3 Let f : Zn+ → IRn be a direction preserving mapping. If there exists a

strictly positive integral vector u such that for every every x ∈ Zn+ with xh = uh for some

h ∈ N it holds that fi(x) > 0 for some i ∈ N satisfying xi > 0, then the DCP(f) has a

solution.

It is interesting to note that this corollary implies the following result for the existence of

a unique solution of DCP(f); see also Yang (2004a).

Corollary 2.4 Let f : Zn+ → IRn be a direction preserving function. If there is some

c > 0 such that for all x, y ∈ Zn+

max
i∈N

(xi − yi)[fi(x)− fi(y)] ≥ c||x− y||2,

then the DCP(f) has a unique solution, where || · || is any norm.

The second main theorem can be seen as a generalization of a discrete version of an

existence result given by van der Laan and Talman (1987) for the continuous case and

contains an existence result given in Yang (2004a, b) as a special case.

Theorem 2.5 Let f : Zn+ → IRn be a direction preserving function. Suppose there

exists a strictly positive integral vector u satisfying that for every x ∈ Zn, xi = ui implies

fi(x) > minh∈N fh(x) if minh∈N fh(x) < 0 and fi(x) ≥ 0 otherwise. Then the DCP(f)

has a solution.
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3 The algorithm

In this section we adapt the 2n-ray simplicial algorithm of van der Laan and Talman (1981)

to find a solution within a finite number steps of the DCP(f) under each one of the two

conditions stated in the Theorems 2.2 and 2.5. In this way we also provide constructive

and combinatorial proofs for the two theorems.

The 2n-ray algorithm is a variable dimension simplicial algorithm, originally introduced

to approximate a fixed or zero point of a continuous function from IRn to IRn. To adapt

the algorithm, we introduce an integer labeling rule which assigns to every nonnegative

integral point an integer label out of the set −N ∪N ∪ {0}.

Definition 3.1 The integer labeling rule l : Zn+ → −N ∪N ∪{0} is specified as follows.

For any x ∈ Zn+, let

µ(x) = max{−min
h∈N

fh(x), max
{h|xh>0}

fh(x)}.

Then l(x) = 0 if µ(x) ≤ 0. If µ(x) > 0, then l(x) = min{j | fj(x) = −µ(x)} when such an

index j exists. Otherwise l(x) = −min{j | fj(x) = µ(x) and xj > 0}.

Observe that µ(x) < 0 implies that x = 0 and f(x) > 0, i.e., µ(x) ≥ 0 unless x is the origin

and all components of f at the origin are positive. In this case the origin is a solution to

the DCP(f). If f(0) contains at least one nonpositive component, then µ(0) ≥ 0. Also at

any point x �= 0, µ(x) ≥ 0. A point x solves the DCP(f) if and only if l(x) = 0. At any

point x with µ(x) > 0 we have that l(x) �= 0 is well defined with l(x) �= −j when xj = 0.

The algorithm begins with a given point v in Zn+. In the case of Theorem 2.2, v is

chosen to be w, whereas in the case of Theorem 2.5, v can be any vector in Zn+ satisfying

vh < uh for every h ∈ N . In case l(v) = 0, then v solves DCP(f) and the algorithm

terminates immediately with a solution. In the following we suppose that v does not solve

the problem and therefore l(v) �= 0. Now, let I be the family of nonempty subsets S of

−N ∪N such that S ∩ −S = ∅ and vj = 0 implies −j /∈ S. For T ∈ I, define

A(T ) = {x ∈ IRn
+ | xi ≥ vi for i ∈ T ; xi ≤ vi for − i ∈ T ;

and xi = vi otherwise}.
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For T ∈ I, the set A(T ) is a t-dimensional set, where t = |T |. The K ′(v)-triangulation

of IRn
+ induces a triangulation of every set A(T ), T ∈ I. More precisely, for T ∈ I, A(T )

is subdivided into t-simplices σ(x1, π) with vertices x1, · · · , xt+1 in IRn, where t = |T |,

x1 ∈ A(T ) ∩ Zn, π is a permutation of the t elements of T , and xi+1 = xi + e(π(i)),

i = 1, · · · , t.

Given a t-simplex σ in A(T ), T ∈ I, a facet τ of σ is called T-complete if

{l(x) | x is a vertex of τ} = T.

In other words, the t vertices of a T -complete facet of a simplex in A(T ) are all differently

labeled by the t integers in the set T . Since it is supposed that l(v) �= 0, in particular

we have that {l(v)} is an element of I and {v} is an {l(v)}-complete 0-simplex on the

boundary of the 1-dimensional set A({l(v)}) and therefore is a facet of precisely one 1-

simplex in A({l(v)}). In the sequel we show by several lemmas that, starting with the

integral point v and T = {l(v)}, the algorithm generates in A(T ), for varying T ∈ I, a

sequence of t-simplices, where t = |T |, with T -complete common facets and ends within a

finite number of steps with a simplex having one of its vertices which is labeled with zero

and thus solves the problem. Note that every t-simplex in A(T ) is a face of a simplex of

the K ′(v)-triangulation.

First observe that for any given T ∈ I, with t = |T |, since any t-simplex in A(T ) has at

most two T -complete facets and any facet of a t-simplex in A(T ) either is a facet of exactly

one other t-simplex in A(T ) or lies on the boundary of A(T ), the collection of t-simplices

in A(T ) having at least one T -complete facet is either empty or consists of sequences of

adjacent t-simplices in A(T ) with T -complete common facets. Each such sequence in A(T )

is either unbounded (and then has one or no end simplex) or bounded. In the latter case

it is either a loop (with no end simplices) or it has two end simplices. An end simplex of

a sequence in A(T ) of adjacent t-simplices with T -complete common facets is either (i) a

t-simplex having exactly one vertex carrying a label not in the set T , or (ii) a t-simplex

having a T -complete facet lying on the boundary of the set A(T ).

In case (i), let σ be an end simplex having a vertex x carrying a label h not in T . Then

it must hold that either (a) h = 0 or (b) −h ∈ T or (c) h �= 0 and −h /∈ T . In subcase (a)

the vertex x is a solution to DCP(f). We now show that subcase (b) cannot occur if the
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function is direction preserving. In fact, none of the simplices of the K ′(v)-triangulation

carries labels k and −k together and therefore also not any of the simplices in A(T ).

Lemma 3.2 If f : Zn+ → IRn is a direction preserving function, there exists no simplex

of the K ′(v)-triangulation, whose vertices carry the labels k and −k for some k ∈ N .

Proof: Let σ be a simplex of the K ′(v)-triangulation, whose vertices carry labels k and

−k for some k ∈ N . Then for the vertex x with label k, we have fk(x) < 0 and for the

vertex y with label −k, we have fk(y) > 0. This contradicts direction preservation, because

x and y are cell connected. �

With respect to subcase (c) we have the following lemma.

Lemma 3.3 For some T ∈ I, let x be a vertex of a t-simplex σ in A(T ) having a

T -complete facet with l(x) = h �= 0. When both h /∈ T and −h /∈ T , then T ∪ {h} ∈ I

and σ is on the boundary of A(T ∪ {h}) and a (T ∪ {h})-complete facet of exactly one

(t+ 1)-simplex in A(T ∪ {h}).

Proof: Suppose that T ∪ {h} is not an element of I. By definition T ∪ {h} is not an

element of I if and only if both h < 0 and v|h| = 0. Suppose v|h| = 0. Since all vertices

of σ lie in A(T ) and both h and −h are not in T , we then have that y|h| = 0 for any

vertex y of σ. However, by the labelling rule this excludes that any vertex y has label −|h|,

contradicting that both h < 0 and v|h| = 0. Therefore, T ∪ {h} is an element of I. Since

σ is a t-simplex in A(T ) and A(T ) is a subset of the boundary of the (t + 1)-dimensional

set A(T ∪ {h}), the t-simplex σ is on the boundary of A(T ∪ {h}) and is therefore a facet

of precisely one (t+ 1)-simplex in A(T ∪ {h}). �

The two Lemmas 3.2 and 3.3 imply that if σ is an end simplex of a sequence of adjacent

t-simplices in A(T ) with T -complete facets such that a vertex x of σ carries a label h not

in T , then either subcase (a) occurs and x solves the problem or subcase (c) occurs and

there is a unique (t+ 1)-simplex σ′ in A(T ∪ {h}), having σ as a (T ∪ {h})-complete facet

on the boundary of A(T ∪ {h}). This simplex σ′ is therefore an end simplex of a sequence

of adjacent (t + 1)-simplices in A(T ∪ {h}) with (T ∪ {h})-complete common facets.
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Next, consider case (ii) and suppose that for some T ∈ I the simplex σ is an end

simplex of a sequence of adjacent t-simplices in A(T ) with common T -complete facets and

that σ is a t-simplex having a T -complete facet τ on the boundary of A(T ). Clearly, the

subsets of the boundary of A(T ) are determined by the points x in A(T ) at which either

(a) x|k| = 0 for some k ∈ T , k < 0, or (b) x|k| = v|k| for some k ∈ T . Notice that v|k| > 0

if k < 0. The next lemma shows that τ cannot be in a subset of A(T ) satisfying subcase

(a), i.e., a T -complete facet in A(T ) cannot lie in the hyperplane {x ∈ IRn | x|k| = 0} when

−|k| ∈ T .

Lemma 3.4 If k < 0 for some k ∈ T , then there exists no T -complete facet τ of a

t-simplex in A(T ) for some T ∈ I lying in the hyperplane {x ∈ IRn | x|k| = 0}.

Proof: Let τ be T -complete and k ∈ T . Then there is a vertex y of τ carrying label k. If

k < 0, it follows from the labeling rule f|k|(y) > 0 and y|k| > 0 and so τ does not lie in the

hyperplane {x ∈ IRn | x|k| = 0}. �

The lemma implies that if, for some T ∈ I, τ is a T -complete facet of a simplex in

A(T ) and lies on the boundary of A(T ), then it lies in a subset of the boundary satisfying

subcase (b). Then either T = {k} for some k ∈ N and τ is the 0-dimensional simplex

{v}, or for some k ∈ T , τ is a T -complete (t − 1)-simplex in A(T \ {k}) having a unique

(T \ {k})-complete facet. In the latter case τ is an end simplex of a sequence of adjacent

(t− 1)-simplices in A(T \ {k}) with (T \ {k})-complete common facets.

Summarizing the results above we have that any end simplex of a sequence of adjacent

simplices in A(T ) with T -complete common facets, not being the zero-dimensional simplex

{v} or a simplex having a vertex with label 0, either has one facet or is a facet of exactly

one simplex that is an end simplex of a sequence of adjacent t′-simplices in A(T ′) with T ′-

complete common facets, where either T ′ = T ∪ {h} for some unique h /∈ T and −h /∈ T ,

or T ′ = T \ {k} for some unique k ∈ T . So, the sequences of adjacent t-simplices in

A(T ) with T -complete common facets over all different T ∈ I can therefore be linked to

form sequences of adjacent simplices of variable dimension such that for any two adjacent

simplices in the sequence it holds that for some T ∈ I either one of the two simplices is a

t-simplex in A(T ) while the other one is a T -complete facet of it lying on the boundary of
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A(T ), or both are t-simplices in A(T ) and share a T -complete facet. Doing so, we obtain

a collection of such sequences. Any sequence in this collection is either an unbounded

sequence with one or no end simplices or is a bounded sequence. In the latter case it is

either a loop (with no end simplices or it is a sequence with two end simplices. Exactly one

sequence has the starting point {v} of the algorithm as facet of one of its end simplices.

Each other end simplex has a vertex carrying label 0 and therefore solving the discrete

complementarity problem.

Starting with the zero-dimensional simplex {v}, the 2n-ray algorithm generates the

path of simplices of the sequence having {v} as facet of one of its end simplices. We

now prove that this path is bounded and therefore has another end simplex carrying label

0, so that the algorithm finds a solution within a finite number of steps. The next two

lemmas show that under the conditions of Theorem 2.2 and Theorem 2.5 respectively, no

T -complete facet of a simplex in A(T ) lies on the hyperplane {x ∈ IRn | xk = uk } for any

k ∈ N .

Lemma 3.5 For the K ′(w) triangulation of IRn
+, under the conditions of Theorem 2.2,

there exists no T -complete facet τ of a simplex in A(T ), T ∈ I, lying in the hyperplane

{x ∈ IRn | xk = uk } for some k ∈ N .

Proof: Suppose τ is a T -complete facet in A(T ) lying in {x ∈ IRn | xk = uk } for some

k ∈ N . Take any vertex x of τ . When xh > wh for some h ∈ N , we must have h ∈ T .

Then there exists a vertex y of τ with label h and so fh(y) < 0. Since f is direction

preserving, this implies fh(x) ≤ 0 due to the fact that x and y are cell connected. So,

(xh − wh)fh(x) ≤ 0.

When xh < wh for some h ∈ N , we must have −h ∈ T and hence there exists a vertex

y of τ with label −h, implying that fh(y) > 0 and yh > 0. This implies fh(x) ≥ 0 due to

the fact that f is direction preserving and x and y are cell connected. Again it follows that

(xh − wh)fh(x) ≤ 0.

Finally, if xh = wh for some h ∈ N , then we have (xh − wh)fh(x) = 0. In conclusion,

for the vertex x of τ we have

max
h∈N

(xh −wh)fh(x) ≤ 0,
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yielding a contradiction to the condition that maxh∈N (xh − wh)fh(x) > 0. �

Lemma 3.6 For the K ′(v) triangulation of IRn
+ with center point v ∈ Zn+ satisfying

vh < uh for all h ∈ N , under the conditions of Theorem 2.5, there exists no T -complete

facet τ in A(T ), T ∈ I, lying on the hyperplane {x ∈ IRn | xk = uk} for some k ∈ N .

Proof: Suppose τ is a T -complete facet in A(T ) lying in {x ∈ IRn | xk = uk } for some

k ∈ N . Since uk > vk, we must have k ∈ T . Take any vertex x of τ . Since xk = uk it

follows from the condition in Theorem 2.5 that fk(x) > minh∈N fh(x) if minh∈N fh(x) < 0

and fk(x) ≥ 0 otherwise. From this it follows from the labelling rule that x cannot carry

label k, contradicting τ is T -complete. �

The Lemmas 3.2-3.6 imply that under the conditions of either of the two theorems

the sequence of simplices generated by the 2n-ray algorithm ends with a vertex having

label 0 within a finite number of steps. To conclude this, suppose the generated sequence

starting from the end simplex {v} is unbounded. Then, by construction of the K ′(v)-

triangulation and since the simplices are adjacent, there exists a simplex σ in the sequence

such that σ is a t-simplex in A(T ) for some T ∈ I and σ has a T -complete facet τ in the

hyperplane {x ∈ IRn | xk = uk} for some k ∈ N . However, this contradicts the results

of the Lemmas 3.5 and 3.6. Hence, the sequence of simplices must stay within the set

C = {x ∈ IRn | 0 ≤ xj ≤ uj, j ∈ N}. Since the number of simplices of the K ′(v)-

triangulation within this set is finite, the sequence therefore contains only a finite number

of simplices and it cannot be a loop, because it has {v} as one of its end points. Hence

the sequence must have another end simplex in C. Since each other end simplex than

{v} has a vertex carrying label 0, the algorithm finds an exact solution to the discrete

complementarity problem within a finite number of steps. This is summarized in the

following propositions, yielding combinatorial and constructive proofs for the Theorems

2.2 and 2.5 resepctively.

Proposition 3.7 Let f : Zn+ → IRn be a direction preserving function satifying the

condition of Theorem 2.2. Starting with the point w, the algorithm finds a solution of the

discrete complementarity problem within the set C in a finite number of steps.
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Proposition 3.8 Let f : Zn+ → IRn be a direction preserving function so that the

condition of Theorem 2.5 is satisfied. Starting with any point v ∈ Zn+ satisfying vj < uj for

all j ∈ N , the algorithm finds a solution of the discrete complementarity problem within

the set C in a finite number of steps.

As a final remark we like to stress that the direction preserving condition is only used

in the Lemmas 3.2 and 3.5, but not in the others, also not in Lemma 3.6. Lemma 3.2,

saying that for some h, a T -complete simplex cannot carry both labels h and −h, implies

that any end simplex not being {v} must have a vertex with label 0. The proof of Lemma

3.5 shows that under Moré’s condition also the direction preserving property is needed to

prevent the sequence from being unbounded; by contrast the proof of Lemma 3.6, showing

boundedness under the van der Laan and Talman condition, does not need the direction

preserving property.
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