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Abstract

We consider a …rm’s decision to replace an existing production tech-
nology with a new, more cost-e¢cient one. Kulatilaka and Perotti [1998,
Management Science ] …nd that, in a two-period model, increased product
market uncertainty could encourage the …rm to invest strategically in the
new technology. This paper extends their framework to a continuous-time
model which adds ‡exibility in timing of the investment decision. This
‡exibility introduces an option value of waiting which increases with un-
certainty. In contrast with the two-period model, despite the existence of
the strategic option of becoming a market leader due to a lower marginal
cost, more uncertainty always increases the expected time to invest. Fur-
thermore, it is shown that under increased uncertainty the probability
that the …rm …nds it optimal to invest within a given time period always
decreases for time periods longer than the optimal time to invest in a
deterministic case. For smaller time periods there are contrary e¤ects
so that the overall impact of increased uncertainty on the probability of
investing is in this case ambiguous.
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1 Introduction
The purpose of this paper is to investigate the …rm’s asset replacement

decision under product market uncertainty and imperfect competition in a fully
dynamic framework. The need for such an analysis emerges from the fact that
the existing literature provides in general only mixed conclusions concerning the
impact of uncertainty on capital budgeting decisions in the presence of strategic
interactions among the …rms. Since the understanding of this relationship is
not only relevant for the corporate planners but also plays a signi…cant role for
policy makers, we attempt to (at least partially) solve the existing puzzle.

Modern theory of investment under uncertainty (cf. McDonald and
Siegel [9], Dixit and Pindyck [2], Ch. 2) predicts that, under either perfect
competition or when the …rm is a monopolist, the …rm will wait longer with
investing if uncertainty is higher. This results from the fact that investment is
irreversible and the …rm has an option to postpone it until some uncertainty
is resolved. However, if (i) more than one …rm hold the investment opportu-
nity, and (ii) the …rm’s investment decision directly in‡uences payo¤s of other
…rm(s), the impact of uncertainty on the investment is twofold. First, increasing
uncertainty enhances the value of the option to wait. Second, the value of an
early strategic investment (made in order to achieve the …rst mover advantage)
can signi…cantly increase as well.

As already mentioned at the beginning, there exists no unique answer to
the question concerning the direction of the investment-uncertainty relationship.
Huisman and Kort [6] prove that in a continuous-time duopoly model with
pro…t uncertainty (cf. Grenadier [4] and Smets [12]) the e¤ect on the optimal
investment threshold of the change in option value of waiting is always stronger
that the impact of strategic interactions. This implies a negative relationship
between uncertainty of the …rm pro…t ‡ow and investment. On the contrary,
Kulatilaka and Perotti [8] …nd that product market uncertainty may, in some
cases, stimulate investment. The latter authors analyze a two-period setting in
which (one of the) duopolistic …rms can invest in a cost-reducing technology.
The payo¤ from investment is convex in the size of the demand since an increase
of demand has a more-than-proportional e¤ect on the realized duopolistic pro…ts
(…rms are responding to higher demand by increasing both output and price).
Based on Jensen’s inequality Kulatilaka and Perotti [8] conclude that higher
volatility of the product market can accelerate investment.

In this paper we transform the approach of Kulatilaka and Perotti [8],
who analyze a capital budgeting decision under product market uncertainty, to
continuous time. Consequently, the fully dynamic framework allows us for in-
corporating the option to postpone the investment. We show that, despite the
strategic e¤ect encouraging earlier replacement of the old technology by the
…rst mover (leader), the demand level triggering the investment as well as its
expected timing increase with uncertainty for both …rms. Furthermore, the
probability of such an investment within a given time interval always decreases
with uncertainty for time intervals longer than the time to invest in a deter-
ministic case. For shorter intervals contrary e¤ects arise, which implies that the
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overall impact of increased uncertainty on the probability of investment in a
given time interval is ambiguous (see also Sarkar [10]).

The model is presented in Section 2. In Section 3 only one …rm is
able to invest, while investment for both …rms is allowed in Section 4. Section
5 considers a new market model. In each of the Sections 3-5 the e¤ects of
uncertainty on the various investment thresholds are determined. Section 6
examines how these results can be translated into conclusions with respect to
investment timing. Section 7 concludes.

2 Framework of the Model
We consider a pro…t-maximizing risk-neutral …rm operating in a duopoly,

in which, in line with basic microeconomic theory (as well as with Kulatilaka
and Perotti [8]), the following inverse demand function holds1

pt = At ¡ Qt; (1)

where pt is the price of a non-durable good/service and can be interpreted as
the instantaneous cash ‡ow per unit sold, At is a measure of the size of the
demand and Qt is the total amount of the good supplied to the market at a
given instant. We introduce the following formulation for the uncertainty in
demand

dAt = ®Atdt + ¾Atdwt; (2)

where ® is the instantaneous drift parameter, ¾ is the instantaneous standard
deviation, dt is the time increment and dwt is the Wiener increment. The …rm is
competing with its symmetric rival in quantities (a la Cournot).2 The constant
marginal cost of supplying a unit of the good to the product market is K: As in
Kulatilaka and Perotti [8], a new, cost-e¢cient technology exists that reduces
the marginal cost from K to k. In order to acquire the asset representing the
cost-e¢cient technology, the …rm has to bear an irreversible cost I: I can be
interpreted as a present value of the expenditure associated with installing the
new asset at the time of switching the production into the more cost-e¢cient
mode net of the present value of the selling price of the asset representing the
old technology.

The associated pro…ts of the …rm i (the other …rm is denoted by j) are

1 Alternatively, we could replace the assumpion of the …rm being risk neutral by the repli-
cating portfolio argument.

2 Quantity competition yields the same output as a two-stage game in which the capacities
are chosen …rst and, subsequently, the …rms are competing in prices (see Tirole [13], p. 216).
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as follows

¼00
t =

1

9
(At ¡ K)2 ; (3)

¼10
t =

1

9
(At + K ¡ 2k)2 ; (4)

¼01
t =

1

9
(At ¡ 2K + k)2 ; and (5)

¼11
t =

1

9
(At ¡ k)2 : (6)

where superscript 1 (0) in ¼ij
t indicates which …rm invested (did not invest) in

the cost-reducing technology.
Consequently, our task is to determine the optimal timing of investment

in the asset representing the cost-e¢cient technology. Let us consider the value
of the …rm before it has invested and denote it by F . Using the dynamic
programming methodology (see Dixit and Pindyck [2]) we arrive at the following
Bellman equation

rF =
1

2
¾2A2

tF
00 + ®AtF

0 + ¼B
t ; (7)

where ¼B
t denotes the instantaneous pro…t ‡ow before the …rm has invested and

r is an instantaneous interest rate. If the …rm invests as …rst, ¼B
t is equal to ¼00

t

(see (3)). If the other …rm has already invested, ¼B
t equals ¼01

t (cf. (5)). Solving
the di¤erential equation for ¼B

t = ¼00
t gives3

F = CA¯
t +

1

9

A2
t

r ¡ 2® ¡ ¾2
¡ 2

9

KAt

r ¡ ®
+

K2

9r
; (8)

where C is a constant and ¯ is the positive root of the following equation4

1

2
¾2¯ (¯ ¡ 1) + ®¯ ¡ r = 0: (9)

3 One Firm Monopolizing the Investment Op-
portunity

Consider …rst the case in which only one …rm has the opportunity of re-
placing the existing technology with the cost-e¢cient one. From (4) and Ito’s
lemma it is obtained that the value of the …rm after the investment equals

V N (At) = E

�Z 1

t

1

9
(As + K ¡ 2k)2 e¡r(s¡t)ds

¸

=
1

9

A2
t

r ¡ 2® ¡ ¾2
+

2

9

(K ¡ 2k)At

r ¡ ®
+

(K ¡ 2k)2

9r
: (10)

3 The case ¼Bt = ¼
01
t corresponding to the follower’s adoption is considered in Section 4.

4 Note that the boundary condition F (0) = 0 implies that the negative root of (9) can be
ignored.
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To derive the optimal investment threshold we apply the value-matching and
smooth-pasting conditions (see Dixit and Pindyck [2]) to (7) and (10), which
leads to

CA¯
t =

1

9

µ
4(K ¡ k)At

r ¡ ®
¡ 4k (K ¡ k)

r

¶
¡ I; (11)

¯CA¯¡1
t =

4

9

K ¡ k

r ¡ ®
: (12)

Consequently, we obtain the optimal investment threshold

AN =
¯

¯ ¡ 1

I + 4
9

k(K¡k)
r

4
9 (K ¡ k)

(r ¡ ®) (13)

and the optimal timing of investment

TN = inf
¡
tjAt ¸ AN

¢
: (14)

We consider the case where the investment cost, I, and the drift rate, ®, satisfy
I > 4k(K¡k)

9r and ® < r. Unless the …rst inequality holds, the …rm always
invests at the initial point of time.5 Violating the second condition leads to the
situation when it is never optimal to exercise the replacement option. Note that
the optimal threshold (13) is increasing in uncertainty and in the wedge r ¡®:6

Now, it is possible to express the value of the …rm in terms of known
parameters (for derivation, see Appendix)

V N (At) =

8
>>><
>>>:

1
9

³
A2

t

r¡2®¡¾2 ¡ 2KAt

r¡® + K2

r

´

+
³

1
9

³
4(K¡k)At

r¡® ¡ 4k(K¡k)
r

´
¡ I

´ ¡
At

AN

¢¯ if At � AN ;

1
9

³
A2

t

r¡2®¡¾2 ¡ 2kAt

r¡® + k2

r

´
¡ I if At > AN :

(15)

Before the investment is undertaken, the value of the …rm consists of two com-
ponents: the present value of cash ‡ows from the assets in place (…rst row in

5 The boundary solution is equivalent to the situation in which the …rm invests at t = 0.
If I < 4k(K¡k)

9r
then the instantaneous gain from investment will always be greater than

the related cost and the …rm will adopt the new technology irrespective of the realization
of the stochastic random variable. This may be seen upon analyzing the Bellman equation
describing the dynamics of the value of the …rm before and after adopting new technology.
Before adopting we have
rF = 1

2
¾2A2tF

00 + ®AtF 0 + 1
9
(At ¡K)2 ;

whereas after making the investment we obtain
rF = 1

2
¾2A2tF

00 + ®AtF 0 + 1
9
(At +K ¡ 2k)2 ¡ Ir;

where Ir is interpreted as an instantaneous perpetuity equivalent to the investment cost I.
Unless Ir > 4

9
k (K ¡ k) ; the RHS of the second equation is always larger than of the

…rst one. This implies reaching a boundary solution, i.e. investing immediately in optimum,
irrespective from the current realization of the process At:

6 Increasing wedge r ¡ ® has also an indirect e¤ect via increasing ¯ but that e¤ect is
dominated.
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(15)) and the option to purchase a cost-reducing technology (second row). After
incurring the investment cost, the value of the …rm consists of the cash ‡ows
based on the more cost-e¢cient technology (last row).

The impact of uncertainty on the optimal investment threshold of the
…rm having the exclusive investment opportunity can be calculated by directly
di¤erentiating (13) with respect to ¾2. Consequently, we obtain that

@AN

@ (¾2)
= ¡ 1

(¯ ¡ 1)2
I + 4

9
k(K¡k)

r
4
9 (K ¡ k)

(r ¡ ®)
@¯

@ (¾2)
> 0; (16)

since @¯
@(¾2) < 0 (see Dixit and Pindyck [2], p. 143). Therefore, if only one …rm

in a duopoly has the opportunity to invest in a cost-reducing technology, the
uncertainty always increases the level of market demand required to undertake
the investment.

4 Two Firms Having the Possibility to Invest
In this section we relax the assumption that only one …rm has the in-

vestment opportunity. In Section 4.1 we establish the payo¤s in case the …rm
replaces the technology as second (follower), …rst (leader) and at the same time
as the competitor. The equilibria are presented in Section 4.2, while Section 4.3
investigates the e¤ects of uncertainty on the investment thresholds.

4.1 Payo¤s

4.1.1 Follower

De…ne ¿ to be the moment of time at which the leader invests. At t ¸ ¿
the value of the follower …rm is

V F (At) = E

"Z TF

t

1

9
(As ¡ 2K + k)2 e¡r(s¡t)ds

#

+E

�
e¡r(TF ¡t)

µZ 1

TF

1

9
(As ¡ k)2 e¡r(s¡T F )ds ¡ I

¶¸
; (17)

where

TF = inf
¡
tjAt ¸ AF

¢
: (18)

AF is de…ned as

AF =
¯

¯ ¡ 1

I + 4K
9r (K ¡ k)

4
9 (K ¡ k)

(r ¡ ®) ; (19)
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where I > 4K(K¡k)
9r : Analogous to (15), the value of the follower at time t ¸ ¿

can now be expressed as

V F (At) =

8
>>><
>>>:

1
9

³
A2

t

r¡2®¡¾2 ¡ 2(2K¡k)At

r¡® + (2K¡k)2

r

´

+
³

1
9

³
4(K¡k)AF

r¡® ¡ 4K(K¡k)
r

´
¡ I

´¡
At

AF

¢¯ if At � AF ;

1
9

³
A2

t

r¡2®¡¾2 ¡ 2kAt

r¡® + k2

r

´
¡ I if At > AF :

(20)

The interpretation is similar to the case where only one …rm has the investment
opportunity. The …rst row of (20) is the present value of pro…ts when the other
…rm has a cost advantage, and the second row corresponds to the value of the
option to invest in the new technology. The last row is the present value of
cash ‡ows generated with the use of the more e¢cient technology minus the
replacement cost.

4.1.2 Leader

Following a similar reasoning as in the previous section, we present the
payo¤s of the …rm that invests as …rst. Consequently, the value function of the
leader evaluated after the replacement of the existing technology, i.e. at t ¸ ¿ ,
is

V L (At) = E

"Z TF

t

1

9
(As + K ¡ 2k)2 e¡r(s¡t)ds ¡ I +

Z 1

TF

1

9
(As ¡ k)2 e¡r(s¡t)ds

#
:

(21)

This can be rewritten into

V L (At) =

8
>>><
>>>:

1
9

³
A2

t

r¡2®¡¾2 + 2(K¡2k)At

r¡® + (K¡2k)2

r

´
¡ I

¡1
9

³
2(K¡k)AF

r¡® + (K¡2k)2¡k2

r

´¡
At

AF

¢¯ if At � AF ;

1
9

³
A2

t

r¡2®¡¾2 ¡ 2kAt

r¡® + k2

r

´
¡ I if At > AF :

(22)

4.1.3 Simultaneous Replacement

The value function in case of the simultaneous replacement, V J , is

V J (At) = E

"Z T¤

t

1

9
(As ¡ K)2 e¡r(s¡t)ds +

Z 1

T¤

1

9
(As ¡ k)2 e¡r(s¡t)dt ¡ Ie¡r(T¤¡t)

#
;

(23)

where

T ¤ = inf (tjAt ¸ A¤) (24)
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for some A¤ ¸ A0, and A0 denotes the realization of the process at t = 0: The
value of the investment opportunity when the replacement is simultaneous can
therefore be expressed as

V J(At; A
¤) =

8
>>><
>>>:

1
9

³
A2

t

r¡2®¡¾2 ¡ 2KAt

r¡® + K2

r

´

+
³

1
9

³
2(K¡k)A¤

r¡® ¡ K2¡k2

r

´
¡ I

´¡
At

A¤
¢¯ if At � A¤;

1
9

³
A2

t

r¡2®¡¾2 ¡ 2kAt

r¡® + k2

r

´
¡ I if At > A¤;

(25)

The optimal timing of simultaneous replacement is

TS = inf
¡
tjAt ¸ AS

¢
(26)

where

AS =
¯

¯ ¡ 1

I + 1
9

K2¡k2

r
2
9 (K ¡ k)

(r ¡ ®) ; (27)

and I > 2K(K¡k)
9r : Consequently, the value of the …rm in the simultaneous

replacement case when the investment is optimal can be denoted as

V S (At) = V J
¡
At; A

S
¢
: (28)

4.2 Equilibria

Since both …rms are ex ante identical, it seems natural to consider symmet-
ric exercise strategies and assume the endogeneity of the …rms’ roles, i.e. that
it is not determined beforehand which …rm will get the leader role. There are
two types of equilibria that can occur under this choice of strategies.

4.2.1 Sequential Replacement

The …rst type is a sequential replacement equilibrium where one …rm is the
leader and the other one is the follower. Figure 1 depicts the payo¤s associated
with the sequential equilibrium. Let us de…ne AP to be the smallest root of

» (At) = V L (At) ¡ V F (At) : (29)

Since on the interval
¡
AP ; AF

¢
the payo¤ of the leader is higher than the payo¤

of the follower (cf. Figure 1), each of the two …rms will have an incentive to be
the leader. In the search for equilibrium we reason backwards. At AF the …rms
are indi¤erent between being the leader and the follower. However, an instant
before, say at AF ¡ ", the payo¤ from being the leader is higher than the payo¤
of the follower. Therefore (without loss of generality) …rm i has an incentive to
invest there. Firm j anticipates this and would invest at AF ¡ 2": Repeating
this reasoning we reach an equilibrium in which one of the …rms invests at AP

and the other waits until demand exceeds AF .
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Note that if both …rms invest at AP with probability one, they end
up with the low payo¤ V J(AP ; AP ): At At = AP demand is too low for the
investment to be pro…table for both …rms. Therefore, the …rms use mixed
strategies in which the expected payo¤ is equal to the payo¤ of the follower
(let us recall that the roles of the …rms are not predetermined). The …rms
are identical, so that they both have equal probability of becoming leader or
follower. In Huisman and Kort [7] it is shown that the probability of a …rm to
become leader, PL (or follower, PF ) equals

PL = PF =
1 ¡ p (At)

2 ¡ p (At)
; (30)

where

p (At) =
V L (At) ¡ V F (At)

V L (At) ¡ V J (At)
: (31)

Consequently, the probability of joint investment leading to the low payo¤
V J (At) is p(At)

2¡p(At)
:

For At < AP the leader payo¤ curve lies below the follower curve what
implies that it is optimal for both …rms to refrain from investment. For At = AP ;
the leader and the follower values are equal. Therefore (30) and (31) yield the
probabilities of being the leader (or follower) equal to 1

2 : The leader invests at the
moment that At = AP , which is the smallest solution of V L (At) = V F (At),
and the follower waits until AF is reached. If the stochastic process starts
at A0 > AP ; then the sequential replacement equilibrium entails the leader
investing immediately (at A0) and the follower waiting until AF . In this case,
according to (30) and (31), p (A0) > 0 since the payo¤ of the leader exceeds the
payo¤ of the follower. This makes the probability of making a ”mistake” and
investing jointly become positive.7

3 4 5 6 7
At

-40

-20

0

20

40

60

V
1L
,
V
1F
,
V
1J
,
V
1S

V1F
V1J
V1S

A1P A1L A1F

V1
L

Figure 1. The di¤erences between the value functions of the leader, V L, optimal
simultaneous replacement, V S , early simultaneous replacement, V J , and the value

7 A basic reference on continuous-time preemption games is Fudenberg and Tirole [3].
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function of the follower, V F , for the set of parameter values: K = 2; k = 0 ; r =
0:05 ; ® = 0:015; ¾ = 0:1; and I = 60: For A0 < AP the set of input parameters
results in a sequential replacement at AP (leader) and AF (follower).

4.2.2 Simultaneous Replacement

The second type of equilibrium is the simultaneous replacement equilib-
rium. In such a case, the …rms invest with probability 1 at the same point in
time de…ned already by AS (see (27)). No …rm has an incentive to deviate from
this equilibrium since at AS the payo¤ of this strategy exceeds all other payo¤s.8

A graphical illustration of the simultaneous equilibrium is depicted in Figure 2
below.

2.5 5 7.5 10 12.5 15 17.5
At

-40

-20

0

20

40

60

V
1L
,
V
1F
,
V
1J
,
V
1S

V1F
V1J
V1S

A1SA1FA1LA1P

V1
L

Figure 2. The di¤erences between the value functions of the leader, V L, optimal
simultaneous replacement, V S , early simultaneous replacement, V J , and the value
function of the follower, V F , for the set of parameter values: K = 2; k = 0 ; r =
0:05 ; ® = 0:015; ¾ = 0:1; and I = 120: The set of input parameters results in the
optimality of a simultaneous replacement at AS:

The occurrence of a particular type of equilibrium is determined by
the relative payo¤s that depend on the value of the model parameters. The
sequential equilibrium occurs when

9At 2
¡
K;AF

¢
such that V L (At) > V S (At) ; (32)

i.e. when for some At it is more pro…table to become a leader than to replace
simultaneously. Otherwise simultaneous replacement is the Pareto-dominant

8 Of course, the payo¤s resulting from the sequential replacement equilibrium in 4.2.1 may
be lower than those associated with the optimal joint investment. However, occurrence of
the sequential replacement equilibrium is due to the fact that for the same values of At
the leader’s payo¤ exceeds the value from the joint replacement strategy. It is the lack of
coordination among the …rms (with possible transfer of excess value) that leads to ex post
Pareto-ine¢cient outcomes. In case of simultaneous replacement equilibrium the payo¤ of the
leader never exceeds the payo¤ from joint optimal investment and therefore the preemption
equilibrium, while still exists, is Pareto-dominated.
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equilibrium. Proposition 1 says that …rms replace sequentially if the investment
cost is su¢ciently low.

Proposition 1 A unique I¤ exists such that 8I > I¤ simultaneous replacement
is the Pareto-dominant equilibrium.

Proof. See Appendix.

4.3 Uncertainty and Investment Thresholds

First, we investigate the impact of volatility on the optimal investment
thresholds of the follower and for simultaneous replacement. In these cases (see
(19) and (27)) the optimal thresholds, Aopt, can be expressed as

Aopt =
¯

¯ ¡ 1
f(I;K; k; r; ®): (33)

It is straightforward to derive that

@Aopt

@ (¾2)
= ¡ 1

(¯ ¡ 1)2
f(I;K; k; r; ®)

@¯

@ (¾2)
> 0; (34)

i.e. that the optimal investment thresholds of the follower and for simultaneous
replacement increase in uncertainty.

Now, we investigate the impact of volatility on the optimal investment
threshold of the leader. In the remaining part of the analysis the marginal cost k
is set to zero in order to simplify calculations.9 We already know that the entry
threshold of the leader is determined by the point AP , which is the smallest root
of » (At) : Consequently, we calculate the derivative of » (At) with respect to the
market uncertainty. The change of (29) resulting from a marginal increase in
¾2 can be decomposed as follows

d» (At)

d (¾2)
=

µ
@» (At)

@¯
+

@» (At)

@AF

dAF

d¯

¶
@¯

@ (¾2)
: (35)

The derivative @»(At)
@¯

@¯
@(¾2) measures directly the in‡uence of uncertainty on the

net bene…t of being the leader. The product @»(At)
@AF

dAF

d¯
@¯

@(¾2) re‡ects the impact
on the net bene…t of being the leader of the fact that the follower’s investment
threshold increases with uncertainty.

It is easy to show that

@» (At)

@¯

@¯

@ (¾2)
< 0; (36)

@» (At)

@AF

dAF

d¯

@¯

@ (¾2)
> 0: (37)

9 For the majority of e.g. intangible/information products this is a fairly good approxima-
tion (cf. Shapiro and Varian [11]).
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Therefore, at …rst sight, the joint impact of both e¤ects is ambiguous. (36)
represents the simple value of waiting argument: if uncertainty is large, it is
more valuable to wait for new information before undertaking the investment
(Dixit and Pindyck [2]). As we have just seen, this also holds for the follower.
The implication for the leader of the follower investing later is that the leader
has a cost advantage for a longer time. This makes an earlier investment of
the leader more bene…cial. This e¤ect is captured by (37), which can thus be
interpreted as an increment in the strategic value of becoming the leader vs. the
follower resulting from the delay in the follower’s entry. Obviously, the latter
e¤ect is not present in the monopolistic/perfectly competitive markets, where
the impact of uncertainty is unambiguous.

However, it is possible to show that the direct e¤ect captured by (36)
dominates, irrespective of the values of the input parameters.

Proposition 2 When uncertainty in the product market increases, the thresh-
old of the leader increases, too.

Proof. See Appendix.

An example of the resulting leader investment thresholds is presented in Ta-
ble 1. It is shown how the leader investment threshold is a¤ected by uncertainty
and the unit production cost of the old technology.

¾ K = 0:3 K = 0:8 K = 1:06 K = 1:3 K = 1:8 K = 3
0:05 21:40 8:17 6:33 5:33 4:17 3:24
0:10 23:61 9:13 7:08 5:94 4:65 3:59
0:15 27:02 10:44 8:09 6:79 5:30 4:07
0:20 31:19 12:05 9:32 7:82 6:10 4:67
0:25 36:09 13:93 10:78 9:04 7:04 5:38
0:30 41:73 16:10 12:45 10:44 8:12 6:19
0:35 48:11 18:56 14:35 12:03 9:35 7:12
0:40 55:27 21:32 16:48 13:82 10:73 8:16
0:45 63:22 24:38 18:84 15:80 12:27 9:32
0:50 71:96 27:75 21:45 17:97 13:96 10:59

Table 1. The optimal leader investment threshold for the set of parameter values:
r = 0:05 ; ® = 0:015; k = 0 and I = 60:

From Proposition 2 and Table 1 it can be concluded that, unlike in Ku-
latilaka and Perotti [8], the optimal investment threshold of the leader responds
to both volatility and the gain from investment (via K) in a qualitatively similar
way as a non-strategic threshold, i.e. it increases with uncertainty. The reason
for this result is the following. First, in our model we introduced the possibility
to delay the investment. Increased uncertainty could raise the pro…tability of
investment but this holds even more for the value of the option to wait. Second,

12



Kulatilaka and Perotti [8] explain that in their case uncertainty could be bene-
…cial for investment because of the convex shape of the net gain function, where
the gains arise due to the cost reducing investment. Then, while performing a
mean preserving spread, downside losses are more than compensated by upside
gains. In the continuous time model, however, the net gain function is always
linear. If the leader invests. the pro…t ‡ow ¼00 is replaced by the pro…t ‡ow
¼10; and it is clear from (3) and (4) that ¼10 ¡ ¼00 is linear in the stochastic
variable At. The same holds for the follower investment (¼11 ¡ ¼01 linear) and
simultaneous investment (linearity of ¼11 ¡ ¼00). To see whether the convexity
argument could also work here, we consider new market entry in the next sec-
tion. Then the net gain ‡ows of both the leader and the follower are convex in
At:

5 New Market Entry
Two …rms have an option to invest in a production asset that would enable

them to operate in a new market where there is no incumbent. The new market
assumption implies, in contrast with Sections 3-4, that the …rms can only start
realizing pro…ts after incurring a sunk cost I: It still holds that demand follows
the stochastic process (2). The marginal cost of a unit of output after launching
production is set to k = 0:

First, we calculate the optimal threshold of the follower in the new
market. After, by now, familiar steps it is obtained that

AFN = 3

s
¯

¯ ¡ 2
I (r ¡ 2® ¡ ¾2): (38)

It is straightforward to show that

@AFN

@ (¾2)
> 0: (39)

Moreover, for a relatively high degree of uncertainty, i.e. for ¾2 > r ¡ 2® (what
corresponds to ¯ 2 (1; 2]), the follower will never invest since beyond this level
the value of the option to invest always exceeds the net present value of investing
so that it is optimal to never exercise the option.

De…ne ¿ to be the moment of investment of the leader. The value of the
follower at t ¸ ¿ is equal to

V FN
t =

8
<
:

µ
1
9(AF N)2

r¡2®¡¾2 ¡ I

¶¡
At

AFN

¢¯
if At � AFN ;

1
9

A2
t

r¡2®¡¾2 ¡ I if At > AFN :

(40)
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The value of the leader at t ¸ ¿ can be expressed as

V LN
t =

8
>><
>>:

1
4

A2
t

r¡2®¡¾2 ¡ I

¡ 5
36

(AFN)2

r¡2®¡¾2

¡
At

AFN

¢¯
if At � AFN ;

1
9

A2
t

r¡2®¡¾2 ¡ I if At > AFN :

(41)

The optimal threshold of the leader is the smallest solution of the following
equation

V LN (At) ¡ V FN (At) =
1

4

A2
t

r ¡ 2® ¡ ¾2
¡ I ¡ I

µ
9

4

¯

¯ ¡ 2
¡ 1

¶µ
At

AFN

¶¯

= 0:

(42)

The impact of uncertainty on the optimal investment threshold of the
leader is not straightforward. Similar as in the model with an already existing
market, there are two e¤ects: the e¤ect of the waiting option and of the strategic
option. Let us denote V LN (At) ¡ V FN (At) by »N (At) : We have

d»N (At)

d (¾2)
=

@» (At)

@ (¾2)
+

@» (At)

@AFN

dAFN

d (¾2)
+

µ
@» (At)

@¯
+

@» (At)

@AFN

dAFN

d¯

¶
@¯

@ (¾2)
:

(43)

The derivative (65) consists of four components. The …rst and the second re‡ect
the direct impact of the product market volatility on the waiting option and the
strategic option, respectively. As in the previous section, the last two com-
ponents correspond to the impact of uncertainty on the waiting and strategic
options via parameter ¯. The presence of the components re‡ecting the di-
rect impact of volatility is a consequence of the convexity of the payo¤ (pro…t)
in the underlying process (demand). This feature results in ¾2 directly enter-
ing the expectation of the cumulative discounted future pro…ts via a discount
rate, r ¡ 2® ¡ ¾2, corresponding to this component of the pro…t stream that is
proportional to the square of the underlying stochastic variable At.

Since the analysis of the signs of the components of (43) evaluated at the
leader’s preemption point, APN , provides very little insight into the sign of the
whole derivative, we substitute the functional forms of V LN (At) and V FN (At)
into »N (At) and calculate the derivative explicitly (see Appendix). After doing
so, the following result is obtained.

Proposition 3 The optimal investment threshold of the leader increases in un-
certainty in the case of new market entry.

Proof. See Appendix.

The conclusion is that also in the case of new market entry uncertainty
increases the investment thresholds. The implication is that the convex payo¤
argument by Kulatilaka and Perotti [8] is outweighed by the increased option
value of waiting.
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6 Uncertainty and Investment Timing
The aim of this paper is to analyze the impact of uncertainty and strategic

interactions on the timing of the optimal exercise of the option to invest. By
now we analyzed the impact of uncertainty and strategic interactions on the
optimal investment threshold of the …rm. Although thresholds and timing have
a lot to do with each other, it cannot be concluded in general that the relation
between the two is monotonic (cf. Sarkar [10]). In this section we investigate the
relationship between uncertainty, optimal threshold, expected timing of asset
replacement and the probability with which the threshold is reached within a
time interval of a given length.

First, let us observe that the expectation of the …rst passage time
equals10

Et [T ¤] =
1

® ¡ 1
2¾2

ln
A¤ ¡

¾2
¢

At
; (44)

where A¤ ¡
¾2

¢
denotes the optimal investment threshold as a function of uncer-

tainty. We note that expectation (44) tends to in…nity for ¾2 ! 2® and does
not exist for ¾2 > 2®.11 Consequently, for ¾2 < 2® we have

@Et [T ¤]
@ (¾2)

=
1

2
¡
® ¡ 1

2¾2
¢2 ln

A¤ ¡
¾2

¢

At
+

1

® ¡ 1
2¾2

dA¤

d(¾2)

A¤ (¾2)
> 0: (45)

The expected time of investment increases in uncertainty due to two e¤ects.
First, for any given threshold, the expected …rst passage time is increasing in
uncertainty (cf. the …rst component of the RHS of (45)). Second, for a …xed
level of uncertainty, an increase in the optimal investment threshold leads to an
increase in the expected time to reach (cf. second component of RHS of (45)).
Based on (45) it can be concluded that whenever the threshold goes up due to
more uncertainty, it also holds that the expected time to invest increases.

An alternative approach to measure the impact of uncertainty on the
timing of investment is to look at the probability with which the threshold
is reached within a time interval of a given length, say ¿ . After substituting

10 For a derivation of the probability distribution of the …rst passage time see Harrison [5]
for a formal exposition and Dixit [1] for a more heuristic approach.

11 Increasing ¾2 beyond 2® implies that the probabilities of surviving without reaching the
threshold before a given time do not fall su¢ciently fast for longer hitting times (moreover,
the probability that the process will reach the barrier in in…nity is still positive). Since the
expectation is the sum of the product of the …rst passage times and their probabilities, an
insu¢cient decay in the survival probabilities (without reaching the threshold) results in the
divergence of the expectation.
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y = ln A¤

At
in the formula (8.11) in Harrison [5] and rearranging, we obtain

P (T < ¿) = ©

Ã
¡ ln A¤

At
+

¡
® ¡ 1

2¾2
¢
¿

¾
p

¿

!
(46)

+

µ
A¤

At

¶ 2®
¾2 ¡1

©

Ã
¡ ln A¤

At
¡

¡
® ¡ 1

2¾2
¢
¿

¾
p

¿

!
;

where T denotes the time to reach the threshold and ©(¢) is the standard
normal cumulative density function. As already pointed out in Sarkar [10],
the derivative @P (T<¿)

@¾ does not have an unambiguous sign and it can thus be
shown that, in general, uncertainty can a¤ect the probability of reaching the
threshold by a given time in both directions.

First, we illustrate the relationship between the …rst passage time,
volatility and related probabilities for the follower threshold since it is una¤ected
by the strategic considerations. Subsequently, we present results of simulations
related to the threshold of the leader. In this part we use the model of Section
4 but the results for the new market entry model are qualitatively similar.

2 4 6 8 10
τ

0.05

0.1

0.15

0.2

P
H T<τL

σ=0.2
σ=0.1

σ=0.3

Figure 3. The cumulative probability of reaching the optimal follower investment
threshold as a function of time for the set of parameter values: At = 4; r = 0:05 ; ® =
0:015; ¾ = 0:1; 0:2 and 0:3; K = 3; k = 0 and I = 60:

From Figure 3 it can be concluded that the probability of reaching the fol-
lower threshold always increases with the time interval which is of course trivial.
Furthermore, it can be seen that growing uncertainty raises the probability of
reaching the threshold for low ¿ , while the opposite is true for high ¿ : This
observation results from the fact that in the absence of uncertainty the optimal
investment trigger is reached at a speci…ed point in time with probability 1. In-
creasing volatility spreads the probability mass around this point what leads to
an increased cumulative chance of reaching the trigger at points in time situated
to the left of this speci…ed point in time, while the reverse is true for the point
situated to the right.

The relationship between uncertainty and probabilities of reaching the
optimal follower investment threshold is depicted in Figure 4.
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σ

0.2
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Figure 4. The cumulative probability of reaching the optimal follower investment
threshold as a function of demand uncertainty for the set of parameter values: At = 4;
r = 0:05 ; ® = 0:015; ¿ = 5; 10 and 20; K = 3; k = 0 and I = 60:

Based on Figure 4 it can be concluded that the form of relationship between
uncertainty and the probability of reaching the threshold depends on the time
to reach. For high values of the time to reach, the cumulative probability of
reaching the threshold decreases in volatility since the probability mass of the
…rst passage time density function moves to the right. For low values of ¿
the probability of reaching the threshold …rst increases due to a spread in the
probability mass. However, since the density function is skewed, the spread
occurs asymmetrically and for high volatilities the cumulative probability of
reaching the threshold becomes smaller again.

The results of simulations concerning the relationship between uncer-
tainty, the …rst passage time and the probabilities of reaching the leader thresh-
old are presented in Table 2 below.

¾ ¿ = 1 ¿ = 2 ¿ = 5 ¿ = 10 ¿ = 15 ¿ = 20
0:05 0:06 2:39 24:11 54:32 71:17 80:97
0:10 0:61 5:93 26:79 47:94 59:70 67:24
0:15 0:70 5:85 23:98 41:70 51:59 58:03
0:20 0:62 5:14 21:00 36:47 45:10 50:72
0:25 0:53 4:48 18:51 32:19 39:77 44:66
0:30 0:46 3:97 16:50 28:66 35:31 39:55
0:35 0:42 3:59 14:88 25:71 31:53 35:17
0:40 0:39 3:30 13:57 23:22 28:29 31:39
0:45 0:37 3:09 12:47 21:08 25:48 28:09
0:50 0:36 2:93 11:55 19:23 23:02 25:21

Table 2. The cumulative probability (in percentages) of reaching the optimal leader
investment threshold as a function of demand uncertainty for the set parameter values:
At = 2; r = 0:05 ; ® = 0:015; k = 0, K = 3 and I = 60: The optimal timing of
the replacement in a deterministic case equals ¿ = 9:36.
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The probability of investment of the leader, despite the presence of strategic
e¤ects, responds to changes in uncertainty and time to reach in a similar way
as the corresponding probabilities of the follower. For low ¾’s an increase in
the probability of investing is faster than for high ¾’s. Moreover, for high ¿ ’s
the probability of investing is always decreasing in uncertainty, while for low ¿ ’s
the probability behaves in a non-monotonic way. These latter observations are
con…rmed by the following proposition, which results from developing further
the observation made by Sarkar [10].

Proposition 4 De…ne

¿¤ =
1

®
ln

A¤

At
; (47)

as the point in time at which the investment threshold A¤ is reached in a de-
terministic case. Then it holds that for ¿ < ¿¤ the probability of reaching the
investment threshold A¤ before ¿ increases in uncertainty at a relatively low
level of uncertainty and decreases for its relatively high level, whereas for ¿ > ¿¤

the probability of reaching the optimal threshold before ¿ always decreases in
uncertainty.

Proof. See Appendix.

We conclude that when under increased uncertainty the threshold in-
creases, this implies that the probability that the …rm invests within a given
amount of time decreases when this amount of time is su¢ciently large. How-
ever, when this amount of time is su¢ciently low there are two contradictory
e¤ects. On the one hand, the investment probability goes up because higher
volatility enhances the chance of reaching a particular threshold early. On the
other hand, this probability eventually goes down with uncertainty since the
…rst passage time density function becomes more skewed to the right when un-
certainty increases.

7 Conclusions
The purpose of this paper was to analyze the e¤ects of uncertainty on the

decision of the duopolistic …rm to exercise the option to replace an existing pro-
duction asset with a new one, corresponding to a more cost-e¢cient technology.
In comparison to past contributions to the strategic real options literature, our
model allows for ‡exibility concerning the optimal timing of the investment and,
at the same time, incorporates the convexity of the pro…ts in the stochastic pro-
cess associated with market uncertainty. We …nd that, irrespective of the value
of input parameters, the direct e¤ect of uncertainty (related to the waiting op-
tion) on the investment threshold of the leader is larger than the indirect e¤ect
(strategic option) resulting from the delay in the follower’s entry. Furthermore,
it was found that the expected investment timing increases with uncertainty.
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This result supports the view that uncertainty delays investment, even in the
presence of strategic interactions combined with a convex pro…t function.

Our paper contradicts Kulatilaka and Perotti [8], who …nd that, un-
der strong strategic advantage, increased uncertainty encourages investment in
growth options. The reason for this contradiction is that in the two-period model
investment is a now-or-never decision, while in our continuous-time model it is
possible to delay investment. The latter feature implies that there exists an op-
tion value of waiting, which increases with uncertainty. Despite the fact that the
value of the project, when undertaken immediately, can rise with uncertainty,
the e¤ect of the higher value of the option to wait dominates.

Finally, we look at the probability of investing within a certain time
interval. Here, the point in time in which the …rm invests optimally in a deter-
ministic case plays a crucial role. If we take a time interval that contains this
point in time, then the probability of investing within this interval decreases
with uncertainty. However, if the time interval is that short that the optimal
investment time corresponding to the deterministic case lies outside this inter-
val, then the investment probability goes up with uncertainty when uncertainty
is low while it goes down otherwise.

8 Appendix
Derivation of (15). The value of the …rm at time t < TN is equal to the sum
of discounted stream of cash ‡ow generated by using the old technology (what
corresponds to the instantaneous pro…t ¼00) and the discounted stream of cash
‡ow obtained after adopting the new technology at TN (corresponding to ¼10).
Consequently, we are able to write

V N (At) = E

"Z T N

t

1

9
(As ¡ K)2 e¡r(s¡t)ds

#
(48)

+E

�
e¡r(TN¡t)

µZ 1

TN

1

9
(As + K ¡ 2k)2 e¡r(s¡TN)ds ¡ I

¶¸
:

After applying Ito’s lemma, working out the expectations, and observing that

E
h
e¡rTN

i
=

µ
At

AN

¶¯

; (49)

we obtain

=
1

9

µ
A2

t

r ¡ 2® ¡ ¾2
¡ 2KAt

r ¡ ®
+

K2

r

¶Ã
1 ¡

µ
At

AN

¶¯
!

+ (50)

+

Ã
1

9

Ã
A2

t

r ¡ 2® ¡ ¾2
+

2 (K ¡ 2k)At

r ¡ ®
+

(K ¡ 2k)2

r

!
¡ I

!µ
At

AN

¶¯

:

This directly leads to (15).
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Derivation of (38). At the optimal threshold of the follower the value of
the option to wait equals the NPV of the project. The latter can be expressed
by

F (At) =

Z 1

TFN

1

9
As

2e¡r(s¡TF N)ds ¡ I; (51)

where TFN denotes the point of time the investment is made. The value-
matching and smooth-pasting conditions corresponding to the new market entry
are therefore as follows

CA¯
t =

1

9

A2
t

r ¡ 2® ¡ ¾2
¡ I; (52)

¯CA¯¡1
t =

2

9

At

r ¡ 2® ¡ ¾2
: (53)

Solving the system of equations yields (38).
Proof of Proposition 1. First, let us de…ne

³ (At) = V S (At) ¡ V L (At) : (54)

After substitution we get

³ (At) = ¡4

9

KAt

r ¡ ®
+ I +

0
@

1
¯¡1

³
I + K2

9r

´

(AS)
¯

+

1
2

¯
¯¡1

³
I + 4K2

9r

´
+ K2

9r

(AF )
¯

1
AA¯

t ;

(55)

for At � AF : From (32) it follows that if the minimum of ³ (At) on the interval
[K;AF ] is smaller than zero, a sequential equilibrium occurs.12 Otherwise, the
…rms enter simultaneously. The existence of a negative minimum of ³ (At) de-
pends, as mentioned above, on the value of the input parameters. The minimum
of ³ (At) occurs for

bA =

0
@

4
9¯

K
r¡®

¡
ASAF

¢¯

1
¯¡1

¡
I + K2

9r

¢
(AF )

¯
+

³
1
2

¯
¯¡1

¡
I + 4K2

9r

¢
+ K2

9r

´
(AS)

¯

1
A

1

¯¡1

: (56)

It is su¢cient to show that

d³ (At)

dI

¯̄
¯̄
At= bA

=
@³ (At)

@I
+

@³ (At)

@At

¯̄
¯̄
At= bA

d bA
dI

> 0: (57)

From (55) we derive that

d³ (At)

dI
= 1 ¡

µ
At

AS

¶¯

¡ ¯
1
2I + K2

3r

I + 4
9

K2

r

µ
At

AF

¶¯

: (58)

12 Strictly speaking, the equilibrium with sequential entry still exists in this case but is
Pareto-dominated by the simultaneous entry equilibrium (cf. Fudenberg and Tirole [3]).
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Subsequently, we substitute for At in (58) the expression (56) for bA: Although an

analytical proof is not possible, numerically we are able to show that d³(At)
dI

¯̄
¯
At= bA

is positive for ¯ 2 [1;1); ® 2 R; r 2 (®;1) ; K 2 R++ and I 2
³

4
9

K2

r ;1
´
.13

Proof of Proposition 2. A substitution for (36) and (37) in the …rst
factor of (35) yields

d» (At)

d¯
=

³
¯

¯¡1

³
3
2I + 2

3
K2

r

´
¡ K2

3r ¡ I
´

ln
³

AF

At

´
¡ 1

¯¡1

³
1
2I + 1

3
K2

r

´

³
AF

At

´¯
: (59)

Since the investment threshold of the leader is equal to AP , and AP is the
smallest root of the concave function » (At) ; we know that

@» (At)

@At

¯̄
¯̄
At=AP

> 0: (60)

Consequently, from the envelope theorem we conclude that it is su¢cient to
show that

d» (At)

d¯

¯̄
¯̄
At=AP

> 0 (61)

to conclude that the investment threshold of the leader is increasing in uncer-
tainty (decreasing in ¯). Moreover, we know from (59) that d»(At)

d¯ changes its
sign only once and the corresponding realization of At to the zero value of the
derivative is

eA = AF e
¡

1
2

I+1
3

K2

r

¯( 1
2

I+1
3

K2
r )+ K2

3r
+I : (62)

Therefore

d» (At)

d¯
> 0 i¤ At < eA: (63)

Consequently, »
³

eA
´

> 0 would imply that eA > AP and d»(At)
d¯

¯̄
¯
At=AP

> 0: In

order to prove that »
³

eA
´

> 0, we plug (62) into (29) to obtain

»
³

eA
´

=
¯

¯ ¡ 1

µ
3

2
I +

2

3

K2

r

¶
e
¡

1
2

I+1
3

K2

r

¯( 1
2

I+1
3

K2
r )+ K2

3r
+I ¡ K2

3r
¡ I

¡
µ

¯

¯ ¡ 1

µ
3

2
I +

2

3

K2

r

¶
¡ K2

3r
¡ I

¶
e
¡¯

1
2

I+1
3

K2

r

¯( 1
2

I+1
3

K2
r )+ K2

3r
+I :(64)

13 A package Mathematica 3.0 is used in the proof of Propositions 1 - 3. The code is available
from the authors.
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An analytical proof is again not possible but numerically it can be shown that
»
³

eA
´

is positive for ¯ 2 [1;1); ® 2 R; r 2 (®;1) ; K 2 R++ and I 2
³

4
9

K2

r ;1
´
.

Proof of Proposition 3. First we substitute the functional forms of the
value functions into (42) and rewrite the derivative (43) as

d»N (At)

d (¾2)
=

1

4

A2
t

(r ¡ 2® ¡ ¾2)2
¡

5
4I

¯ ¡ 2

µ
At

AFN

¶¯

(65)

£
�

@¯

@ (¾2)
+

µ
¯ +

8

5

¶µ
¯

2 (r ¡ 2® ¡ ¾2)
+ ln

µ
At

AFN

¶
@¯

@ (¾2)

¶¸
:

Since an explicit solution of APN cannot be derived, we proceed as follows.
First, we take a particular point A > APN : Second, we show that d»N (At)

d(¾2) is

negative for all At 2 (A;A); where A is a realization of At such that A < APN .
Let us de…ne

A = 2

s
¯

¯ ¡ 2
I (r ¡ 2® ¡ ¾2): (66)

First, we show that »N
¡
A

¢
> 0 what would imply that A > APN . After

substituting (66) into (42) we obtain

»N
¡
A; ¯

¢
=

2I

¯ ¡ 2

Ã
1 ¡

µ
5

8
¯ + 1

¶µ
2

3

¶¯
!

=
2I

¯ ¡ 2
Á (¯) : (67)

Since ¯ > 2 (recall that for ¯ � 2 no …rm ever invests), we know that 2I
¯¡2 is

always positive. Therefore we are interested only in the sign of Á (¯) : For ¯ # 2
we obtain

lim
¯#2

Á (¯) = 0: (68)

Then we establish that

@Á (¯)

@¯
= ¡

µ
2

3

¶¯ µ
5

8
+

µ
5

8
¯ + 1

¶
ln

µ
2

3

¶¶
> 0 (69)

for ¯ 2 (2;1). This implies that »N
¡
A

¢
is positive which implies that A >

APN . Furthermore, we prove that (65) changes signs twice, i.e. it is positive

for At 2 (0;A)[
³
A;AFN

´
, where A is some realization of At such that A > A,

and negative otherwise. First, we express (65) as

d»N (At)

d (¾2)
= A2

t

�
KA¯¡2

t + LA¯¡2
t ln

µ
At

AFN

¶
+ M

¸
; (70)
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where

K = ¡
5
4I

¯ ¡ 2

¡
AFN

¢¡¯

Ã
@¯

@ (¾2)
+

¯
¡
¯ + 8

5

¢

2 (r ¡ 2® ¡ ¾2)

!
; (71)

L = ¡
5
4I

¯ ¡ 2

¡
AFN

¢¡¯
µ

¯ +
8

5

¶
@¯

@ (¾2)
> 0; and (72)

M =
1
4

(r ¡ 2® ¡ ¾2)2
> 0: (73)

From (70) - (73) we know that14

lim
At#0

KA¯¡2
t + LA¯¡2

t ln

µ
At

AFN

¶
+ M = M; and (74)

lim
At!1

KA¯¡2
t + LA¯¡2

t ln

µ
At

AFN

¶
+ M = 1: (75)

Moreover

@

@At

µ
KA¯¡2

t + LA¯¡2
t ln

µ
At

AFN

¶
+ M

¶

= A¯¡3
t

µ
(¯ ¡ 2)K + (¯ ¡ 2)L ln

µ
At

AFN

¶
+ L

¶

what implies that there exists only one optimum of d»N (At)
d(¾2) that is di¤erent from

zero. This result, combined with (74) and (75), implies that d»N(At)
d(¾2) is negative

at most in only one interval. Substituting A into (65) yields

d»N (At)

d (¾2)

¯̄
¯̄
¯
At=A

=

2I
¯¡2

r ¡ 2® ¡ ¾2
¡

5
4I

¯ ¡ 2

µ
2

3

¶¯

(76)

£
�

@¯

@ (¾2)
+

µ
¯ +

8

5

¶µ
¯

2 (r ¡ 2® ¡ ¾2)
+ ln

µ
2

3

¶
@¯

@ (¾2)

¶¸

Numerically it can be shown that @»N (At)
@(¾2)

¯̄
¯
At=A

is negative for ¯ 2 [2;1); ® 2 R;

r 2 (®;1) and I 2 (0;1). Therefore the only remaining part of the proof is
to show that A < APN for any vector of input parameters. Since the explicit
analytical forms of A and APN do not exist, we use a numerical procedure. For
any given vector of input parameters (from the domains as in the preceding
part of the proof), we calculate the di¤erence APN ¡ A and show that it is

positive. Given that d»N(At)
d(¾2)

¯̄
¯
At2(A;A]

< 0; APN 2 (A;A) and »N
¡
A

¢
> 0, we

conclude that dAP N

d(¾2) > 0; i.e. the investment threshold of the leader increases in
uncertainty.

14 The result (74) has been derived using the de l’Hbopital rule and observing that A2¡¯t
explodes in the neighborhood of zero faster than ln At:
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Proof of Proposition 4. First, we show that ¿¤ is the time to reach the
investment threshold A¤ in a deterministic case. After observing that x = ®t
is a solution to dx = ®dt with an initial condition x0 = 0; and substituting
x¤ = ln A¤

At
, we obtain

ln
A¤

At
= ®¿¤; (77)

so ¿¤ is the time to reach the threshold A¤. Now, we consider a density function
'

¡
¿ ;¹ (¾) ; ¾2

¢
. For a moment we assume that ¹ = ¿¤ irrespective from ¾: Then

increasing ¾ is equivalent to performing a mean preserving spread. Consequently
in such a case,

@

@¾

µZ ¿

0

' (s) ds

¶
(¿ ¡ ¿¤) < 0: (78)

When '
¡
¿ ;¹ (¾) ; ¾2

¢
is the density function of the …rst passage time for a geo-

metric Brownian motion, E [¿ ] is increasing in ¾ (cf. (45)) when A¤ is increasing
in ¾, too. Therefore, there is another e¤ect contributing to the sign of derivative
@

@¾

¡R ¿

0
' (s) ds

¢
. For ¿ > ¿¤, an increase in uncertainty not only reduces the

probability mass to the left from ¿ via the mean preserving spread but also be-
cause of the mean itself moving to the right. Therefore the e¤ect of uncertainty
on the probability of investing is in this region unambiguous and negative. For
¾ ! 1 the probability of investing by given ¿ decreases to zero. The latter
conclusion is true since from (46) it is obtained that

lim
¾!1

P (T < ¿) = lim
¾!1

©

Ã
¡ ln A¤

At
+

¡
® ¡ 1

2¾2
¢
¿

¾
p

¿

!

+ lim
¾!1

"
©

Ã
¡ ln A¤

At
¡

¡
® ¡ 1

2¾2
¢
¿

¾
p

¿

!µ
A¤

At

¶ 2®
¾2 ¡1

#

= lim
¾!1

"
©

Ã
¡ ln A¤

At
¡

¡
® ¡ 1

2¾2
¢
¿

¾
p

¿

!µ
At

A¤

¶#
= 0 (79)

for

lim
¾!1

A¤ = 1: (80)

For ¿ < ¿¤, the two e¤ects work in the opposite direction. As in the previ-
ous case, the mean E [¿ ] is increasing in uncertainty. Without a change in the
volatility, an increase in the mean would then decrease the probability of in-
vesting. However, increasing uncertainty results in more probability mass being
now present in the left tail of ' (¿). Therefore, the total e¤ect of increasing
uncertainty is in this region ambiguous. However, we are able to conclude that
the probability of investing at a given ¿ behaves in a certain non-monotonic
way. For ¾ = 0; there is no probability mass on the interval [0; ¿). Therefore an
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increase in uncertainty leads initially to the increased probability of investment.
For relatively large ¾ the e¤ect of moving the mean of the distribution to the
right starts to dominate and the probability of investment falls. For ¾ ! 1 the
probability of investing by given ¿ decreases to zero.

Finally, we show that all the thresholds increase in uncertainty mono-
tonically and unboundedly. We already know (from Proposition 2 and 3) that
the optimal investment thresholds increase in uncertainty monotonically. So
now we only have to prove that the thresholds grow in uncertainty unbound-
edly. For the thresholds of the follower and in case of joint replacement it is easy
to observe that ¯

¯¡1 tends to in…nity when ¾ ! 1:15 The investment thresh-
old of the leader requires slightly more attention.16 We already know that the
leader invests as soon as the stochastic variable reaches the smallest root of the
following equation (cf. (29))

0 =
2

3

KAt

r ¡ ®
¡ K2

3r
¡ I ¡

µ
2

3

KAF

r ¡ ®
¡ K2

3r
¡ I

¶µ
At

AF

¶¯

: (81)

After substituting (19) and rearranging, we obtain

0 =

0
BBB@1 ¡

Ã
4
9KAt

¯
¯¡1

¡
I + 4K2

9r

¢
(r ¡ ®)

!¯¡1

+

³
K2

3r + I
´

A¯¡1
t

2
3

K
r¡®

µ
¯

¯¡1

I+ 4K2

9r
4
9KAt

(r ¡ ®)

¶¯

1
CCCA

£2

3

KAt

r ¡ ®
¡ K2

3r
¡ I: (82)

It holds that

lim
¯#1

0
BBB@1 ¡

Ã
4
9KAt

¯
¯¡1

¡
I + 4K2

9r

¢
(r ¡ ®)

!¯¡1

+

³
K2

3r + I
´

A¯¡1
t

2
3

K
r¡®

µ
¯

¯¡1

I+ 4K2

9r
4
9KAt

(r ¡ ®)

¶¯

1
CCCA = 0

(83)

and

lim
¯#1

@

@¯

Ã
4
9KAt

¯
¯¡1

¡
I + 4K2

9r

¢
(r ¡ ®)

!¯¡1

< 0: (84)

Now, we are looking for the solution of

0 = m (x)x ¡ n; where 8x 2 R++ m (x) ; n > 0; (85)

15 For new market model the similar conclusion can be drawn after the substitution of
parameters in the original geometric Brownian motion.

16 The unboundedness of the leader threshold in the new market entry can be proven in a
similar way as in the presented case of technology adoption.
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such that m (x) is tending to zero from above (this is guaranteed by (84)) for
8x 2 R++ when the uncertainty is increasing. Consequently, any solution (so
the smallest one as well) of (85) is tending to in…nity. This is equivalent to

lim
¯#1

AP = 1: (86)

what completes the proof.
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