

No. 2004–65

JOB SCHEDULING, COOPERATION, AND CONTROL

By P. Calleja, M.A. Estévez-Fernández, P.E.M. Borm,
H.J.M. Hamers

July 2004

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Job scheduling, cooperation, and control

Pedro Calleja1,2, Arantza Estévez-Fernández3,4, Peter Borm3 and Herbert Hamers3

Abstract:

This paper considers one machine job scheduling situations or sequencing problems, where clients can
have more than a single job to be processed in order to get a final output. Moreover, a job can be of
interest for different players. This means that one of the main assumptions in classic sequencing problems
is dropped: the one to one correspondence between clients and jobs. It is shown that the corresponding
cooperative games are balanced for specific types of cost criteria.

Keywords: cooperative game theory, scheduling, balancedness.
JEL classification: C71

1 Introduction

In a job scheduling situation or sequencing problem a number of jobs has to be processed in
some order on one or more machines in such a way that a specific cost criterion is minimized.
Job scheduling situations can be classified on the basis of many features. We mention the number
of machines, the specific properties of the machines (e.g., parallel, serial), the chosen cost criterion
(e.g., maximum completion time, weighted completion time), restrictions on the jobs (e.g., ready
times, due dates) and possibly the specific order in which the jobs have to be processed on the
machines (e.g., job-shop, flow-job).

By associating jobs to clients, a sequencing problem gives rise to a multi-active decision
making problem. Each client incurs costs, depending on the completion times of his jobs. By
assuming an initial order on the jobs, the first problem the clients jointly face is that of finding
an optimal reordering of all jobs, i.e., a schedule maximizing joint cost savings. The subsequent
problem is how to reallocate these cost savings in a fair way. This “fairness” problem can be
analyzed from a game-theoretic point of view. By defining the value of a coalition of clients
as the maximum costs it can save by means of an optimal admissible reordering, we obtain a
cooperative sequencing game related to the sequencing problem. The core of this game provides
insight in the allocation problem at hand since core elements provide a stable reallocation of the
joint cost savings. A game is said to be balanced if it has a non-empty core.

The above game-theoretic approach to sequencing situations was initiated by Curiel, Pederzoli
and Tijs (1989) by considering the class of one-machine sequencing situations. The weighted
completion cost criterion is used and it was shown that the corresponding sequencing games are
convex, and thus balanced. In Curiel, Potters, Prasad, Tijs and Veltman (1994) one-machine
sequencing situations are considered in which each agent has a weakly increasing cost function.
They show that also in this extended setting the corresponding sequencing games are balanced.

1Department of Economic, Financial, and Actuarial Mathematics, University of Barcelona, Av. Diagonal 690,
08034 Barcelona, Spain.

2Financial support has been given by the Generalitat de Catalunya through a BE grant from AGAUR
3CentER and Department of Econometrics and Operations Research, Tilburg University, P.O.Box 90153, 5000

LE Tilburg, The Netherlands
4Corresponding author. E-mail address: A.E.Fernandez@uvt.nl

Hamers, Borm and Tijs (1995) extend the class considered by Curiel et al. (1989) by imposing
ready times on the jobs. The corresponding sequencing games are balanced and convex under
some additional assumption. Similar results are obtained in Borm, Fiestras-Janeiro, Hamers,
Sánchez and Voorneveld (2002) in which due dates are imposed on the jobs. Instead of imposing
further restrictions on the jobs, van den Nouweland, Krabbenborg and Potters (1990), Hamers,
Klijn and Suijs (1999) and Calleja, Borm, Hamers, Klijn and Slikker (2002) extend the number
of machines. In each case balancedness was established for the corresponding games for specific
instances. Finally, van Velzen and Hamers (2003) and Slikker (2003) consider relaxations in
the notion of admissibility of reorderings in one machine sequencing situations and focus on
balancedness. A recent review on sequencing games can be found in Curiel, Hamers and Klijn
(2002).

Throughout the above mentioned literature it is assumed that there is a one to one corres-
pondence between clients and jobs to be processed on a machine. Now this main assumption in
sequencing models is dropped. This paper considers one machine sequencing situations where
clients can have more than a single job to be processed. Moreover, a single job can be of interest
to more than a single player. Think for instance in tasks that have to be processed by the CPU
of a computer. One particular task could be of interest to different clients, and a particular client
could be waiting for different tasks in order to obtain a final result. Another example can be
found in a court where several legal proceedings have to be pronounced by an examining magis-
trate. Different people can be involved in the same case and a person can be involved in more
than one case. A job is controlled by all players that are involved in it meaning that a coalition
may change the position of a job only if all the players that are involved belong to the coalition.
We focus on balancedness of the corresponding games and show that it is achieved when cost
functions of players are additive with respect to the initial order on the jobs. A formal description
of the model is presented in section 2. Section 3 is devoted to the balancedness of this kind of
games.

2 The model

We consider one-machine sequencing problems, where there is a queue of jobs in front of a ma-
chine waiting to be processed. A job can be of interest to more than one player and every player
can be involved in more than one job. The finite set of players is denoted by N . The finite set of
jobs is denoted by M . The jobs in which the players are involved are described by a correspon-
dence J : N ³ M , where J(i) denotes the set of jobs in which player i is involved. We assume
|J(i)| ≥ 1, i.e., each player is involved in at least one job. The set of players that are involved
in job j is denoted by N(j). We assume |N(j)| ≥ 1, i.e., at least one player is involved in a job.
This type of situations incorporates the classical one-machine sequencing situations, introduced
by Curiel et al. (1989), where |N | = |M | and J corresponds to a bijective function. Positions
of the jobs in a queue (a processing order) are described by a bijection σ : M → {1, . . . , |M |},
where σ(j) = k means that job j is at position k in the queue. The set of all such bijections is
denoted by Π(M). We assume that the machine starts processing at time 0 and that there is
an initial order on the jobs, σ0 ∈ Π(M), before the processing of the machine starts. We denote
by pj the processing time of job j, i.e., the time that the machine needs to execute job j. We
assume pj ≥ 0 for every j ∈ M . Furthermore, we assume that, given a processing order, the jobs
are processed in a semi-active way. Here, a processing order is called semi-active if there does

2

not exist a job that could be processed earlier without altering the processing order.

If the jobs are processed according to the order σ in a semi-active way, then the completion
time of job j is given by

Cσ
j =

∑

k∈M :σ(k)≤σ(j)

pk.

The costs of player i are assumed to be described by a cost function which depends only (in a
weakly monotonic way) on the completion times of the jobs in J(i), i.e., ci : [0,∞)J(i) → R.
Given σ ∈ Π(M), we denote ci(σ) = ci((Cσ

j)j∈J(i)).

A sequencing situation with repeated players (an RP-sequencing situation) is a 6-tuple
(N, M, J, σ0, p, c) with p = (pj)j∈M and c = (ci)i∈N . Costs are assumed to be additive across
players. Therefore, given a processing order σ, the total costs of coalition S ⊆ N , when its
members decide to cooperate, equals the sum of individual costs of the members of S:

cS(σ) =
∑

i∈S

ci(σ).

In order to determine the minimal costs of coalition S, we need to fix which processing orders
of jobs are admissible for coalition S with respect to the initial order σ0. Let Jc(S) = {j ∈ M :
N(j) ⊆ S} be the set of jobs in which only (some) members of S are involved, i.e., Jc(S) is the
set of jobs that are controlled by coalition S. An order σ ∈ Π(M) is admissible for S if

Pj(σ) = Pj(σ0) for all j /∈ Jc(S),

where Pj(σ) = {k ∈ M : σ(k) < σ(j)} is the set of predecessors of job j with respect to σ. We
denote by A(S) the set of admissible orders for coalition S. In particular, note that if an or-
der is admissible for S, the completion time of each job in which a player of N \ S is involved
does not change. Moreover, only within connected parts of Jc(S) w.r.t. σ0, jobs can be reordered.

Summarizing, a coalition S faces the following optimization problem:

min
σ∈A(S)

cS(σ).

Clearly, there exists an order for which the joint costs of players in S are minimized since A(S)
is finite. Note that A(N) = Π(M).

Given an RP-sequencing situation, (N,M, J, σ0, p, c), we define the associated RP-sequencing
(cost savings) game (N, v) by

v(S) = cS(σ0)− min
σ∈A(S)

cS(σ) = max
σ∈A(S)

(
cS(σ0)− cS(σ)

)
, for every S ⊆ N,

i.e., the value of coalition S equals the maximal cost savings that the coalition can obtain by
means of admissible rearrangements.

3

Example 2.1. Let (N,M, J, σ0, p, c) be an RP-sequencing situation with N = {1, 2, 3}, M =
{A,B,C, D} and J(1) = {A, B}, J(2) = {B, C}, J(3) = {A,D}. Let the initial order of the jobs,
σ0, be A-B-C-D and let the processing times vector be p = (1, 2, 1, 1). This situation is depicted
below:

1,3 1,2 2 3

A B C D

0 1 3 4 5

The cost functions of the players are defined as follows:
c1(σ) = Cσ

A + Cσ
B, c2(σ) = 2min{Cσ

B, Cσ
C}, and c3(σ) = max{Cσ

A, Cσ
D}.

In this case player 1 pays the sum of the processing time of his his two jobs. For player 2 his
jobs are substitutes and his cost function depends linearly on the completion time of the job which
is processed first. For player 3 the jobs are complementary and his costs depend linearly on the
completion time of the job which is processed last. The values of the associated RP-sequencing
game are in Table 1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 1 0 1 3

Table 1: values of the RP-sequencing game.

As an illustration we compute the value of coalition {1, 2}. For this purpose we need the set of
admissible orders for coalition {1, 2}. Since Jc(S) = {B,C},A(S) = {σ0, σ}, where σ corresponds
to A-C-B-D. Then,

c1(σ0) = 1 + 3 = 4, c2(σ0) = 2 · 3 = 6

and
c1(σ) = 1 + 4 = 5, c2(σ) = 2 · 2 = 4.

Hence,
v({1, 2}) = max

σ∈A(S)

(
cS(σ0)− cS(σ)

)
= max

(
0, (4 + 6)− (5 + 4)

)
= 1.

Note that Jc({1,3}) = {A,D}, which is unconnected w.r.t. σ0, so A({1,3}) = {σ0}. One readily
checks that the optimal order for coalition {2, 3} is A-B-D-C and for the grand coalition it is
C-A-D-B. 2

3 Balancedness of RP-sequencing games

In this section we show that RP-sequencing games are balanced if the underlying cost functions
satisfy additivity with respect to the initial order. In fact, introducing so called job games we
will prove that these games are balanced and that each core element of a job game gives rise to
a core element of the corresponding RP-sequencing game.

4

Recall that the core of a cooperative game (N, v) is given by

Core(v) = {x ∈ RN |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N}.

A game is said to be balanced (see Bondareva (1963) and Shapley (1967)) if the core is nonempty.

First we provide an example of an RP-sequencing situation with an empty core.

Example 3.1. Let (N,M, J, σ0, p, c) be an RP-sequencing situation with N = {1, 2, 3}, M =
{A,B,C, D} and J(1) = {A,D}, J(2) = {B}, J(3) = {C}. Let the initial order σ0 be A-B-C-D
and let the processing times vector be p = (1, 1, 1, 1).

1 2 3 1

A B C D

0 1 2 3 4

The cost functions of the players are defined as follows:

c1(σ) =

2 if Cσ
A + Cσ

D ≤ 4,
8 if 4 < Cσ

A + Cσ
D ≤ 5,

10 if 5 < Cσ
A + Cσ

D ≤ 6,
20 if Cσ

A + Cσ
D > 6.

c2(σ) =

0 if Cσ
B ≤ 1,

10 if 1 < Cσ
B ≤ 3,

20 if Cσ
B > 3.

c3(σ) =
{

0 if Cσ
C ≤ 2,

10 if Cσ
C > 2.

The values of the associated RP-sequencing game are given in Table 2.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 8 6 10 10

Table 2: values of the RP-sequencing game.

Clearly, Core(v) = ∅. 2

We now introduce the notion of an RP-job game.

Let (N, M, J, σ0, p, c) be an RP-sequencing situation. A rearrangement σ ∈ Π(M) of jobs is
called feasible for a subset K ⊆ M of jobs if

Pj(σ) = Pj(σ0) for all j ∈ M\K.

We denote by F(K) the set of feasible rearrangements for K ⊆ M .

Given an RP-sequencing situation, (N, M, J, σ0, p, c), we define the associated RP-job (cost
savings) game, (M, vJ), by

vJ(K) = max
σ∈F(K)

∑

i∈N(K)

(
ci(σ0)− ci(σ)

)
for every K ⊆ M,

5

where N(K) = ∪
j∈K

N(j) is the set of players that are involved in K. Note that N({j}) = N(j).

Further, note that vJ(M) = v(N) and vJ(Jc(S)) = v(S) for every S ⊆ N since F(Jc(S)) = A(S),
N(Jc(S)) ⊆ S, and if k ∈ S \N(Jc(S)), then ck(σ0)− ck(σ) = 0 for every σ ∈ F(Jc(S)).

For K ⊆ M , σ̂ ∈ F(K) is called an optimal order for K if it maximizes the expression∑

i∈N(K)

(
ci(σ0)− ci(σ)

)
over σ ∈ F(K).

Example 3.2. The values of the RP-job game associated to the RP-sequencing situation in
Example 2.1 are: vJ({j}) = 0 for every j ∈ M , vJ({A,B}) = vJ({B, C}) = vJ({C,D}) = 1,
vJ({A,C}) = vJ({A,D}) = vJ({B, D}) = 0, vJ({A,B, C}) = vJ({B,C, D}) = 2,
vJ({A,B, D}) = vJ({A, C,D}) = 1, vJ({A,B, C, D}) = 3.

One readily checks that, (1, 1, 1, 0) ∈ Core(vJ). 2

Let (N, M, J, σ0, p, c) be an RP-sequencing situation and let i ∈ N . A cost function ci is
additive with respect to σ0 if for all L1, L2 ⊆ M with L1 ∩L2 = ∅, all ρ ∈ F(L1) and τ ∈ F(L2),
it holds that

ci(σ0)− ci(π) =
(
ci(σ0)− ci(ρ)

)
+

(
ci(σ0)− ci(τ)

)
,

where π ∈ F(L1 ∪ L2) is such that π(j) =

ρ(j) if j ∈ L1,
τ(j) if j ∈ L2,
σ0(j) if j ∈ M \ (L1 ∪ L2).

In Curiel et al. (1994) sequencing games with weakly increasing cost functions are studied,
which satisfy additivity with respect to the initial order since the set of jobs is identified with
the set of players and the correspondence J is bijective. Cost functions ci which are linear with
respect to the sum, the minimum or the maximum of the completion times in J(i), as those
in Example 2.1, are examples of additive cost functions with respect to the initial order. In
Example 3.1 the cost functions of player 1 is not additive with respect to σ0. Another type of
cost functions that are additive with respect to the initial order are cost functions ci of the form
ci(σ) =

∑
j∈J(i) κj(σ) where κj(σ) is a weakly monotonic cost function on the completion time

of job j.
Next, we consider Example 3.1 to illustrate that if cost functions are not additive with respect
to the initial order the corresponding RP-job game needs not be balanced.

Example 3.3. Consider the RP-sequencing situation introduced in Example 3.1. It is readily to
check that for L1 = {A,B}, L2 = {C, D}, ρ : B-A-C-D, τ : A-B-D-C, π : B-A-D-C, it holds:

c1(σ0)− c1(π) = 8− 8 = 0 < 4 = (8− 10) + (8− 2) =
(
ci(σ0)− ci(ρ)

)
+

(
ci(σ0)− ci(τ)

)
.

Moreover, the associated RP-job game is: VJ({A}) = VJ({B}) = VJ({C}) = VJ({D}) = 0,
VJ({A,B}) = 8, VJ({A,C}) = VJ({A,D}) = 0, VJ({B, C}) = 10, VJ({B, D}) = 0,
VJ({C, D}) = 6, VJ({A, B,C}) = VJ({B, C,D}) = 10, VJ({A,B, D}) = 8, VJ({A,C, D}) = 6,
VJ(M) = 10.
In this case, Core(vJ) = ∅ because vJ({A,B}) + vJ({C, D}) = 8 + 6 > 10 = vJ(N).

In the following lemma we show that a job game is σ0-component additive if all underlying
cost functions are additive with respect to σ0.

6

Curiel et al. (1994) introduced the class of σ0-component additive games and proved that
they are balanced. Given an order σ0 ∈ Π(N), a game (N, v) is called σ0 -component additive if
the following three conditions are satisfied,
(1) v({i}) = 0 for all i ∈ N ,
(2) (N, v) is super-additive (i.e., v(S) + v(T) ≤ v(S ∪T) for all S, T ⊆ N such that S ∩T = ∅),
(3) v(S) =

∑
T∈S/σ0

v(T), where S/σ0 is the set of all maximally connected components of S

according to σ0. Here, a coalition T is called connected with respect to σ0 if for all i, j ∈ T and
k ∈ N such that σ0(i) < σ0(k) < σ0(j) it holds that k ∈ T . Notice that S/σ0 is a partition of S.

Lemma 3.4. Let (N, M, J, σ0, p, c) be an RP-sequencing situation in which all cost functions ci,
i ∈ N , are additive with respect to σ0. Then the associated RP-job game (M,vJ) is σ0-component
additive, and hence balanced.

Proof: By definition of F(S), vJ({j}) = 0 for all j ∈ M . Next, we will show that (N, vJ) is
super-additive.
Let K, L ⊆ M be such that K ∩ L = ∅, then

vJ(K) + vJ(L) =
∑

i∈N(K)

(
ci(σ0)− ci(σK)

)
+

∑
i∈N(L)

(
ci(σ0)− ci(σL)

)

=
∑

i∈N(K∪L)

(
ci(σ0)− ci(σK∪L)

)

≤ max
σ∈F(K∪L)

∑
i∈N(K∪L)

(
ci(σ0)− ci(σ)

)

= vJ(K ∪ L)

where σK ∈ F(K) is an optimal order for K, σL ∈ F(L) is an optimal order for L, and
σK∪L ∈ F(K ∪ L) is defined by

σK∪L(j) =

σK(j) if j ∈ K,
σL(j) if j ∈ L,
σ0(j) if j ∈ M \ (K ∪ L).

Note that the second equality holds since the cost functions are additive with respect to σ0.

Finally, we need to show that vJ(K) =
∑

L∈K/σ0

vJ(L). Because K/σ0 is a partition of K, it is

sufficient to show it for K with K/σ0 = {L1, L2}. Hence,

v(K) = max
σ∈F(K)

{
∑

i∈N(K)

(ci(σ0)− ci(σ))}

= max
σ1∈F(L1)
σ2∈F(L2)

{
∑

i∈N(L1)

(ci(σ0)− ci(σ1)) +
∑

i∈N(L2)

(ci(σ0)− ci(σ2))}

= vJ(L1) + vJ(L2),

where the second equality holds by definition of F(K), the fact that L1 and L2 are not connected,
and by additivity of the cost functions with respect to σ0. 2

Now, we can state our main theorem.

7

Theorem 3.5. Let (N, M, J, σ0, p, c) be an RP-sequencing situation in which all cost functions
ci, i ∈ N , are additive with respect to σ0. Then the associated RP-sequencing game (N, v) is
balanced.

Proof:By Lemma 3.4, the associated RP-job game, (M, vJ), is balanced. Let y ∈ RM be a
core element of the RP-job game. Define an allocation x ∈ RN by

xi =
∑

j∈J(i)

λi
jyj

where, for every j ∈ M it holds: λj ∈ RN , λi
j ≥ 0 for all i ∈ N(j), λi

j = 0 for all i ∈ N \ N(j)

and
∑

i∈N

λi
j = 1. Note that in this way the cost savings yj allocated to a particular job j ∈ M are

reallocated only to players in N(j). We will show that x ∈ Core(v). First, we show efficiency,
∑

i∈N

xi =
∑

i∈N

∑

j∈J(i)

λi
jyj =

∑

j∈M

∑

i∈N(j)

λi
jyj =

∑

j∈M

yj

∑

i∈N

λi
j = vJ(M) = v(N)

where the second equality follows from
⋃

i∈N

J(i) = M , the second one holds since λi
j = 0 for all

i ∈ N \N(j), and the fourth equality is satisfied since y is a core element of vJ .

Stability follows from the fact that
∑

i∈S

xi =
∑

i∈S

∑

j∈J(i)

λi
jyj =

∑

j∈J(S)

∑

i∈N(j)∩S

λi
jyj =

∑

j∈J(S)

yj

∑

i∈N(j)∩S

λi
j ≥

∑

j∈Jc(S)

yj

∑

i∈N(j)

λi
j

=
∑

j∈Jc(S)

yj ≥ vJ(Jc(S)) = v(S),

for all S ⊆ N , where J(S) :=
⋃

l∈S

J(l). The first inequality holds because Jc(S) ⊆ J(S) and

N(j) ∩ S = N(j) for all j ∈ Jc(S) by definition of Jc(S) and the second inequality is due to
y ∈ Core(vJ). 2

Example 3.6. Using the allocation rule given in the proof of Theorem 3.2, we can find core
elements for the RP-sequencing game in Example 2.1.
We will apply the method applied in the proof of Theorem 3.5 to (1, 1, 1, 0) ∈ Core(vJ) with
λA = (1

2 , 0, 1
2), λB = (1

2 , 1
2 , 0), λC = (0, 1, 0), λD = (0, 0, 1), in this case x = (1

2 + 1
2 , 1

2 +1, 1
2 +0) =

(1, 3
2 , 1

2) ∈ Core(v). 2

A special, well investigated subclass of balanced games is the class of convex games. Convex
games were introduced by Shapley (1971). A game (N, v) is said to be convex if v(T∪{i})−v(T) ≥
v(S ∪ {i})− v(S) for every S ⊆ T ⊆ N\ {i}.

The following example shows a non-convex RP-sequencing game where the cost functions
satisfy additivity with respect to the initial order, which illustrates that this property is not
sufficient for convexity.

8

Example 3.7. Let (N, M, J, σ0, p, c) be an RP-sequencing situation with N = {1, 2, 3, 4, 5},
M = {A,B, C,D, E, F, G} and J(1) = {D,G}, J(2) = {A,E}, J(3) = {C}, J(4) = {B},
J(5) = {F}. Let the initial order of the jobs, σ0, be A-B-C-D-E-F-G and let the processing times
vector be p = (3, 1, 6, 1, 1, 1, 1). This situation is depicted below:

2 4 3 1 2 5 1

A B C D E F G

0 3 4 10 11 12 13 14

The cost functions of the players are defined as follows:
c1(σ) = max

j∈J(1)
{Cσ

j }, c2(σ) = 4 max
j∈J(2)

{Cσ
j }, c3(σ) = 6 min

j∈J(3)
{Cσ

j }, c4(σ) = 10Cσ
B, and c5(σ) = Cσ

F .

Let S = {2, 3}, T = {2, 3, 4}, and i = 1. It is readily checked that the optimal order for coali-
tion S is σ0 and therefore v(S) = 0, the optimal order for coalition S ∪ {i} is A-B-E-C-D-F-G
and v(S ∪ {i}) = 22, the optimal order for coalition T is B-C-A-D-E-F-G and v(T) = 48, fi-
nally, the optimal order for coalition T ∪ {i} is B-C-A-E-D-F-G and v(T ∪ {i}) = 52. Therefore,
v(T ∪ {i})− v(T) = 4 < 22 = v(S ∪ {i})− v(S) and the game is not convex. 2

References

Bondareva, O. N. (1963), ‘Some applications of linear programming methods to the theory of
cooperative games’, Problemy Kibernitiki 10, 119–139 (in Russian).

Borm, P., Fiestras-Janeiro, G., Hamers, H., Sánchez, E. and Voorneveld, M. (2002), ‘On the
convexity of games corresponding to sequencing situations with due dates’, European Journal
of Operational Research 136, 616–634.

Calleja, P., Borm, P., Hamers, H., Klijn, F. and Slikker, M. (2002), ‘On a class of parallel
sequencing situations and related games’, Annals of Operations Research 109, 263–276.

Curiel, I., Hamers, H. and Klijn, F. (2002), Sequencing games: a survey, in P. Borm and H. Peters,
eds, ‘Chapters in Game Theory: in Honor of Stef Tijs’, Kluwer Academic Publishers, Boston,
pp. 27–50.

Curiel, I., Pederzoli, G. and Tijs, S. (1989), ‘Sequencing games’, European Journal of Operational
Research 40, 344–351.

Curiel, I., Potters, J., Prasad, R., Tijs, S. and Veltman, B. (1994), ‘Sequencing and cooperation’,
Operations Research 42, 566–568.

Hamers, H., Borm, P. and Tijs, S. (1995), ‘On games corresponding to sequencing situations with
ready times’, Mathematical Programming 69, 471–483.

Hamers, H., Klijn, F. and Suijs, J. (1999), ‘On the balancedness of m-sequencing games’, European
Journal of Operational Research 119, 678–691.

9

Shapley, L. S. (1967), ‘On balanced sets and cores’, Naval Research Logistics Quarterly 14, 453–
460.

Shapley, L. S. (1971), ‘Cores of convex games’, International Journal of Game Theory 1, 11–26.

Slikker, M. (2003), ‘Relaxed sequencing games have a nonempty core’, Beta working paper WP-
101. Technische Universiteit Eindhoven, Eindhoven, The Netherlands.

van den Nouweland, A., Krabbenborg, M. and Potters, J. (1990), ‘Flow-shops with a dominant
machine’, European Journal of Operational Research 62, 38–46.

van Velzen, B. and Hamers, H. (2003), ‘On the balancedness of relaxed sequencing games’,
Mathematical Methods of Operations Research 57(2), 287–297.

10

