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Abstract

This paper introduces a new way of representing bankruptcy rules. These
representations are used to show that the minimal overlap rule is a composi-
tion of the Ibn Ezra rule and the constrained equal losses rule. The residual
minimal overlap rule is analysed as an alternative extension of the Ibn Ezra
rule, by using a composition with the constrained equal awards rule.
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1 Introduction

The seminal paper by O’Neill (1982) on bankruptcy problems starts with a dis-

cussion on a solution proposed by the Talmudic scholar Ibn Ezra. This rule has a

natural interpretation in terms of players putting their claims on specific parts of

the available estate. One drawback of this rule, however, is that it is only defined

for situations in which the estate does not exceed the largest claim.

O’Neill (1982) extends Ibn Ezra’s rule to the class of all bankruptcy situations,

the result of which Thomson (2003) calls the minimal overlap rule. Its definition,

though natural, is rather implicit and no explicit formula for this rule exists. Hence,

very little is known about this rule.

This paper presents a new look on the Ibn Ezra rule and the minimal overlap

rule. We first provide an insightful pictorial way of representing bankruptcy rules

in terms of partial derivatives with respect to the estate. With the help of these
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representations, we can decompose the minimal overlap rule into two parts: for an

estate smaller than the largest claim, it coincides with the Ibn Ezra rule and for

larger estates, it equals the Ibn Ezra rule on part of the estate (the largest claim)

plus the constrained equal losses rule on the residual claims and estate.

One obvious question arising from this decomposition is what happens if on the

residual part we apply the constrained equal awards rule rather than the constrained

equal losses rule. We provide an interpretation of this rule, which we call the residual

minimal overlap rule, in terms of putting claims on specific parts of the estate. This

interpretation turns out to have a dual flavour to the idea behind minimal overlap.

The remainder of this paper is organised as follows. In Section 2, we consider

alternative representations of bankruptcy rules. In Section 3, we consider the min-

imal overlap rule and show that it can be decomposed into an Ibn Ezra part and

a constrained equal losses part. The residual minimal overlap rule is the topic of

Section 4.

2 Bankruptcy rules and representations

A bankruptcy situation (cf. O’Neill (1982)) is a triple (N,E, c), where N =

{1, . . . , n} is the set of players, E ≥ 0 is the estate to be divided and c ∈ RN
+

is the vector of claims such that
∑

i∈N ci ≥ E. Throughout the paper we assume

that c1 ≤ c2 ≤ . . . ≤ cn and the total of claims is denoted by C =
∑

i∈N ci. The

class of bankruptcy situations with player set N is denoted by BRN .

A bankruptcy rule is a function ϕ : BRN → RN that assigns to each bank-

ruptcy situation (N,E, c) ∈ BRN a payoff vector ϕ(N, E, c) ∈ RN such that

0 ≤ ϕ(N, E, c) ≤ c (reasonability) and
∑

i∈N ϕi(N, E, c) = E (efficiency). In this

paper, we only study bankruptcy rules for fixed N .

We further assume that bankruptcy rules are continuous and componentwise

(weakly) increasing in E, which holds for almost all rules that are known in the

literature. We study the shapes of the payoffs ϕi as function of E, for a fixed claim

vector c. A representation of ϕ is a vector of functions fϕ,c = (fϕ,c
i )i∈N , where for

all i ∈ N , fϕ,c
i : [0, C] → R is such that

ϕi(N, E, c) =

∫ E

0

fϕ,c
i (x)dx

for all E ∈ [0, C]. Given our assumptions, ϕi is differentiable almost everywhere

(a.e.). Therefore, a representation always exists. Furthermore, it is uniquely defined
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and nonnegative a.e. Also, because ϕ is efficient, we have that for all x ∈ [0, C],∑
i∈N fϕ,c

i (x) = 1 a.e.

The proportional rule is defined by PROPi(N,E, c) = ci

C
E for all i ∈ N . A

representation for n = 3 is depicted in Figure 1. For each i ∈ N , fPROP,c
i is a

constant function. In the graph, we indicate for each of the three functions the

corresponding player.

0 xC
0

fPROP,c(x)

1

c3
C

3

c2
C

2

c1
C

1

Figure 1: fPROP,c

Before showing representations of some other bankruptcy rules, we first consider

duality. The dual ϕ̄ of a bankruptcy rule ϕ (cf. Aumann and Maschler (1985)) is

defined by ϕ̄(N,E, c) = c − ϕ(N, C − E, c) for all (N, E, c) ∈ BRN . Define for

each representation fϕ,c a dual representation f̄ϕ,c by f̄ϕ,c
i (x) = fϕ,c

i (C − x) for all

x ∈ [0, C] and i ∈ N . Note that f̄ϕ,c is obtained from fϕ,c by mirroring in the line

x = 1
2
C.

Proposition 2.1 If fϕ,c is a representation for ϕ, then f̄ϕ,c is a representation for

ϕ̄.

Proof: Let ϕ be a bankruptcy rule, let c be a claims vector and let fϕ,c be a

representation of ϕ. Then for all i ∈ N ,
∫ E

0

f̄ϕ,c
i (x)dx =

∫ C

C−E

fϕ,c
i (x)dx

=

∫ C

0

fϕ,c
i (x)dx−

∫ C−E

0

fϕ,c
i (x)dx

= ϕi(N,C, c)− ϕi(N,C − E, c)

= ci − ϕi(N, C − E, c)

= ϕ̄i(N,E, c).
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As a result of the previous proposition, a bankruptcy rule ϕ is self-dual (ϕ = ϕ̄) if

and only if fϕ,c = f̄ϕ,c a.e. for every claims vector c.

The constrained equal awards rule is defined by CEAi(N, E, c) = min{ci, α},
where α is such that

∑
i∈N CEAi(N, E, c) = E. Its dual is the constrained equal

losses rule, defined by CELi(N, E, c) = max{ci−β, 0}, where β is again determined

by efficiency. Representations of these dual rules are depicted for n = 4 in Figure 2.

Again, we indicate on each line segment the players involved. Where a player is

absent, the value of his representation function is 0. We abbreviate d1 = c1+c2+2c3.

Note that in view of Proposition 2.1, the representations of CEA and CEL are

each other’s mirror image.

0 xC
0

fCEA,c(x)

1

1
4

1234

4c1

1
3

234

c1 + 3c2

1
2

34

d1

4

0 xC
0

fCEL,c(x)

1

1
4

1234
1
3

234

−2c2 + c3 + c4

1
2

34

4

Figure 2: fCEA,c and fCEL,c

The Talmud rule (cf. Aumann and Maschler (1985)) is defined by

TAL(N, E, c) =

{
CEA(N, E, 1

2
c) if E ≥ 1

2
C,

c− CEA(N,C − E, 1
2
c) if E < 1

2
C.

This rule is self-dual and combines the ideas of constrained equal awards and con-

strained equal losses. A representation for n = 4 is depicted in Figure 3. Note that

since TAL is self-dual, the graph is symmetric in the line x = 1
2
C.1

1From the examples in this section, one might think that all well-known bankruptcy rules are
piecewise linear in the estate. Curiel (1988), however, shows that the adjusted proportional rule is
not. As a consequence, a representation of this rule is not a step function.
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0 xC
0

fTAL,c(x)

1

1
4

1234 1234
1
3

234 234

1
2
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4

1
2
C2c1

Figure 3: fTAL,c

3 The minimal overlap rule

The first bankruptcy rule mentioned by O’Neill (1982) is Ibn Ezra’s solution, named

after a Talmudic scholar from the 12th century. This rule, IE, is only defined for

E ≤ cn and draws on the idea that each player has a claim on a specific part of the

estate. O’Neill uses the example with E = 120 and c = (30, 40, 60, 120). Player 1

claims 30, but this 30 is claimed by all four players, so player 1 should receive only

a quarter of his claim. Player 2 should receive his part of the 30 plus a third of his

residual claim of 10, and so on.

Ibn Ezra’s method is illustrated in Figure 4. Each player has a claim on a specific

part of the estate, represented by line segments, and these claims are nested. Each

part of the estate is divided equally among the players having a claim on it. The

outcome for the example in Figure 4 is (71
2
, 105

6
, 205

6
, 805

6
).

0 120

1:
30

2:
40

3:
60

4:
120

Figure 4: IE(N, 120, (30, 40, 60, 120))

Because Ibn Ezra’s method can only be applied if the estate does not exceed the

largest claim (otherwise part of the estate would remain unclaimed), a representation

only exists on [0, c4]. Claims that are larger than the estate are simply truncated so

that they fit exactly within the estate. Figure 5 depicts a representation of the IE
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rule.

0 xc4
0

f IE,c(x)

1

1
4

1234

c1

1
3

234

c2

1
2

34

c3

4

Figure 5: f IE,c

There are of course various ways to extend the IE rule to the full domain of

estates. O’Neill (1982) presents one natural extension, which is based on a property

he calls “lexicographic minimisation of conflict by extent”. The players’ claims

(again, truncated to the estate) are arranged such that the size of the part of the

estate claimed by exactly one player is maximal, and given this, the size of the part

of the estate claimed by two players is maximal, and so on. Obviously, if E does not

exceed the largest claim, then this boils down to Ibn Ezra’s method. O’Neill names

the resulting rule, which he proves to be uniquely determined by this property, the

extended Ibn Ezra rule. We follow Thomson (2003) in calling it the minimal overlap

rule, MO.

As a consequence of lexicographic minimisation of conflict by extent, the first t

units of each claim are overlapping, while the residual claims are put disjointly on

the estate. So, to compute the MO solution, which will be illustrated in the next

example, we have to find a t such that

g(t) = E, (3.1)

where g : R→ R is defined by

g(t) =
∑
i∈N

(ci − t)+ + t

for all t ∈ R. The solution of (3.1) is unique, except when cn−1 < E ≤ cn, in which

case we take t = E.

Example 3.1 Consider N = {1, . . . , 4}, E = 10 and c = (2, 3, 6, 8). Then t = 4.

The arrangement of the claims is depicted in Figure 6.
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0 10

1:
2

2:
3

3:
4 2

4:
4 4

t = 4

Figure 6: MO(N, 10, (2, 3, 6, 8))

The payoff to player 1 equals 1
2
, player 2 gets 1

2
+ 1

3
= 5

6
, player 3 receives

5
6

+ 1
2

+ 2 = 31
3

and the remaining 51
3

is for player 4. /

In order to give a representation for MO, we need to know more about the t defined

by (3.1). If E ≤ cn, then it follows immediately from claims truncation that t = E.

For E > cn, t is computed by applying the inverse function of g to E. For four

players, the piecewise linear function g is depicted in Figure 7, as well as the solution

of (3.1). For brevity, d1 = −c2 + c3 + c4 and d2 = −2c1 + c2 + c3 + c4.

0 t
0

g(t)
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B
B
B
B
B
B

C

@
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d2
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HHHHH

d1
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c4

c3 c4 0 E
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t

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

c4

c4

A
A
A
AA

c3

c2

d1

@
@@c1

d2

PPPPP
C

Figure 7: Determining t for MO

Using the construction of t in Figure 7, we can now find a representation of the

MO rule. If the estate does not exceed the largest claim, the MO rule coincides

with the IE rule and hence, their representations coincide. If E increases from c4 to

d1, then t goes down from c3 to c2. So on this interval, the overlapping parts of the

claims of players 3 and 4 decrease (at the same speed), while for the other players

nothing changes. Hence, fMO,c
3 (x) = fMO,c

4 (x) = 1
2

for all x ∈ [c4, d1]. Similarly,
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players 2, 3 and 4 receive an equal share when the estate increases from d1 to d2,

while on [d2, C], a rising estate benefits all players. Comparing the representation

0 xC
0

fMO,c(x)

1

1
4

1234 1234
1
3

234 234

d2

1
2

34 34

d1

4

c4

Figure 8: fMO,c

of the MO rule with those of the IE rule and CEL rule, we arrive at the following

theorem.

Theorem 3.1 Let (N, E, c) ∈ BRN . Then

MO(N, E, c) =

{
IE(N, E, c) if E ≤ cn,
IE(N, cn, c) + CEL(N,E − cn, c′) if E > cn,

where c′ = c− IE(N, cn, c).

Proof: If E ≤ cn, then the assertion immediately follows from the construction of

the MO rule. If E > cn, then IEn(N, cn, c) − IEn−1(N, cn, c) = cn − cn−1. Hence,

c′n = c′n−1. (Note also that c′1 ≤ c′2 ≤ . . . ≤ c′n−1.) Because the two largest residual

claims are equal, applying CEL to (N,E − cn, c′) results in the representation of

Figure 2, without the separate segment for player n. So, fMO,c′ on [cn, C] boils down

to fCEL,c′ on [0, C − cn]. From this, the statement readily follows. ¤

4 The residual minimal overlap rule

One natural question arising from Theorem 3.1 is what happens if we use the CEA

rule rather than the CEL rule to extend the IE rule. Put differently, how can we

interpret the rule whose representation is given in Figure 9, and which for reasons

that will become clear later on we call the residual minimal overlap rule (RMO),

in terms of putting claims on specific parts of the estate?
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0 xC
0

fRMO,c(x)

1

1
4

1234 1234
1
3

234 234

1
2

34 34

4

c4

Figure 9: fRMO,c

We first provide a definition of the RMO rule and later on we show that it indeed

has a representation as depicted in Figure 9.

For MO, the claims are put in such a way as to minimise total overlap, while

putting the smallest claims in this overlapping part. For RMO, we also minimise

total minimal overlap, but now the smallest claims are not situated in the overlap-

ping part. Rather, the disjoint part of the claim has the same size for all players

(with of course the restriction that this should not exceed the claim itself), while

the residual claims overlap.

Taking t to be the (maximal) size of the disjoint part of a claim, the size of the

overlapping part equals cn − t. Hence, we have to find a t such that

h(t) = E, (4.1)

where h : R→ R is defined by

h(t) =
∑
i∈N

min{t, ci}+ cn − t

for all t ∈ R. This t is unique except when E = C, in which case we take t = cn−1.

Example 4.1 Consider N = {1, . . . , 4}, E = 15 and c = (2, 3, 6, 8). Then t = 21
2
.

The arrangement of the claims is depicted in Figure 10.

The payoff to player 1 equals 2, player 2 gets 21
2

+ 1
6

= 22
3
, player 3 receives

22
3

+ 11
2

= 41
6

and the remaining 61
6

is for player 4.

Note that for the bankruptcy situation (N, E, c) described in Example 3.1, we

have t = 2
3

and RMO(N, E, c) = (1, 11
3
, 25

6
, 45

6
). /
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1:
2

2:
21

2
1
2

3:
21

2
31

2

4:
21

2
51

2

E + t− c4 = 91
2

Figure 10: RMO(N, 15, (2, 3, 6, 8))

Again, it is readly seen that if the estate is smaller than the largest claim, the RMO

solution and the IE solution coincide.

Figure 11 depicts the graph of h(t), as well as the solution of (4.1). For E ≤ c4,

it follows from claims truncation that t = 0 is the solution of (4.1). For c4 < E < C,

the solution is given by the inverse function of h, while for E = C, t = c3 is taken

as the solution. We abbreviate d1 = 3c1 + c4 and d2 = c1 + 2c2 + c4.

0 t
0

h(t)

£
£
£
£
£
£
£

c4

¡
¡

¡¡

d1

c1

©©©©©

d2

c2

C

c3 c4 0 E
0

t

c4

³³³³³c1

d1

¡
¡¡

c2

d2

¢
¢
¢
¢¢

c3

C

Figure 11: Determining t for RMO

Obviously, fRMO,c and f IE,c coincide on [0, c4]. If E goes from c4 to d1, t increases

from 0 to c1, so on this interval, all players benefit equally and fRMO,c
i (x) = 1

4
for

all i ∈ N and x ∈ [c4, d1]. The remainder of the representation in Figure 9 follows

similarly.

The following theorem follows in the same way as Theorem 3.1.

Theorem 4.1 Let (N, E, c) ∈ BRN . Then
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RMO(N,E, c) =

{
IE(N,E, c) if E ≤ cn,
IE(N, cn, c) + CEA(N, E − cn, c

′) if E > cn,

where c′ = c− IE(N, cn, c).
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