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This paper analyzes convex congestion network problems. It is
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1 Introduction

Economic congestions situations arise if a group of agents uses facilities from
a common pool and costs of using a certain facility depends on the number of
its users. A congestion problem creates interaction and involves the analysis
of a cost allocation problem.

Rather surprisingly, in cooperative game theoretic literature congestion
effects have not been considered for a large extend. One branch of coopera-
tive literature especially suited by its very nature to accommodate consider-
ations regarding congestion is the literature on Operations Research Games
as surveyed by Borm, Hamers, and Hendrickx (2001). Quant, Borm, and
Reijnierse (2003) consider a particular extension of a minimum cost spanning
tree problem. In this extension costs of a network depend on the number of
users of the various parts. These problems are so called congestion network
problems. The problems of cost allocation and network structure are studied
for various cost functions with the aid of cooperative game theory. If cost
functions are convex, the underlying game turns out to be balanced. In the
case of concave cost functions, they show the existence of optimal network
structures without cycles and provide an example in which the correspond-
ing game has an empty core. This paper will focus on convex congestion
network problems, ie. cost functions of the parts of a network are convex.
The aim of this paper is to solve the problem of finding an optimal network
for a specific coalition.

The structure of the paper is as follows. In section 2 we formally intro-
duce convex congestion network problems. In Section 3 the issue of finding
an optimal network for a coalition is solved. To solve this problem it is
first illustrated how it can be determined if a network is optimal for a coali-
tion. Finally the algorithm of finding an optimal network is illustrated by
an example.

2 Convex congestion network problems

A convex congestion network problem is a triple T = (N, ∗, (ka)a∈AN∗ ),
where N = {1, . . . , n} is a set of agents/players (so |N | = n), ∗ is the source
and N∗ := N ∪{∗}. The set AN∗ denotes the set of all arcs between pairs of
elements in N∗, i.e. (N,AN∗) denotes the complete digraph on N∗. For each
arc a ∈ AN∗ the function ka : {0, . . . , n} → R+ is a nonnegative (weakly)
increasing convex cost function which depends on the number of users of a.
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A cost function ka, a ∈ AN∗ , is convex if for all m ∈ {1, . . . , n}:
ka(m + 1)− k(m) ≥ ka(m)− ka(m− 1).

We assume that for all a ∈ AN∗ it holds that ka(0) = 0. Elements of AN∗

will be denoted by a or by (i, j), where i, j ∈ N∗. The arc (i, j) denotes the
connection between i and j in the direction from i to j. Node i is called
the tail of (i, j) and node j the head of (i, j). If a = (i, j), a−1 denotes the
arc in opposite direction, ie. a−1 = (j, i). The cost function of arc (i, j) is
denoted by kij . The problem is called symmetric if kij(m) = kji(m) for all
m ≤ n and all (i, j) ∈ AN∗ .

A network can be described by f : AN∗ → {0, 1, 2, . . .}. Let F be
the set consisting of all such networks. A network f assigns to each arc
a number of users. The indegree for a network f ∈ F and i ∈ N∗ is
defined by indegree(i) =

∑
j∈N∗\{i} f

(
(j, i)

)
. Similarly the outdegree is

defined by outdegree(i) =
∑

j∈N∗\{i} f
(
(i, j)

)
. The set of arcs used by f ,

i.e. {a ∈ AN∗ | f(a) > 0}, is denoted by Af .
For a coalition S ∈ 2N\{∅}, FS is the set of all networks such that all

members of S have a path to the source:

FS =
{
f ∈ F | outdegree(i)− indegree(i) = 1 for all i ∈ S,

outdegree(i) = indegree(i) = 0 for all j ∈ N\S,

f(a) ∈ {0, . . . , |S|}, ∀a ∈ AN∗
}
.

The costs of a network f ∈ FS is naturally defined by:

k(f) =
∑

a∈AN∗

ka

(
f(a)

)
.

The aim of S is to construct a feasible network such that total costs are
minimized.

A transferable utility cost game consists of a pair (N, c), in which N =
{1, . . . , n} is a set of players and c : 2N → R is a function assigning to
each coalition S ∈ 2N a cost of c(S). By definition c(∅) = 0. With each
congestion network problem T = (N, ∗, (ka)a∈AN∗ ) one can associate a con-
gestion network game (N, cT ), such that cT (S) denotes the minimum costs
of a network connecting all players of S to the source:

cT (S) = min
f∈FS

k(f).

Quant, Borm, and Reijnierse (2003) study congestion network problems
with arbitrary cost functions. It is shown that if cost functions are concave,
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the set of optimal networks contains trees. Furthermore if cost functions are
convex, the corresponding cooperative congestion network game has a non-
empty core. This paper focusses on convex congestion network problems, in
particular the problem of finding an optimal network.

Example 2.1 Consider a symmetric convex congestion network problem,
in which there are three players. For the arcs, the costs of one, two and
three users respectively are given by:

k1∗ = (6, 12, 18),
k2∗ = (1, 4, 8),
k3∗ = (3, 8, 13),
k12 = (5, 10, 15),
k13 = (1, 7, 14),
k23 = (1, 5, 9).

The corresponding TU-game cT is given below.

S 1 2 3 12 13 23 N

cT (S) 6 1 3 7 9 4 9

An optimal network of N is drawn in Figure 1, the costs of this network
are 9.
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Figure 1: Optimal network of the problem given in Example 2.1.

It is not directly clear how the optimal network of Example 2.1 can
be found, nor that this indeed is an optimal network. In the sequel we
concentrate on determining if a network is optimal and how one can find
such an optimal network. Example 2.1 will be revisited at several instances.
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3 Finding an optimal network

In this section we consider convex congestion network problems and solve
the problem of finding an optimal network.

First we derive a special condition for a network being optimal for a
certain coalition. This condition is based on finding a negative circuit
with respect to a length function determined by the network. Let T =
(N, ∗, (ka)a∈AN∗ ) be a convex congestion network problem and f ∈ FN . We
assume that network f satisfies that f(a−1) = 0 whenever f(a) > 0 for
a ∈ AN∗ , since if both f(a) and f(a−1) are positive, the network remains
feasible if both f(a) and f(a−1) are decreased by one. Because this new
network is as least as cheap as f , it is reasonable to make the above as-
sumption. Furthermore, we assume that Af does not contain any circuit,
since the network arising from f by decreasing the number of users of the
arcs in one circuit of Af by one yields a network as least as cheap as f .

Given f one can define a length function lf on the complete digraph
(N, AN∗) as follows:

lf (a) :=





∞ if f(a) ≥ n (so f(a−1) = 0),
ka(f(a) + 1)− ka(f(a)) if f(a−1) = 0 and f(a) < n,
ka−1(f(a−1)− 1)− ka−1(f(a−1)) if f(a−1) > 0.

This function can be interpreted as the marginal costs of an extra user of
an arc. Note that if the opposite a−1 of an arc is used, an extra user of arc
a should be interpreted as the reduction of the number of users of a−1 by
one. The following lemma proves that if f is not optimal for N , then AN∗

contains a negative circuit1 with respect to the length function lf .
Before stating this lemma, we first show the reverse: an optimal network

does not contain a negative circuit with respect to its length function. Con-
sider an optimal network f . Suppose that AN∗ contains a negative circuit
C with respect to lf . Then f(a) < n for all a in C. One can change f by
increasing the numbers of users of the arcs of C by one. If an arc of C is
used in opposite direction, it is meant that the number of users of the oppo-
site arc is decreased by one. This yields a new network, which is feasible as
well, since the number of users of arcs are nonnegative and does not exceed
n. The costs of this new network equal k(f) +

∑
a∈C

(
lf (a)

)
. Since C is a

negative circuit, this contradicts the optimality of f .
1A set of arcs C is called a circuit if the arcs in C form a sequence�

(i1, i2), (i2, i3), . . . , (ip, i1)
�

such that all (intermediate) nodes involved differ. A circuit
C is a negative circuit with respect to a length function l if

P
a∈C l(a) < 0.
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Lemma 3.1 Let T = (N, ∗, (ka)a∈AN∗ ) be a convex congestion network
problem. Let f ∈ FN . If f is not optimal, then AN∗ contains a negative
circuit with respect to the length function lf .

Proof: Let f ∈ FN and suppose that f is not optimal for N . Let f̄ be
an optimal network for N . By comparing f and f̄ we will find a negative
circuit with respect to lf .

Define the network f̄ ª f that measures the difference between f̄ and f
as follows:

f̄ ª f(a) = max{f̄(a)− f(a) + f(a−1)− f̄(a−1), 0}.
It assigns a positive number of users to an arc a ∈ AN∗ , if the arc is used
more in f̄ than in f or/and if the arc in opposite direction is used more in
f than in f̄ . Since both f̄ and f are feasible for N , and f̄ ª f measures the
difference between f̄ and f , it holds for all i ∈ N that:

indegreef̄ªf (i)− outdegreef̄ªf (i) = 0.

This implies that Af̄ªf contains a circuit C. We will show that it contains
a negative circuit with respect to lf .

Let a be an element of C. In the following table the five possibilities of
the presence of a and a−1 in Af̄ and Af are illustrated. An arrow to the
right indicates the presence of a, an arrow to the left the presence of a−1,
whereas x indicates that neither a nor a−1 are present.

C1 C2 C3 C4 C5

Af̄ −→ −→ −→ x ←−
Af −→ x ←− ←− ←−

For example, the arrows in the last column indicate that 0 < f̄(a−1) <
f(a−1), since a ∈ Af̄ªf and in both networks a is used in opposite direction.
Note that there is no column with a left arrow in the row of Af̄ and a right
arrow in the row of Af , since then a−1 and not a were present in C. For the
same reason, the column with a left arrow and a x and there is no column
with a x and a right arrow. The set C can be partitioned into five sets
C1, . . . , C5, each corresponding to a column of the table above.

Let C−1 be the circuit C in opposite direction, then:
∑

a−1∈C−1

lf̄ (a−1) =
∑

a∈C1∪C2∪C3

(
ka(f̄(a)− 1)− ka(f̄(a))

)
+

+
∑

a∈C4∪C5

(
ka−1(f̄(a−1) + 1)− ka−1(f̄(a−1))

)

≥ 0. (1)
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Inequality (1) is true, because f̄ is optimal. Assume for the time being that
inequality (1) is strict. The length of C with respect to lf equals:

∑

a∈C

lf (a) =
∑

a∈C1∪C2

(
ka(f(a) + 1)− ka(f(a))

)
+

+
∑

a∈C3∪C4∪C5

(
ka−1(f(a−1)− 1)− ka−1(f(a−1))

)

≤
∑

a∈C1∪C2

(
ka(f̄(a))− ka(f̄(a)− 1)

)
+

+
∑

a∈C4∪C5

(
ka−1(f̄(a−1))− ka−1(f̄(a−1) + 1)

)
+

+
∑

a∈C3

(
ka−1(f(a−1)− 1)− ka−1(f(a−1))

)

≤ −
∑

a−1∈C−1

lf̄ (a−1)

< 0.

Here the first inequality follows from the convexity of the functions ka and
the fact that f̄(a) ≥ f(a) + 1 if a ∈ C1 ∪ C2 and f(a−1) ≥ f̄(a−1) + 1 if
a ∈ C4∪C5. Consequently C is a negative circuit with respect to the length
function lf .

In the case inequality (1) is tight, so
∑

a−1∈C−1 lf̄(a−1) = 0, one can
change the network f̄ as follows: increase the numbers of users of the arcs
of C−1 by one. If an arc of C−1 is used in opposite direction in f̄ (so
a−1 ∈ C−1 and f̄(a) > 0), it is meant that the number of users of the
opposite arc is decreased by one. The resulting network f̄1 is feasible and
costs k(f̄)+

∑
a−1∈C−1 lf̄ (a−1) = k(f̄) and is also optimal, since f̄ is optimal.

One can measure the difference between f and f̄1 in a similar way as the
difference between f and f̄ . In comparison to f̄ ª f it holds that for all arcs
a in AN∗ , f̄1ª f(a) = f̄ ª f(a) if a is not in C and f̄1ª f(a) = f̄ ª f(a)− 1
if a is in C. The set of edges Af̄1ªf also contains a circuit and one can
follow the lines of the proof above. If inequality (1) is again tight, one must
define networks f̄2, f̄3 and f̄2 ª f , f̄3 ª f and so on, until a strict inequality
arises. Eventually, this will be the case, since the values of f̄k ª f(a) are
decreasing for all a ∈ AN∗ . Note that f̄k ª f is the zero network if and only
if f(a) = f̄k(a) for all a ∈ AN∗ . Because f is not optimal, f̄k ª f cannot be
the zero-network; there is a k for which inequality (1) is strict. ¤

Combining Lemma 3.1 with the remark that if a network f is optimal,
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then AN∗ does not contain a negative circuit with respect to lf , yields the
following theorem.

Theorem 3.1 Let T = (N, ∗, (ka)a∈AN∗ ) be a convex congestion network
problem. Then f ∈ FN is optimal if and only if AN∗ contains no negative
circuit with respect to the length function lf .

The existence of negative circuits can be detected by a shortest path2

algorithm, as e.g. is described in Floyd-Warshall algorithm (Papadimitriou
and Steiglitz (1982), page 132). If the algorithm finds that the ’shortest
path’ (cheapest way) to go from some node to itself has negative costs,
there must be a negative circuit containing this node.

Example 3.1 In this example it is shown that the network f depicted in
Figure 1 is indeed optimal for N . According to Theorem 3.1 it is sufficient
to show that there is no negative circuit with respect to lf . In figure 2
the complete digraph with length function lf is drawn. The Floyd-Warshall
algorithm finds the following matrix of shortest paths:



0 -6 -3 -5
6 0 3 1
4 -2 0 -1
5 -1 2 0


.

There is no negative circuit, since there are only zeroes on the diagonal.

Theorem 3.1 provides the tools to introduce an algorithm which deter-
mines an optimal network for each convex congestion network problem. The
algorithm described below is based on the following idea. First an order is
chosen on N . An order of N is a bijective function σ : {1, . . . , n} → N . The
player at position i in the order σ is denoted by σ(i). The set of all orders
of N is denoted by Π(N). Players are connected to the source in this order
in an optimal way. It is allowed to use all arcs to establish a connection
to the source. The first player, σ(1), chooses a shortest path to the source,
this results in a network. The second player faces this network and chooses
a shortest path to the source. The costs of this path depend on the path
chosen by the first player. If player two uses an arc that is also used by the
first player, it costs the marginal costs from one to two users. If player two
uses an arc that is used by the first player in opposite direction, this cancels

2A set of arcs P is called a path from i to j if the arcs in P form a sequence�
(i, i2), (i2, i3), . . . , (ip, j)

�
, such that all nodes involved differ, except possibly i and j

themselves. In the latter case, the path is a circuit.
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Figure 2: Digraph (N, AN∗) with length function lf .

out. In general: using an arc in the same direction yields the marginal costs
of a player extra and using an arc in opposite direction yields a benefit of
the marginal costs of one user less. Hence if a player chooses a shortest path
to the root he faces the length function of the current network. One can
continue until all players are connected. We first give a small example to
illustrate the idea of the algorithm.

Example 3.2 Consider a symmetric convex congestion network problem
with two players, N = {1, 2}. Cost functions are defined by

k1∗ = (5, 10),
k2∗ = (1, 4),
k12 = (3, 6).

Suppose that player 1 is the first one to be connected to the source. The
cheapest way to do this is taking the path

(
(1, 2), (2, ∗)). The resulting net-

work is the left picture of Figure 3. For player 2 there are two possible paths
to the source. First the direct path

(
(2, ∗)). This costs 3, since (2, ∗) is also

used by player 1. Second the path via player 1,
(
(2, 1), (1, ∗)). Since player

1 is using (2, 1) in the opposite direction, this cancels the use of (1, 2) and
yields a benefit of 3. The resulting costs are −3 + 5 = 2. Hence it is better
for player 2 to choose the indirect path. In fact by choosing this path, he
changes the path of player 1. The resulting (optimal) network for the two
players is depicted in the right sided network of Figure 3.

Before giving a formal definition of the algorithm, we provide some ad-
ditional notations. Let P be a path, then fP is the network induced by
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Figure 3: Optimal networks for player 1 (left) and coalition {1, 2} (right) of
the two person convex congestion network problem of Example 3.2.

P :

fP (a) :=
{

1 if a ∈ P ,
0 if a 6∈ P .

Let f1 and f2 be two networks, then the sum f1 ⊕ f2 is defined by:

f1 ⊕ f2(a) := max{f1(a) + f2(a)− f1(a−1)− f2(a−1), 0}

for all a ∈ AN∗ . This operation takes into account that the usage of two
oppositely directed arcs cannot be beneficial. If there is two ways traffic
between nodes, the numbers of users are subtracted instead of added.

The above described procedure can be described in the following way.
At some moment a network is chosen by a group of players. The next player
chooses a shortest path with respect to the length function of the network
present at that moment. The combination of the network and the chosen
path leads to a new network. This new network can be found by adding the
network which corresponds to the path and the original network using the
operation ⊕.

Algorithm 3.1
Input: a convex congestion network problem T = (N, ∗, (ka)a∈AN∗ ) and an

order σ ∈ Π(N).
Output: an optimal network fn ∈ FN .

1. Initialize f0(a) = 0 for all a ∈ AN∗ and t = 1.

2. Find a shortest path P t in (N, AN∗) from σ(t) to ∗ with respect to the
length function lf t−1.

3. Set f t(a) = f t−1 ⊕ fP t.
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4. If t 6= n, set t := t + 1 and return to step 2.

Finding shortest paths can be done again by the Floyd-Warshall algo-
rithm. In its purest form, it finds only the values of all shortest paths, but
finding the paths themselves is just a matter of keeping track which arcs
optimal paths use. It has a complexity of order O(n3). Since we have to
perform it n times, the complete algorithm has a complexity of order O(n4).

The following theorem states that this algorithm yields an optimal net-
work for N .

Theorem 3.2 Let T = (N, ∗, (ka)a∈AN∗ ) be a convex congestion network
problem and σ ∈ Π(N) an order. The output fn of Algorithm 3.1 is an
optimal network for coalition N .

Before giving the proof of Theorem 3.2, we first take a closer look at
the specific characteristics of the algorithm. In each step an extra node is
connected to the source and for this node it is allowed to use all arcs. This
differs from our approach that a coalition can only use arcs for which both
head and tail correspond to members of that coalition. In fact this gives rise
to a relaxation in which all arcs are fully public. The set of feasible networks
for a coalition S ⊆ N becomes:

F̂S =
{
f ∈ F | outdegree(i)− indegree(i) = 1 for all i ∈ S,

outdegree(i)− indegree(i) = 0 for all j ∈ N\S,

f(a) ∈ {0, . . . , |S|}, ∀a ∈ AN∗
}
.

The aim of a coalition S is to connect all its members to the source, such that
total costs are minimized. Denote the corresponding coalitional value by
ĉT (S). Note that ĉT (N) = cT (N). We then have the following generalization
of Theorem 3.1.

Theorem 3.3 Let T = (N, ∗, (ka)a∈AN∗ ) be a convex congestion network
problem. Then f ∈ F̂S is optimal (i.e. ĉT (S) = k(f)) if and only if (N, AN∗)
does not contain a negative circuit with respect to lf .

The proof of this theorem follows exactly the lines of the proof of Lemma
3.1 and is therefore omitted. We can now give the proof of Theorem 3.2.

Proof of Theorem 3.2: Assume without loss of generality that σ is the
identity. It is easy to see that fn is feasible for N , since at step t the net

11



degree (which equals the difference between outdegree and indegree) of ∗
decreases from t − 1 to t, the net degree of the nodes 1, . . . , t − 1 remains
1, the net degree of node t increases from 0 to 1 and the net degree of the
nodes t + 1, . . . , n remains 0. In the end, all nodes but the root have net
degree one, hence fn is feasible. To prove the optimality of fn an induction
argument is used. It is sufficient to prove that for all t ∈ {1, . . . , n}, the
network f t is optimal for the coalition {1, . . . , t} in the relaxed game, i.e.
ĉ({1, . . . , t}) = k(f t).

If t = 1, then lf t−1(a) = ka(1) ≥ 0 for all a ∈ AN∗ . P 1 is the shortest
path from 1 to ∗ and trivially ĉ({1}) = k(f1).

Let t ∈ {1, . . . , n−1}. Assume that the network f t is optimal for coalition
{1, . . . , t}. There exists a shortest path P := P t+1 from player t + 1 to ∗
with respect to lf t . We have to prove that f t+1 is an optimal network
for coalition {1, . . . , t + 1}. According to Theorem 3.1 this can be done by
showing that there is no negative circuit with respect to lf t+1 . This is proved
is by contradiction.

Suppose that C is a negative circuit with respect to lf t+1 . The following
argument shows that with the help of C and P a network feasible for coalition
{1, . . . , t} can be found, that costs less than f t, which yields a contradiction.

Note that f t+1 = f t ⊕ fP t+1 . Let f̂ be the network arising from f t+1 if
one user walks along the circuit C. Then f̂ = f t+1 ⊕ fC and can also be
written as f t ⊕ h, with h = fP ⊕ fC . Hence, for all a ∈ AN∗ :

h(a) :=





2 if a is used by both P and C,
1 if a−1 is neither used by P nor C and a is either used by

P or C,
0 otherwise.

The net degree outdegreeh(i)−indegreeh(i) of node i is 1 if i equals t + 1,
−1 if i is the root and 0 otherwise. It follows that there is a path P̄ ⊂ Ah

from t + 1 to ∗. Notice that if arc a is used by the path and its opposite
a−1 by the circuit (or conversely), then h(a) = h(a−1) = 0. Therefore P̄
is not necessarily the same path as P . Decompose network h into three
0,1-networks fP̄ , h1 and h2 such that h(a) = fP̄ (a) + h1(a) + h2(a) (note
that here a regular operation + is used) for all a ∈ AN∗ , h1 + h2 is a
circulation network.3 After path P̄ has been chosen, h1 and h2 are defined

3A circulation network is a network in which all nodes have net degree zero.
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by (a ∈ AN∗):

h1(a) :=
{

1 if h(a)− fP̄ (a) > 0,
0 otherwise.

h2(a) :=
{

1 if h(a)− fP̄ (a) = 2,
0 otherwise.

The costs to obtain network f̂ from network f t can be computed in two
ways:

k(f̂)− k(f t) =
∑

a∈P

lf t(a) +
∑

a∈C

lf t+1(a), (2)

and

k(f̂)− k(f t) =
∑

a∈P̄

lf t(a) +
∑

a∈Ah1

lf t⊕fP̄
(a) +

∑

a∈Ah2

lf t⊕fP̄⊕h1
(a). (3)

Since P is the shortest path from t + 1 to ∗ it holds that
∑

a∈P lf t(a) ≤∑
a∈P̄ lf t(a). From the fact that C is a negative circuit with respect to lf t+1

and equations (2) and (3) we can conclude that:
∑

a∈Ah1

lf t⊕fP̄
(a) +

∑

a∈Ah2

lf t⊕fP̄⊕h1
(a) < 0. (4)

It is shown below that for each arc a ∈ Ah1 it holds that lf t(a) ≤ lf t⊕fP̄
(a).

Let a be an arc in Ah1 (so h(a) > fP̄ (a)). Then a−1 is not used by
P̄ , since h(a) > 0 implies that h(a−1) = 0. If a is neither in P̄ , then
lf t(a) = lf t⊕fP̄

(a). If a is used by P̄ , we show that lf t⊕fP̄
(a) exceeds lf t(a).

We distinguish between three cases. First if f t(a) > 0 (this implies that
f t(a−1) = 0), then:

lf t⊕fP̄
(a) = ka(f t(a) + 2)− ka(f t(a) + 1)

≥ ka(f t(a) + 1)− ka(f t(a))
= lf t(a).

The inequality follows from the convexity of the function ka.
Secondly if f t(a) = 0 and f t(a−1) = 1, it is true that:

lf t⊕fP̄
(a) = ka(1)− ka(0)

≥ 0
≥ ka−1(0)− ka−1(1)
= lf t(a).
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Finally if f t(a) = 0 and f t(a−1) > 1, it holds that:

lf t⊕fP̄
(a) = ka−1(f t(a−1)− 2)− ka−1(f t(a−1)− 1)

≥ ka−1(f t(a−1)− 1)− ka−1(f t(a−1))
= lf t(a).

The inequality follows from the convexity of the function ka−1 .
Because P̄ ∩Ah2 = ∅, we have for all a in Ah2 :

lf t⊕fP̄⊕h1
(a) = lf t⊕h1

(a).

We conclude that:

k(f t ⊕ (h1 + h2)) = k(f t) +
∑

a∈Ah1

lf t(a) +
∑

a∈Ah2

lf t⊕h1
(a)

≤ k(f t) +
∑

a∈Ah1

lf t⊕fP̄
(a) +

∑

a∈Ah2

lf t⊕fP̄⊕h1
(a)

< k(f t). (5)

On the other hand, because h1 + h2 is a circulation network, the network
f t⊕(h1+h2) is feasible for the coalition {1, . . . , t}. Inequality (5) contradicts
the assumption that f t is an optimal network. ¤

In the following example Algorithm 3.1 is used to determine an optimal
structure of the convex congestion network problem of Example 2.1.

Example 3.3 Consider the congestion network problem of Example 2.1. A
number near an arc denotes its length. Choose σ as the identity. Then first
player 1 has to find a shortest path in the first digraph in Figure 4. The path
chosen is

(
(1, 3), (3, 2), (2, ∗)). The resulting network f1 is depicted next to

the digraph.
Player 2 faces the length function lf1 as illustrated in Figure 5. His

shortest path is
(
(2, 3), (3, ∗)). Since player 2 uses arc (2, 3) in the opposite

direction of player 1 this cancels out. Hence in f2 the arcs (2, 3) and (3, 2)
are both not used.

Finally player 3 searches for a shortest path with respect to lf2, this is
shown in Figure 6. His shortest path is given by

(
(3, 2), (2, ∗)). The final

network f3 is also depicted in Figure 6. According to Theorem 3.2 this
network is optimal, which also has been shown in Example 3.1.
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Figure 4: Left: digraph (N, AN∗) with length function lf0 and right: network
f1.
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Figure 5: Left: digraph (N, AN∗) with length function lf1 and right: network
f2.
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Figure 6: Left: digraph (N, AN∗) with length function lf2 and right: network
f3.
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