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Abstract

In stationary point process theory, the concept ’Palm distribution’ plays an im-

portant role. Many important results (like for instance Little’s law, so important

in many fields) arise from it. However, in the non-stationary case a whole family

of local Palm distributions (PD’s) has to be considered and the concept seems to

loose its importance.

The present paper mainly considers non-stationary point processes, and studies

relations between the distribution P of a point process, the family {Px} of PD’s,

and the family {P 0,x} of shifted PD’s. Here P 0,x is the probability distribution

that is experienced from an occurrence (arrival, point, transaction) at x. It is

attempted to regain some of the glance of the concept ‘Palm distribution’ by

considering generalizations of results that are basic for stationary point processes.

Starting point is a refined version of Campbell’s equation, which expresses the

general relationship between the distribution P of the point process and the family

{Px} of PD’s. It is used to generalize the inversion formula, well known from

stationary point process theory. This generalization is basic; it leads to several

relations regarding the above distributions.
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In the second part of the research domination assumptions are imposed: either

the null-sets of a time-stationary distribution are also null-sets of P or the null-

sets of one event-stationary distribution are also null-sets of ‘almost all’ shifted

PD’s. Under such domination regulations, P 0,x can explicitly be expressed in

terms of P and several stationary-case long-run properties can be generalized.

The relationship between the two types of domination assumptions is carefully

studied.

Keywords: point processes, non-stationarity, family of Palm distributions, dom-

ination

JEL classification: C49
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1 Introduction

Many results in stationary point process theory originate from the relationships be-

tween the time-stationary distribution of the point process and the accompanying (unique)

event-stationary Palm distribution. Simple equations explicitly express the Palm dis-

tribution P 0 in the time-stationary distribution P , and vice versa. In non-stationary

settings, the distribution P of the point process has to make contact with a whole family

of Palm distributions (PD’s), that are not event-stationary anymore. The relationship

between P and this family of PD’s is less explicitly embodied in the refined Camp-

bell equation. As a consequence, the concept ’Palm distribution’ seems to loose its

importance; see Daley and Vere-Jones (1988; p. 456). We attempt to make this rela-

tionship more transparent by generalizing well-known theoretical results for stationary

point processes to more general non-stationary point process settings.

The present research especially aims at the theoretical interrelationship between the

distribution P of a non-stationary point process and its local Palm distributions P x

or the shifted Palm distributions P 0,x. Here P x can heuristically be considered as

the probability distribution of the point process if it is already given that there is an

occurrence at x, and P 0,x as the probability mechanism experienced from an occurrence

at x. It is our intention to make the general point process theory better accessible by

pointing at resemblances with results that are well known for stationary point processes.

Since we are especially interested in the validity of strong laws under non-stationary

circumstances, we assume in the larger part of this paper that either P is dominated by

a time-stationary distribution or the whole family {P 0,x} of shifted PD’s is dominated by

one event-stationary distribution. That is, either the null-sets of P include the null-sets

of a time-stationary distribution or the null-sets of ’almost every’ member of the shifted

PD-family include the null-sets of one event-stationary distribution. When considering

these two types of domination assumptions, the question arises how the assumptions

themselves are related and how the respective Radon-Nikodym densities are related.

This problem will be studied in detail.

We first rewrite the refined Campbell equation into equations that more directly

express P in terms of the family {P x} or the family {P 0,x} and that generalize nice

inversion formulae from stationary point process theory. These results are essential for

the major part of this research. In view of long-run limit results, we compare the null-

sets under P x and under P 0,x with null-sets under P . Regarding the above mentioned

domination assumption of {P 0,x} by one event-stationary distribution it turns out that
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one has to be careful because this family of shifted PD’s is only uniquely defined in

the a.e. (almost everywhere) sense with respect to the intensity measure of the point

process.

For the study of stationary point processes, the so-called intermediate probability

distributions Pn that arise from P by shifting the origin to the nth occurrence were easy

tools to facilitate jumping from the event-stationary distribution to the time-stationary

one (and vice versa); see Nieuwenhuis (1989, 1994, 1998). We generalize Pn, the proba-

bility mechanism experienced from the nth occurrence (if finite), to the non-stationary

setting and study the relationships with P 0,x, the probability mechanism experienced

from an occurrence at x.

Below, in the second part of the present Section 1, we first mention some notations

and conventions that are used in this paper. Next, we briefly review the results from

stationary point process theory that are important for the present research. Special at-

tention is paid to the inversion formulae that express P in terms of the event-stationary

distribution P 0 and to the way these distributions are related to the intermediate prob-

ability distributions Pn. We also repeat a lemma from Nieuwenhuis (1994) that ensures

that the invariant σ-fields of the time-shifts and the point-shifts coincide. Since we are

interested in strong laws (long-run properties), this lemma will be used frequently.

In Section 2 we first define the Palm distributions P x via the well-known refined

Campbell equation; the shifted PD’s P 0,x are also introduced and studied. Next, we

derive a generalization of the inversion formula that has proven to be so important for

stationary point process theory. As immediate corollaries, the distribution of the kth

occurrence (if finite) under P turns out to be dominated by the intensity measure ν

and a local characterization result for the shifted PD’s can be formulated. Some general

long-run results are considered. In an example, the shifted PD’s of the event-stationary

point process are characterized.

Section 3 is about the (generalized) intermediate probability measures Pn, distrib-

utions under the condition that the nth occurrences are finite. They can be expressed in

terms of the shifted PD’s, in a way that nicely generalizes the stationary case. A null-set

under P is a null-set under P x for ν-almost all x, and vice versa; a null-set under all Pn

(if defined) is a null-set under P 0,x for ν-almost all x, and vice versa The intermediate

position of the Pn between P and {P 0,x} is nicely illustrated by a corollary that relates

strong laws under these three types of distributions. In an example it is demonstrated

that the above results regarding null-sets not necessarily imply domination results re-

garding P and {P x} or regarding {Pn} and {P 0,x}. This is caused by the fact that the
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family of PD’s is only unique in the ν-almost everywhere sense.

In Sections 4 - 6 we bring our point process framework closer to stationarity by

assuming a domination property. We either assume that P is dominated by a time-

stationary distribution or that the P 0,x are dominated by one event-stationary distri-

bution for ν-almost all x. In Section 4 we adopt the second domination assumption,

which not necessarily implies the first. A theorem that characterizes the second type of

domination is proved. As a corollary, the sequence {Pn} of intermediate distributions is

dominated by the same event-stationary distribution that also dominates {P 0,x}. The

sequence of Radon-Nikodym derivatives turns out to be stationary. It also follows that

it is now possible to express P 0,x explicitly in terms of P provided that a weak additional

assumption holds. Many long-run properties that are valid under the event-stationary

distribution and/or under the accompanying time-stationary distribution turn out to

be valid under P and P 0,x too. Furthermore, from the assumed domination criterion

it follows that the point process is asymptotically event-stationary and time-stationary.

The relationship between the stationary limit distributions is studied.

Section 5 considers some immediate consequences of the first type of domination,

with Radon-Nikodym density denoted as σ. The intensity measure is then dominated by

Lebesgue measure. The case that P is also time-stationary itself is studied in detail, to

demonstrate the relationship with σ being invariant under all point- and event-shifts. In

an example, we choose σ such that event-stationarity is experienced from all occurrences.

Section 6 studies the relationships between the two types of domination assump-

tions. It is proved that the validity of the first type of domination mentioned above is

equivalent to the joint validity of the second domination and the domination of ν by

Lebesgue measure. This result remains valid if all three domination properties also hold

in the reversed direction. It follows that the equivalence of P and a time-stationary

distribution Pst in the sense of domination allows to express P 0,x explicitly in terms of

P without any additional assumptions. Some long-run properties are reconsidered and

interrelated. In an example, we explicitly express P 0,x in P when P is dominated by Pst

and σ satisfies some invariance condition.

In the present research, R is the set of reals and Bor(R) is the set of Borel-sets in R.

We use the symbol Z to denote the set of all integers in R. For k ∈ Z, the set Rk is

defined as the positive half-line (0,∞) if k > 0 and as the non-positive half-line (−∞, 0]

if k ≤ 0.The notation := means is by definition equal to. Lebesgue-measure is denoted

by Leb.
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For two measures Q1 and Q2 (with Q2 σ-finite) on the same measurable space, it

is said that Q1 is dominated by Q2 (notation Q1 � Q2) if the Q2-null-sets are also

Q1-null-sets. A Radon-Nikodym density (or derivative) of Q1 with respect to Q2 will

be denoted by dQ1/dQ2 or shortly by RN. If Q1 � Q2 and Q2 � Q1, we say that the

two measures are equivalent (notation Q1 ∼ Q2). If Q is a probability measure and a

certain eventuality B has Q-probability 1, we say that B holds Q-a.s. (almost surely).

Next suppose that Q1 and Q2 are both probability measures, both dominated by

a σ-finite measure ω having RN-densities h1 and h2 respectively. The total variation

distance d between Q1 and Q2 is defined by

d(Q1, Q2) :=

∫
|h1 − h2|dω.

It is well-known that

d(Q1, Q2) = 2 sup
A

|Q1(A)−Q2(A)|.

If µ is a measure on Bor(R) and µ(Ac) = 0 for a certain Borel-set A, we say ’A

holds µ-a.e.’ (A holds µ-almost everywhere) or ’A holds for µ-a.e. x ∈ R’ (A holds for

µ-almost every x in R).

Preliminary definitions and notations

In the following, we will give several definitions and notations from point process theory.

A point process on R is a measurable mapping Φ from a probability space (Ω,F ,P) to

the set N of all integer-valued measures ϕ on R for which

ϕ(B) < ∞ for all bounded B ∈ Bor(R).

Here N is endowed with the σ-field generated by the sets [ϕ(B) = k] := {ϕ ∈ N :

ϕ(B) = k}, for all integers k and B ∈ Bor(R). Set

M := {ϕ ∈ N : ϕ(R) > 0; ϕ{s} ≤ 1 for all s ∈ R}

with σ-field M̄ := M ∩ N̄ . Denote the probability distribution of Φ by P and the

corresponding expectation operator by E. We will only consider point processes with

single occurrences (also called simple point processes). That is, we will always assume

that

(i) P (M) = 1.
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The atoms (called points, events, occurrences, arrivals, transaction times) of ϕ ∈ M are

denoted by Tn(ϕ) under the convention that

. . . < T−1(ϕ) < T0(ϕ) ≤ 0 < T1(ϕ) < T2(ϕ) < . . . ,

provided that they are finite. Furthermore, we write αn(ϕ) := Tn+1(ϕ)− Tn(ϕ), n ∈ Z,

for the interval lengths between finite occurrences. Measurable sets in M̄ will be called

eventualities. Eventualities like the set of the ϕ ∈M for which αn(ϕ) < 3 will be written

as [αn(ϕ) < 3] and also as [αn < 3]. We also need notations for special subsets of M .

Set

Fn := {ϕ ∈ M : |Tn(ϕ)| < ∞} and F̄n := Fn ∩ M̄,

Mx := {ϕ ∈ M : ϕ{x} = 1} and M̄x := Mx ∩ M̄,

M∞ := {ϕ ∈ M : ϕ(−∞, 0] = ϕ(0,∞) = ∞} and M̄∞ := M∞ ∩ M̄,

M0 := {ϕ ∈ M∞ : ϕ{0} = 1} and M̄0 := M0 ∩ M̄ ; x ∈ R.

(Note the difference between M0 and M0.) The family {θt : t ∈ R} of time-shifts

θt : N → N defined by θt(ϕ) := θtϕ := ϕ(t +·) will play an important role. The same

holds for the family {ηn : n ∈ Z} of event-shifts ηn : Fn → N with ηn(ϕ) := ηnϕ :=

ϕ(Tn(ϕ) + ·). Note that θtϕ has occurrences in Tn(ϕ) − t (if finite) and it arises from

ϕ by shifting the origin to t, while ηnϕ has occurrences in Tk(ϕ)− Tn(ϕ) (if finite) and

it arises from ϕ by shifting the origin to the nth occurrence. Regarding these shifts, the

following notations are adopted:

θ−1t A := {ϕ ∈ N : θtϕ ∈ A}, t ∈ R and A ∈ N̄ ,

η−1n A := {ϕ ∈ Fn : ηnϕ ∈ A}, n ∈ Z and A ∈ N̄ .

Also consider the invariant σ-fields

I ′ := {A ∈ M̄∞ : θ−1t A = A for all t ∈ R},

I := {A ∈ M̄∞ : η−11 A = A}.

The following lemma is important for the present research; see Nieuwenhuis (1994;

Lemma 2).
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Lemma 1.1

(a) I = I ′;

(b) If f : M∞ → R is I-measurable, then f ◦ θt = f and f ◦ ηn = f for all t ∈ R and

n ∈ Z.

For measurable functions f :M → R we use each of the notations Ef(Φ), E(f), and

Ef(Φ) to denote the expectation of f(Φ). When adopting the last notation, we implicitly

assume that Φ is the canonical version of the point process on (M, M̄, P ). Furthermore,

the distribution of a measurable mapping α on (M, M̄, P ) into some measurable space

is denoted by Pα.

Stationary point processes

In this subsection, we will review some important properties of the distribution P and its

Palm distribution P 0 in the case that the point process is time-stationary. See Franken

et al. (1982) or Daley and Vere-Jones (1988) for an overview. We especially aim at

long-run properties under P and P 0. In forthcoming sections we will generalize many

of the results for non-stationary settings.

Assume that

(ii) P (M∞) = 1 and λ := EΦ(0, 1] < ∞,

and that the point process (and its distribution P ) is time-stationary:

(iii) Pθ−1t (A) := P (θ−1t A) = P (A) for all t ∈ R and A ∈ M̄∞.

Hence, the probability distribution of the point process is the same seen from all positions

t in the set of reals. As a consequence, it can be shown that λ is positive and that for all

t > 0 the definition below gives one probability measure P 0 on (M∞, M̄∞), the so-called

Palm distribution (PD) of Φ :

P 0(A) :=
1

λt
E(

Φ(0,t]∑
i=1

1A ◦ ηi(Φ)) =
1

λt
E(

∫
(0,t]

1A(θxΦ)dΦ(x)); (1.1)

A ∈ M̄∞. We denote P 0-expectation by E0. The PD has the following properties:

P 0(M0) = 1 and P 0η−1n = P 0 for all n ∈ Z; P 0 = P on I; (1.2)

λ = 1/E0(α0) = E(1/α0). (1.3)
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(The last result in (1.2) follows from Lemma 1.1.) That is, under P 0 there is an occur-

rence in the origin and the probability mechanisms observed from all occurrences are

the same. Because of the second property in (1.2), the PD is called event-stationary.

As a consequence, the sequence {αn} of interval lengths is stationary under P 0.

The PD is often informally described as the ’conditional’ distribution of the point

process if there is an occurrence in the origin. This originates from the following more

formal result:

P [η1ϕ ∈ A|T1(ϕ) ≤
1

n
] → P 0(A) as n → ∞, (1.4)

which holds uniformly over A ∈ M̄∞; see Nieuwenhuis (1994).

Note that the definition in (1.1) expresses P 0 in terms of P . The following so-called

inversion formulae work the other way round:

P (A) = λ
∫
Rk

P 0[ϕ(−x+ ·) ∈ A and T−k(ϕ) ≤ −x < T−k+1(ϕ)]dx (1.5)

= λE0(
−T

−k∫
−T

−k+1

1A ◦ θ−xdx) = λE0(
T
−k+1∫
T
−k

1A ◦ θxdx)

for all A ∈ M̄∞ and k ∈ Z. (Usually, k = 0 is used to express the inversion.)

In Palm theory more probability measures are important. For n ∈ Z, let Pn be the

so-called intermediate distribution that arises from P by shifting the origin to the nth

occurrence:

Pn(A) = P [ηnϕ ∈ A], A ∈ M̄∞.

In a queuing framework, Pn can be considered as the probability mechanism observed by

the nth customer if P is the ruling underlying distribution. Note the difference between

P0 and P 0. In Nieuwenhuis (1989) it was proved that

Pn ∼ P 0 and dPn/dP
0 = λα−n P 0 − a.s., n ∈ Z, (1.6)

which explains the characterization of Pn as being intermediate (between P and P 0).

Consequently,

P 0(A) =
1

λ
E(

1

α0
1A ◦ ηn) (1.7)

for all A ∈ M̄∞ and n ∈ Z, yielding other ways to express P 0 in terms of P and vice

versa.
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Long-run properties of stationary point processes

By the stationarity property of P 0, Birkhoff’s ergodic theorem, Lemma 1.1, and (1.6) it

follows that

1

n

n∑
i=1

1A ◦ ηi → E0(1A|I) as n → ∞ P 0- and P -a.s., (1.8)

1

n

n∑
i=1

Pi(A) → Q0(A) := E(E0(1A|I)), (1.9)

1

t

t∫
0

1A ◦ θxdx → E(1A|I) as t → ∞ P - and P 0-a.s., (1.10)

1

t

t∫
0

P 0[θxϕ ∈ A]dx → Q(A) := E0(E(1A|I)), (1.11)

for all A ∈ M̄∞. (Note that n runs through the set of positive integers and t through

the positive half-line.) Heuristically, the event-stationary probability measure Q0 on

(M∞, M̄∞) can be considered as the probability mechanism observed from an ’arbitrar-

ily chosen’ occurrence. The time-stationary probability measure Q on (M∞, M̄∞) is

the probability mechanism observed from an ’arbitrarily chosen’ time-point in (0,∞).

Because of Lemma 1.1 and (1.6), we obtain by conditioning on I that

Q0(A) = E(E0(1A|I) ◦ η0) = λE0(ᾱ · 1A),

where ᾱ := E0(α0|I). Since P 0[ᾱ > 0] = 1, the probability measures Q0 and P 0 are

equivalent; we have

dQ0/dP 0 = λᾱ P 0-a.s. (1.12)

Note that ᾱ is just the long-run average of the P 0-stationary sequence of interval

lengths:

1

n

n∑
i=1

αi → ᾱ P 0-a.s. (1.13)

Since P 0 ∼ P0, relation (1.13) also holds P0-a.s. and hence P -a.s. On the other hand,

Φ̄ := E(Φ(0, 1]|I) is the long-run average number of occurrences on unit intervals, since

Φ(0, t]/t → Φ̄ as t → ∞, (1.14)

not only P -a.s. but also P 0-a.s.; see Nieuwenhuis (1994). In Nieuwenhuis (1998) it was

proved that ᾱ and Φ̄ are both positive and finite (P 0- and P-a.s.) and that

Φ̄ = 1/ᾱ = E(
1

α0
|I) P 0-a.s. and P -a.s., (1.15)
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which is a conditional version of (1.3). Consequently, the probability distribution Q in

(1.11) satisfies

Q(A) =
1

λ
E(

1

ᾱ
1A) and Q ∼ P with dQ/dP =

1

λ

1

ᾱ
. (1.16)

Although the notation may suggest it, Q0 is not the PD of Q. See Nieuwenhuis (1998)

for more details.

A stationary point process, its distribution, and its PD are called pseudo-ergodic

if P 0[ᾱ = 1/λ] = 1, that is: if Q0 = P 0. It turns out that pseudo-ergodicity is weaker

than ergodicity; see Nieuwenhuis (1994) for details. Consequently, A ’randomly chosen

customer’ experiences the Palm distribution iff this distribution is pseudo-ergodic.

We end this section with definitions concerning asymptotic stationarity; see Sigman

(1995) for similar concepts on the half-line.

Suppose that Φ is a non-stationary point process. The point process (and its dis-

tribution P ) is called asymptotically time-stationary (ATS) if a probability distribution

Q on (M,M̄) exists such that

1

t

t∫
0

P [θsϕ ∈ A]ds → Q(A) as t → ∞, for all A ∈ M̄. (1.17)

A point process (and its distribution P ) with P (M∞) = 1 is called asymptotically event-

stationary (AES) if a probability distribution Q0 on (M∞, M̄∞) exists such that

1

n

n∑
i=1

P [ηiϕ ∈ A] → Q0(A) as n → ∞, for all A ∈ M̄∞. (1.18)

By Lemma 1.1, Q0 is indeed event-stationary and Q is time-stationary. Q0 (Q) can

intuitively be interpreted as the probability mechanism observed from a randomly chosen

occurrence (time-point). Note - again by Lemma 1.1 - that Q0, P , and Q coincide on I.

2 Non-stationary point processes

For time-stationary point processes the relationship between the distribution P and

its Palm distribution P 0 is nice and simple; see Section 1. To generalize things for

non-stationary point processes, we need to relate P with a whole family {P x} of Palm

distributions. The relationship between P and {P x} is described by the well-known re-

fined Campbell equation, which at first sight looks complicated. In the second and third

subsections below, we use the refined Campbell equation to derive relations between P
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and {P x} that are less repulsive or resemble nice relations of Section 1. The results in

the first subsection below come from Jagers (1973); see also Kallenberg (1983/86), and

Daley and Vere-Jones (1988).

We assume that the point process satisfies (i). That is, we study simple point

processes on R with at least one occurrence. The intensity measure ν on Bor(R) with

ν(A) := E(Φ(A)) for A ∈ Bor(R), will play an important role; we assume that it exists

and is locally finite. The set function

C1(A×B) := E(Φ(A)1B(Φ)), A ∈ Bor(R) and B ∈ M̄, (2.1)

uniquely extends to a σ-finite measure C1, the so-called Campbell measure, on the prod-

uct σ-field Bor(R)×M̄ . Especially, note that - for all B ∈ M̄ - the locally finite measure

νB defined by

νB(A) := E(Φ(A)1B(Φ)), A ∈ Bor(R), (2.2)

is dominated by ν. Let the function x → P x(B) be a Radon-Nikodym density. Then

we have:

νB(A) =
∫
A

P x(B)dν(x), A ∈ Bor(R). (2.3)

The basic result now is that the family {P x(B) : x ∈ R and B ∈ M̄} can be chosen such

that

(a) the function x → P x(B) is measurable for all B ∈ M̄,

(b) P x is a probability measure on M̄ for all x ∈ R,

(c) the following holds for all Bor(R)× M̄ -measurable functions f on R×M that are

either nonnegative or satisfy E(
∫
R

f(x,Φ)dΦ(x)) < ∞ :

∫
M

∫
R

f(x, ϕ)dϕ(x)dP (ϕ) =
∫∫
R×M

f(x, ϕ)C1(dx× dϕ) (2.4)

=
∫
R

∫
M

f(x, ϕ)dP x(ϕ)dν(x).

Furthermore, the family {P x} of probability distributions turns out to be uniquely

defined by (2.4) - even by (2.3) - apart from a Borel-set in R with ν-measure 0. Note

that the choice f(x, ϕ) = 1A×B(x, ϕ) returns (2.3). In the sequel, we will always assume

that the family {P x} in (2.4) also satisfies (a) and (b).
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The probability measures P x, x ∈ R, are called Palm distributions (PD’s). Accord-

ing to the above, the family {P x} of PD’s belonging to the distribution P of a point

process is uniquely defined by (2.4) - and even by (2.3) - in the ν-a.e. sense. On the

other hand, if for a distribution P of a point process the family {P x} of PD’s and the

intensity measure ν is given, then the distribution P follows from (2.3) or (2.4). It can

be proved that P x(Mx) = 1 for ν-a.e. x ∈ R. By letting A in (2.3) shrink to {x},

we obtain the intuitive meaning for P x(B) as the probability that Φ ∈ B under the

condition that Φ{x} = 1 :

lim
h→0

E(Φ(x− h, x+ h)1B(Φ))

E(Φ(x− h, x+ h))
= P x(B) for ν-a.e. x ∈ R. (2.5)

Shifted Palm distributions

We will especially be interested in {P 0,x}, the family of shifted PD’s defined by

P 0,x := P xθ−1x .

Note that P 0,x satisfies P 0,x(M0) = 1, and that (in queuing terms, with Tn as arriving

times) it can be considered as the probability mechanism observed (experienced) by a

customer arriving at time x. For time-stationary P satisfying (ii) we have P 0,x = P 0 for

ν-a.e. x ∈ R, where P 0 is defined as in (1.1); cf. Proposition 7 in Jagers (1973).

With (2.4), the choice f(x, ϕ) = 1B(θxϕ)1A(x) yields that

C2(A×B) := µB(A) := E(
∑

{i:Ti∈A}

1B ◦ ηi) =
∫
A

P 0,x(B)dν(x), (2.6)

A ∈ Bor(R) and B ∈ M̄ . This set function C2 can also uniquely be extended to a

σ-finite measure C2 on Bor(R)× M̄. Also note that, for all B ∈ M̄ , µB(A) is the (under

P ) expected number of the occurrences in A from which B is observed, and that µB is

an other locally finite measure on Bor(R). It is dominated by ν and dµB/dν, a function

of x ∈ R, can be chosen as P 0,x(B). This also is heuristically obvious: by letting A in

(2.6) shrink to {x} we obtain the intuitive meaning for P 0,x(B) as the probability that

θxΦ ∈ B under the condition that Φ{x} = 1 :

lim
h→0

E(Φ(x− h, x+ h)1B(θxΦ))

E(Φ(x− h, x+ h))
= P 0,x(B) ν-a.e.;

cf. (2.2), (2.3) and (2.5).
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We next derive a generalization of (1.5). For this, recall the definitions of Fk and

Rk in Section 1 and set Ix := (0, x] if x > 0, Ix := (x, 0] if x ≤ 0, and choose f in (2.4)

as follows:

f(x, ϕ) = 1B(ϕ)1{|k|}(ϕ(Ix))1Rk(x),

where B ∈ M̄ and k ∈ Z. We obtain, for B ∈ M̄ and k ∈ Z :

P (B ∩ Fk) =
∫
Rk

P x(B ∩ [ϕ(Ix) = |k|])dν(x) (2.7)

=
∫
Rk

P x(B ∩ [Tk = x])dν(x)

=
∫
Rk

P 0,x([θ−xϕ ∈ B] ∩ [T−k ≤ −x < T−k+1])dν(x).

(The second equality follows by intersection withMx.) Note that in the second and third

equality it is allowed to replace Rk by R. Also note that the last equality obviously

generalizes (1.5).

Equation (2.7) can be used to derive other, very useful, results. For A ∈ Bor(R),

substitute B ∩ [Tk ∈ A] for B in the last equality. It follows that

P (B ∩ [Tk ∈ A]) =
∫
A

P 0,x([θ−xϕ ∈ B] ∩ [T−k ≤ −x < T−k+1])dν(x) (2.8)

for all k ∈ Z, A ∈ Bor(R) and B ∈ M̄ . By taking
∑

k∈Z, the left-hand side becomes

equal to E[Φ(A)1B(Φ)] and we get (2.3) back. When B in (2.8) is replaced by [ηkϕ ∈ B],

we obtain

P ([ηkϕ ∈ B] ∩ [Tk ∈ A]) =
∫
A

P 0,x(B ∩ [T−k ≤ −x < T−k+1])dν(x) (2.9)

for all k ∈ Z, A ∈ Bor(R) and B ∈ M̄ . Note that we get (2.6) back by taking
∑

k∈Z.

The choice B = M in (2.9) ensures that, if P (Fk) > 0, the conditional distribution

P ([Tk ∈ ·]|Fk) of Tk is dominated by ν and that the function

x → P 0,x[T−k ≤ −x < T−k+1]/P (Fk) is a RN-density.

Since the Borel-set {x ∈ R : ν(x−h, x+h) > 0 for some h > 0} has ν-measure 0 in

many relevant cases, we obtain - by writing the conditional probability on the right-hand

side below as a ratio of unconditional probabilities and dividing both the numerator and

the denumerator by ν(x − h, x + h), and letting h tend to 0 from above - that, under

some additional regularity conditions,

P 0,x(B|[Tk(θ−xϕ) = x]) = lim
h→0

P ([ηkϕ ∈ B]|[Tk(ϕ) ∈ (x− h, x+ h)]) (2.10)
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for ν-a.e. x ∈ R and all B ∈ M̄ . This result describes the shifted Palm distributions

locally; cf. (1.4).

Long-run properties

By (2.3) it is (because of generalized bounded convergence) an easy exercise to show

that

1

ν(0, t]

∫
(0,t]

P x(B)dν(x) → P (B) as t → ∞ for all B ∈ M̄, (2.11)

provided that P [limt→∞(ϕ(0, t]/ν(0, t]) = 1] = 1. This result becomes clear if the

intuitive meaning of P x(B), outlined in (2.5) is used. The long-run property (2.11)

specializes into

1

λt

∫
(0,t]

P x(B)dν(x) → P (B) as t → ∞ for all B ∈ M̄,

if it is given that P [θ(0, t]/t → λ] = 1 and EΦ(0, t]/t → λ (as t → ∞) for some positive

constant λ.

Suppose additionally that P (M∞) = 1 and that Φ is AES; see (1.18). Let Q0 be

the event-stationary limit distribution. Since Q0 = P on I, we obtain that

ϕ(0, t]

ν(0, t]

1

ϕ(0, t]

ϕ(0,t]∑
i=1

1A ◦ ηi → 1 · EQ0
(1A|I) as t → ∞ P -a.s.

if P [ lim
t→∞

(ϕ(0, t]/ν(0, t]) = 1] = 1. (Here EQ0
denotes expectation under Q0.) By taking

expectation under P we obtain from (2.6) that

1

ν(0, t]

∫
(0,t]

P 0,x(A)dν(x) → Q0(A) as t → ∞ for all A ∈ M̄∞. (2.12)

The probability measure Q0 will be studied again in Sections 4 and 6.

Example 2.1.

Let ΦST and Φ respectively denote a time-stationary Poisson process and an accompa-

nying (event-stationary) Palm version. (So, Φ has an occurrence in the origin.) Denote

their distributions by Pst and P , respectively. We will write νst(A) := E(ΦST(A)) =

λst Leb(A) and ν(A) := E(Φ(A)). Below, we will characterize the shifted Palm-distributions

P 0,x of P .

First note that the distributions Pst and P are related as P and P 0 are in (1.1) and

(1.5). Proposition 5 of Jagers (1973) implies a characterization of the Palm distributions
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(Pst)
x of Pst : it follows that ΦST + ex has distribution (Pst)

x, where ex(C) := 1C(x) for

C ∈ Bor(R). Hence,

E[ΦST(A) · 1C(ΦST)] = λst
∫
A

P[ΦST + ex ∈ C]dx (2.13)

for A ∈ Bor(R) and C ∈ M̄ ; cf. (2.3). Consequently, ΦST + e0 has distribution

(Pst)
0,x(which equals P ), so Φ and ΦST + e0 have the same distribution. Regarding the

PD’s of P , we will show that P x = P 0,x = P for x = 0, and that for x 	= 0 the point

processes Φ+ ex and Φ+ e−x have distributions P x and P 0,x, respectively. That is,

P x(B) = P[Φ + ex ∈ B] and P 0,x(B) = P[Φ + e−x ∈ B] (2.14)

for B ∈ M̄ and for ν-a.e. x 	= 0.

First note that Φ+ ex and ΦST + e0 + ex are equally distributed as long as x 	= 0.

Using (2.3) it will be demonstrated that

E[Φ(A) · 1B(Φ)] =
∫
A

Qx(B)dν(x) (2.15)

in case B = [ϕ(C) = k];A, C ∈ Bor(R), k a non-negative integer, and Qx(B) :=

P[ΦST + e0 ∈ B] if x = 0 and Qx(B) := P[ΦST + e0 + ex ∈ B] if x 	= 0. Write A1 for

A\{0} and C ′ for the complement of C. Then (by (2.13)) the left-hand side (LHS) of

(2.15) equals

LHS = E[(ΦST + e0)(A)) · 1[ϕ(C)=k](ΦST + e0)]

= E[(ΦST(A) + 1A(0)) · (1[ϕ(C)=k](ΦST) · 1C′(0) + 1[ϕ(C)=k−1](ΦST) · 1C(0))]

= λst
∫
A

P[(ΦST + ex)(C) = k]dx · 1C′(0)+

+λst
∫
A

P[(ΦST + ex)(C) = k − 1]dx · 1C(0)+

+1A(0) · 1C′(0) · P[ΦST(C) = k] + 1A(0) · 1C(0) · P[ΦST(C) = k − 1].

The right-hand side (RHS) of (2.15) equals

RHS = P[(ΦST + e0)(C) = k] · 1A(0) + λst
∫
A1

P[(ΦST + e0 + ex)(C) = k]dx

= P[(ΦST + e0)(C) = k] · 1A(0) + λst
∫
A1

P[(ΦST + ex)(C) = k]dx · 1C′(0)+

+λst
∫
A1

P[(ΦST + ex)(C) = k − 1]dx · 1C(0).
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Since the summation of the terms 3 and 4 in LHS is equal to term 1 in RHS, (2.15)

follows for B = [ϕ(C) = k]. If B is of the form [ϕ(Ci) = ki for i = 1, . . . , m], (2.15)

follows from similar arguments. Hence, (2.15) is valid for general B and the same holds

for the left-hand sight of (2.14) because of the uniqueness of the family of PD’s in the

ν-a.e. sense; see below (2.4). The right-hand side of (2.14) follows immediately, since

θx(ΦST + e0 + ex) and ΦST + e−x + e0 have the same distribution. �

3 Intermediate probabilities

In this section we generalize the concept ’intermediate probability distribution’ Pn to

the non-stationary case. It is also shown that a null-set under P is also a null-set under

P x for ν-a.e. x ∈ R (and vice versa). However, this does not imply that the family {P x}

is dominated by P .

For n ∈ Z with P (Fn) > 0, we define the intermediate probability measures Pn by:

Pn(A) := P ([ηnϕ ∈ A]|Fn), A ∈ M̄, (3.1)

which generalizes the corresponding definition in Section 1. By (2.9) we have, for all

B ∈ M̄ and k ∈ Z with P (Fk) > 0,

Pk(B) = (P (Fk))
−1

∫
Rk

P 0,x(B ∩ [T−k ≤ −x < T−k+1])dν(x). (3.2)

(Note that it is allowed to replace Rk by R.) This result is basic for the following

theorem.

Theorem 3.1. Let Φ be a simple point process on R with at least one occurrence.

assume that the intensity measure ν exists and is locally finite. Then, for all B ∈ M̄

the following holds:

(1) P (B) = 0 ⇔ P x(B) = 0 for ν-a.e. x ∈ R,

(2) P 0,x(B) = 0 for ν-a.e. x ∈ R ⇔ Pn(B) = 0 for all n ∈ Z with P (Fn) > 0.

Proof. Let B ∈ M̄ . Suppose that P (B) = 0. Then P(B ∩ Fn) = 0 and - by the second

equality in (2.7) and the remark thereafter - P x(B ∩ [Tn = x]) = 0 for ν-a.e. x ∈ R and

all integers n. Hence,

P x(B) =
∑
m∈Z

P x(B ∩ [Tm = x]) = 0 for ν-a.e. x ∈ R.
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The other implication of (1) also follows from the second equation of (2.7), since P (B) =

P (B ∩ [ϕ(R) > 0]) ≤ P (B ∩ F0) + P (B ∩ F1).

For (2), the implication⇒ follows from (3.2). For the reversed implication, suppose

that Pn(B) = 0 for all n ∈ Z with P (Fn) > 0. Because of (3.2),

P 0,x(B ∩ [T−n ≤ −x < T−n+1]) = 0 ν-a.e.

for all such n ∈ Z. For all n ∈ Z with P (Fn) = 0 we have:

P 0,x(B ∩ [T−n ≤ −x < T−n+1]) ≤ P 0,x[T−n ≤ −x < T−n+1] = 0 ν-a.e.,

which follows by choosing B = M in the last equation of (2.7). Consequently,

P 0,x(B) =
∑
n∈Z

P 0,x([T−n ≤ −x < T−n+1]∩B) = 0 for ν-a.e. x ∈ R. �

Remark. Part (1) does not automatically imply that P dominates P x for ν-a.e. x ∈

R; see Example 3.3 below.

The intermediate position of the probability measures {Pn} between P and the shifted

PD’s {P 0,x} is illustrated nicely by the following corollary. It is about strong laws

holding equivalently under P and under {P 0,x}. Its proof is straightforward and makes

use of Lemma 1.1.

Corollary 3.2 Let Φ be a simple point process on R with P (M∞) = 1. Assume that ν

exists and is locally finite. Then, for any I-measurable functions V and U on M∞ and

all B ∈ M̄,

P [ lim
t→∞

1

t
ϕ(0, t] = V (ϕ)] = 1

⇔ Pn[ lim
t→∞

1

t
ϕ(0, t] = V (ϕ)] = 1 for all n ∈ Z

⇔ P 0,x[ lim
t→∞

1

t
ϕ(0, t] = V (ϕ)] = 1 ν-a.e. x ∈ R.

and

P 0,x[ lim
n→∞

1

n

n∑
i=1

1B ◦ ηi = U ] = 1 ν-a.e. x ∈ R

⇔ Pn[ lim
n→∞

1

n

n∑
i=1

1B ◦ ηi = U ] = 1 for all n ∈ Z

⇔ P [ lim
n→∞

1

n

n∑
i=1

1B ◦ ηi = U ] = 1.
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In the following sections we will consider domination of the family {P 0,x} by one

event-stationary distribution P 0
st and/or domination of P by a time-stationary distrib-

ution Pst. By the first type of domination (notation: P 0,x � P 0
st for ν-a.e. x ∈ R) we

mean that for ν-a.e. x ∈ R and all B ∈ M̄ , the implication P 0
st(B) = 0 ⇒ P 0,x(B) = 0

is valid. The first type of domination not necessarily implies the second, as follows

from the example below. This example also shows that Theorem 3.1 does not imply

domination.

Example 3.3. Suppose that P itself is event-stationary. Then all intermediate prob-

ability distributions are equal to P . By part (2) of Theorem 3.1 it follows for all

B ∈ M̄ that: P (B) = 0 implies P 0,x(B) = 0 for ν-a.e. x ∈ R. Since P [ϕ{0} = 1] = 1,

it follows from part (1) that P x[ϕ{0} = 1] = 1 and hence P 0,x[ϕ{0} = 1 and ϕ{−x} =

1] = 1 for ν-a.e. x ∈ R .

If P is the distribution of the event-stationary deterministic point process with

interval lengths 1, then P{ϕ0} = 1 where ϕ0 is the counting measure with atoms in

all integers. Note that P is not dominated by any time-stationary distribution Pst,

since P [ϕ{0} = 1] = 1 while Pst[ϕ{0} = 1] has to be 0 because of time-stationarity.

Furthermore, ν is not dominated by Leb, since Leb{0} = 0 while ν{0} = 1. However,

P x = P for ν-a.e. x ∈ R since

E[Φ(A)1B(Φ)] = ϕ0(A) · 1B(ϕ0) =
∫
A

P (B)dν(x)

for all A ∈ Bor(R) and all B ∈ M̄ . Consequently, P 0,x = P and P 0,x is dominated

by an event-stationary distribution (P itself) for ν-a.e. x ∈ R; see the remark about

uniqueness following (2.4).

If P is the distribution of an ordinary renewal process with exponentially distributed

interval lengths, then Pn = P for all n ∈ Z. Recall that the eventualities

Ax := [ϕ{−x} = 1] have P 0,x-probability 1. Although they have P -probability 0 as

long as x 	= 0, this does not contradict part (2) of Theorem 3.1 because of the ν-a.e.

inclusion. But it does show that P 0,x is not for ν-a.e. x ∈ R dominated by Pn = P since

the ν-measure of the set of x ∈ R for which there exists an eventuality B with P (B) = 0

and P 0,x(B) 	= 0, is unequal to 0. In a similar way, the eventualities Bx := [ϕ{x} = 1]

have P -probability 0 and P x-probability 1 as long as x 	= 0. Hence, in spite of part (1)

of the theorem, {P x} is not dominated by P. �
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4 Domination of {P 0,x} by an event-stationary dis-

tribution

It is well-known that the strength of the concept ’Palm distribution’ appears best under

stationary circumstances; cf. Daley and Vere-Jones (1988; p. 456). In this section

we will not assume that the point process itself is stationary, but that its family of

shifted Palm distributions is dominated by one event-stationary Palm distribution P 0
st.

For several properties valid for stationary point processes (see Section 1), we derive

generalizations valid under the new circumstances.

Assume that P 0,x � P 0
st for ν-a.e. x ∈ R; notation: {P 0,x} � P 0

st. Here P 0
st

is assumed to be an event-stationary distribution with E0
st(α0) < ∞. (E0

st denotes

expectation under P 0
st.) Hence, for ν-a.e. x ∈ R, the null-sets under P 0

st are also null-

sets under P 0,x. It is well-known that P 0
st can be considered as the Palm distribution

of a time-stationary distribution Pst satisfying (ii); see Theorem 1.3.1 in Franken et al.

(1982). So, P 0
st and Pst are related like P 0 and P in Section 1. Let ρx be the Radon-

Nikodym density (defined for ν-a.e x) of P 0,x with respect to P 0
st. That is, for ν-a.e.

x ∈ R it holds that

P 0,x(B) = E0
st(ρx · 1B) for all B ∈ M̄, (4.1)

which expresses P 0,x explicitly in terms of P 0
st. By applying (1.1) or (1.7), we could get

two equations expressing P 0,x in terms of Pst.

The domination assumption also yields that P 0,x(M∞) = 1 for ν-a.e. x ∈ R. Hence,

P (M∞) = 1 as follows from part (1) of Theorem 3.1. We can rewrite (2.7) and express

P in terms of P 0
st (or, if you like, in Pst):

P (B) = E0
st(

∫
(−T

−k+1,−T−k]

ρy · 1B ◦ θ−ydν(y)); B ∈ M̄∞ and k ∈ Z. (4.2)

Recall that the domination of {P 0,x} by an event-stationary distribution not nec-

essarily implies that P is dominated by a time-stationary distribution; see Example 3.3.

However, all intermediate probability distributions Pk of P are dominated by P 0
st. This

is a consequence of the following theorem that characterizes the domination-assumption

of {P 0,x}.

Theorem 4.1. Let P 0
st be an event-stationary distribution on (M∞, M̄∞) for which

E0
st(α0) < ∞. Then the following holds:
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The family {P 0,x} of shifted PD’s of P on (M∞, M̄∞) is dominated by P 0
st iff for all

k ∈ Z the P -probability distribution of (ηk, Tk) on (M∞×R, M̄∞×Bor(R)) is dominated

by the product measure P 0
st × ν. The RN-derivatives

dP 0,x

dP 0
st

(ϕ, x) =: ρx(ϕ) and
dP(η

k
,Tk)

d(P 0
st × ν)

(ϕ, x) =: τ k(ϕ, x),

ϕ ∈ M∞ and x ∈ R, are related as

(i) τ k(ϕ, x) = ρx(ϕ) · 1[T
−k≤−x<T−k+1] (P 0

st × ν)-a.e.,

(ii) ρx(ϕ) =
∑

k∈Z τk(ϕ, x) P
0
st-a.s. for ν-a.e. x ∈ R.

Proof. The only-if part is an immediate consequence of (2.9) and (4.1); relation (i)

follows too. For the if part, suppose that for all k ∈ Z the probability distribution

of (ηk, Tk) under P is dominated by the product measure P 0
st × ν with RN-derivative

τ k(ϕ, x). By applying (2.9) and taking
∑

k∈Z we obtain that, for all A ∈ Bor(R) and

B ∈ M̄∞,

µB(A) =
∫
A

P 0,x(B)dν(x) =
∫
A

Q0,x(B)dν(x) (4.3)

with Q0,x(B) :=
∫
B

(
∑
k∈Z

τ k(ϕ, x))dP
0
st(ϕ) for x ∈ R. Consequently, for all x ∈ R, the

measures Q0,x are dominated by P 0
st and

dQ0,x/dP 0
st =

∑
k∈Z

τk(ϕ, x) P 0
st-a.s.

Especially, the Q0,x are probability measures. Recall that {P 0,x}, the shifted family of

PD’s, is unique in the ν-a.e. sense. So we can conclude that, for ν-a.e. x ∈ R, we have

P 0,x = Q0,x. The if-part and relation (ii) follow from this observation. �

Corollary 4.2. Suppose that {P 0,x} � P 0
st; set {ρx} for the RN-derivatives. Then,

for k ∈ Z, the intermediate probability distributions Pk are also dominated by P 0
st with

RN-derivatives δ−k (on M∞) equal to

δ−k =
∫

(−T
−k+1,−T−k]

ρxdν(x).

For all n ∈ Z it holds that P 0
st[δn+1 = δn ◦ η1] = 1.

Proof. The domination result and the equation for δ−k follow from Theorem 4.1 and

Fubini’s theorem. As a consequence, note that for all A ∈ M̄∞:

E0
st(1A · δ−(k+1)) = Pk+1(A) = Pk[η1ϕ ∈ A]

= E0
st(1A ◦ η1 · δ−k) = E0

st(1A · δ−k ◦ η−1).
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So, P 0
st[δ−(k+1) = δ−k ◦ η−1] = 1 for all k ∈ Z. The result follows by replacing (k + 1) by

−n and applying the event-stationarity of P 0
st once again. �

As a consequence, the sequence {δn} is stationary under P 0
st. If P is time-stationary itself

with finite intensity, then the PD’s P 0,x are equal to the accompanying event-stationary

PD P 0. So, we can take P 0
st = P 0 and ρx ≡ 1. Since ν = λ·Leb, it follows immediately

that δ−k = λα−k P 0
st-a.s. Consequently, Corollary 4.2 generalizes (1.6).

Under additional assumptions, P 0,x can explicitly be expressed in terms of P .

Corollary 4.3. Suppose that P 0,x ∼ P 0
st with ρx = dP 0,x/dP 0

st for ν-a.e. x ∈ R. Assume

additionally that m ∈ Z exists such that P 0
st[ν(−Tm+1(ϕ),−Tm(ϕ)] > 0] = 1. Then we

have for ν-a.e. x ∈ R and all k ∈ Z that Pk ∼ P 0
st, that P

0,x ∼ Pk, and that

P 0,x(B) = E(
1

δ0 ◦ η0
· ρx ◦ ηk · 1B ◦ ηk); B ∈ M̄∞.

Proof. We first prove that P 0
st[δm > 0] = 1. Note that P 0

st[ρx(ϕ) > 0] = 1 for ν-a.e.

x ∈ R. Also note that the function U : M∞ → [0,∞] defined by U(ϕ) := ν{x ∈

R : ρx(ϕ) = 0} is measurable with respect to M̄∞ and Bor([0,∞]) and that the set

S := {(x, ϕ) ∈ R ×M∞ : ρx(ϕ) = 0} belongs to the product σ-field Bor(R) × M̄∞ on

the product space R×M∞. With these considerations and Fubini’s theorem in mind,

the following equivalences are immediate:

P 0
st[U = 0] = 1 ⇔ E0

st(U) = 0 ⇔
∫
M

∫
R

1S(s, ψ)dν(s)dP
0
st(ψ) = 0

⇔
∫
R

∫
M

1S(s, ψ)dP
0
st(ψ)dν(s) = 0

⇔
∫
R

P 0
st[ρs(ϕ) = 0]dν(s) = 0

⇔ P 0
st[ρx(ϕ) = 0] = 0 ν-a.e. x ∈ R

As a consequence we obtain that P 0
st[ρx(ϕ) > 0 for ν-a.e. x ∈ R] = 1. Since

P 0
st[ν(−Tm+1(ϕ),−Tm(ϕ)] > 0] = 1, it follows from the definition of δm that P 0

st[δm >

0] = 1. Consequently, P 0
st[δk > 0] = 1 and Pk ∼ P 0

st for all k ∈ Z. Furthermore, with Ek

denoting expectation under Pk, we obtain for ν-a.e. x ∈ R that

P 0,x(B) = Ek(
ρx
δ−k

1B) = E0(
ρx ◦ ηk
δ0

1B ◦ ηk)

= E(
ρx ◦ ηk
δ0 ◦ η0

1B ◦ ηk) for all B ∈ M̄∞,
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since 1 = P 0
st[δ−k ◦ ηk = δ0] = P0[δ−k ◦ ηk = δ0]. �

Long-run properties

Here are immediate long-run consequences (under P ) of the domination assumption.

Results (4.4) and (4.5) follow from Birkhoff’s ergodic theorem, and from part (2) of

Theorem 3.1 or Corollary 3.2.

1

n

n∑
i=1

αi → E0
st(α0|I) =: ᾱ as n → ∞ P -a.s.; (4.4)

1

n

n∑
i=1

1A ◦ ηi → E0
st(1A|I) as n → ∞ P -a.s.; A ∈ M̄∞; (4.5)

1

n

n∑
i=1

P [ηi(ϕ) ∈ A] → E(E0
st(1A|I)) =: Q0(A) as n → ∞; A ∈ M̄∞. (4.6)

(Note that the convergences in (4.4) and (4.5) also hold P 0,x-a.s. for ν-a.e. x ∈ R.)

Since Q0(A) = E(E0
st(1A|I) ◦ η0), we obtain by Corollary 4.2 that

Q0(A) = E0
st(δ0 · E

0
st(1A|I)) = E0

st(δ̄ · 1A), A ∈ M̄∞, (4.7)

where δ̄ = E0
st(δ0|I), the long-run average (under P 0

st) of the sequence {δn}. Conse-

quently, Q0 � P 0
st and dQ0/dP 0

st = δ̄. Furthermore, Q0 = P 0
st if P

0
st is ergodic.

It can easily be proved that the convergence in (4.6) is uniform in A, again by using

Corollary 4.2. Set

P̂n(A,ϕ) :=
1

n

n∑
i=1

1A(η
i
ϕ); A ∈ M̄∞ and n ∈ N.

Then

2 sup
A∈M̄∞

|
1

n

n∑
i=1

Pi(A)−Q0(A)| = d(EP̂n, Q
0) = E0

st|
1

n

n∑
i=1

δ−i − δ̄|,

which tends to 0 as n → ∞ since the i.d. sequence {δ−i} - and hence the sequence

{
∑n

i=1 δ−i/n} too - is uniformly P 0
st-integrable.

We next consider long-run properties in continuous time. Let Pst be the time-

stationary probability distribution (and Est the corresponding expectation operator)

that has P 0
st as Palm distribution. First, note that P [limt→∞ ϕ(0, t] = ∞] = 1 and that

P [ lim
t→∞

(Tϕ(0,t](ϕ)/ϕ(0, t]) = ᾱ(ϕ)] = 1

by (4.4). Consequently, using (1.15),

Φ(0, t]

t
→ Est(Φ(0, 1]|I) =: Φ̄ as t → ∞ P -a.s. (4.8)
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Furthermore,

1

t

t∫
0

1A ◦ θsds → Est(1A|I) as t → ∞ P -a.s., (4.9)

since the convergence holds Pst-a.s. because of Birkhoff’s ergodic theorem, P 0
st-a.s. be-

cause of the right-hand side of (1.2), and P1-a.s. by part (2) of Theorem 3.1. (Note that

the convergences in (4.8) and (4.9) also hold P 0,x-a.s. for ν-a.e x ∈ R.)

By taking P -expectation we obtain that

1

t

t∫
0

P [θsϕ ∈ A]ds → E(Est(1A|I)) =: Q(A) as t → ∞; A ∈ M̄∞. (4.10)

Note that Q is a time-stationary probability distribution. By Corollary 4.2, (1.7) and

(1.15) we obtain that

Q(A) = E(Est(1A|I) ◦ η0) = E0
st(δ̄ · Est(1A|I))

=
1

λst
Est(

δ̄

α0
· Est(1A|I)) =

1

λst
Est(Φ̄δ̄ · 1A); A ∈ M̄∞. (4.11)

Also note that

EQ(Φ(0, 1]) = E0
st(Φ̄δ̄) = E0

st(δ0/ᾱ).

We conclude that Q � Pst with dQ/dPst = Φ̄δ̄/λst, and that Q satisfies (ii) (and hence

the PD of Q exists) if E0
st(δ0/ᾱ) < ∞. Furthermore, Q = Pst if Pst is ergodic.

The following theorem summarizes some of the results of this subsection.

Theorem 4.4. Suppose that the family {P 0,x} of the shifted PD’s of a point process

with distribution P is dominated by an event-stationary distribution P 0
st. Then the

point process is AES and ATS. The event-stationary limit distribution Q0 and the time-

stationary limit distribution Q are related as follows:

Q0(A) = EQ(
ᾱ

α0
· 1A ◦ η0) and Q[η0ϕ ∈ A] = EQ0(

α0

ᾱ
· 1A), A ∈ M̄∞;

Q0 is the PD of Q if P 0
st is pseudo-ergodic.

Proof. The results on AES and ATS were proved above. In (4.11) we expressed Q in

terms of Pst. By (1.6) we can do the same for Q0 :

Q0(A) = E0
st(δ̄1A) =

1

λst
Est(

δ̄

α0
· 1A ◦ η0); A ∈ M̄.

The relations between Q0 and Q follow immediately.
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Suppose that P 0
st is pseudo-ergodic. First note that

EQ(Φ(0, 1]) = E0
st(δ0/ᾱ) = λstE

0
st(δ0) = λst

since δ0 is RN-density of P0 w.r.t P 0
st. Consequently, Q satisfies (ii), has intensity λst,

and the PD of Q is well defined. Since ᾱ = 1/λst holds P 0
st-a.s., it also holds P 0,x-a.s.

for ν-a.e. x ∈ R because of the domination assumption of {P 0,x}. It holds P1-a.s. by

Theorem 3.1, and P -a.s. by Lemma 1.1. Since P and Q coincide on I it also holds

Q-a.s. So,

Q0(A) =
1

λst
EQ(

1

α0
· 1A ◦ η0); A ∈ M̄.

Hence, by (1.7), Q0 is the PD of Q. �

5 Domination of P by a time-stationary distribution

Some immediate consequences of domination of P by a time-stationary distribution Pst

are considered. Especially the implication P � Pst ⇒ ν �Leb is derived. Furthermore,

we investigate the relation between time-stationarity of P itself and I-measurability of

dP/dPst.

Assume that P is dominated by a time-stationary distribution Pst that satisfies

(ii). Let λst denote the intensity under Pst. We will write E for expectation under P ,

Est for expectation under Pst, and E0
st for expectation under the event-stationary Palm

distribution P 0
st that - according to (1.1) - belongs to Pst. Let σ be a Radon-Nikodym

density; that is,

P (B) = Est(σ · 1B) for all B ∈ M̄. (5.1)

First notice that P (M∞) = 1 since Pst(M
∞) = 1. Here are other results that can

easily be proved from (5.1) and relations in Section 1:

P (B) = λstE
0
st(

Tk∫
Tk−1

σ ◦ θu · 1B ◦ θudu), (5.2)

= λstE
0
st(

∫
(−T

−k+1,−T−k]

σ ◦ θ−y · 1B ◦ θ−ydy)

for all B ∈ M̄∞ and k ∈ Z;

Pθ−1t � Pst and RN = σ ◦ θ−t for all t ∈ R. (5.3)
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Lemma 5.1. Let Pst be a time-stationary distribution that satisfies (ii). Then:

P � Pst ⇒ ν � Leb.

Proof. Suppose that P � Pst. If A ∈ Bor(R) satisfies Leb(A) = 0, then Est(Φ(A)) =

λst·Leb(A) = 0 and 1 = Pst[ϕ(A) = 0] = P [ϕ(A) = 0], and hence ν(A) = 0. Conse-

quently, ν �Leb. �

If P is time-stationary too . . .

If P � Pst and P is time-stationary too, what are the consequences? The following

results are straightforward:

P is time-stationary too ⇔ Pst[σ ◦ θt = σ] = 1 for all t ∈ R; (5.4)

σ is I-measurable ⇒ P is time-stationary. (5.5)

Regarding a reversed version of (5.5) we have to be careful:

Lemma 5.2. Suppose that P � Pst, and that Pst is time-stationary and satisfies (ii).

Then:

P is time-stationary ⇒ Pst[σ ◦ θt = σ for Leb-a.e t ∈ R] = 1.

Proof. Suppose that P is time-stationary. Note that the function U : M∞ → [0,∞]

defined by U(ϕ) :=Leb{t ∈ R : σ(θtϕ) 	= σ(ϕ)} is measurable with respect to M̄∞ and

Bor([0,∞]). Also note that the set S := {(t, ϕ) ∈ R×M∞ : σ(θtϕ) 	= σ(ϕ)} belongs to

the product σ-field Bor(R)× M̄∞ on the product space R×M∞. Similar to the proof

of Corollary 4.3 we have:

Pst[U = 0] = 1 ⇔ Pst[σ(θtϕ) = σ(ϕ)] = 1 Leb-a.e. t ∈ R.

By (5.4) the last statement is valid. So, the implication of the lemma follows immedi-

ately. �

Suppose that λ := E(Φ(0, 1]) < ∞, so P satisfies (ii). If P is time-stationary too and

Pst is pseudo-ergodic, then E(Φ(0, 1]|I) and λst are both P -a.s. limits of Φ(0, t]/t as

t → ∞. So, P [E(Φ(0, 1]|I) = λst] = 1, P is pseudo-ergodic too, and λ = λst. However,

for general time-stationary P with P � Pst the two intensities are not necessarily equal.

Both λ < λst and λ > λst is possible, as in the following example.
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Example 5.3. Take σ(ϕ) := Est(Φ(0, 1]|I)/λst =: Φ̄/λst. Then, Est(σ) = 1 and P

(defined by (5.1)) is time-stationary because of (5.5). Assume that σ is not degenerated;

cf. Nieuwenhuis(1994; p. 53/54). By conditioning on I, we have

λ = E(Φ(0, 1]) = Est(Φ̄ · Φ(0, 1])/λst = Est(Φ̄
2)/λst,

which is larger than λst since the random variable σ is non-degenerated.

Suppose that ᾱ := E0
st(α0|I) is non-degenerated. The definition σ(ϕ) := ᾱ/Est(ᾱ)

leads to a time-stationary distribution P dominated by Pst for which λ < λst :

λ = E(Φ(0, 1]) = Est(ᾱ · Est(Φ(0, 1]|I))/Est(ᾱ)

= 1/Est(ᾱ) = 1/(λst · E0
st(ᾱ

2)) < λst.

(In the third and fourth equality, we used (1.15) and (1.6), respectively. Regarding the

inequality we used that ᾱ is non-degenerated.) �

To illustrate things, we ask ourselves the following question: Starting with a time-

stationary distribution Pst, is it possible to adopt a model P that is dominated by it

and that (to say it in a queuing kind of way) allows from all occurrences the experience

of an event-stationary distribution? As we will see, the answer is yes.

Example 5.4. For ϕ ∈ M∞ and B ∈ M̄∞, set σ(ϕ) := 1/(λst · α0) and P (B) :=

Est(σ · 1B). By (1.3) it follows that Est(σ) = 1, as it should. By (1.7) we have, for all n

∈ Z,

P [ηnϕ ∈ B] = Est(
1

α0
1B ◦ ηn)/λst = P 0

st(B);

B ∈ M̄∞. All intermediate probabilities are the same and equal to the event-stationary

distribution that belongs to Pst. Under the model P , event-stationarity is observed from

all occurrences. �

6 Equivalence of domination properties

Domination of P by a time-stationary distribution Pst is equivalent to the joint validity

of the domination properties {P 0,x} � P 0
st and ν � Leb. Under such domination cir-

cumstances, the shifted PD’s P 0,x can explicitly be expressed in terms of the distribution

P of the point process. Some consequences are derived.

The theorem below describes the tight relationship between the two kinds of dom-

ination we considered before.
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Theorem 6.1. Let P be the distribution of a point process, Pst a time-stationary

distribution satisfying (ii) and P 0
st the accompanying Palm distribution. Then:

P � Pst ⇔ ν � Leb and {P 0,x} � P 0
st.

The RN-derivatives σ = dP/dPst, λ(·) := dν/dLeb, and ρx = dP 0,x/dP 0
st are related as

follows:

(i) ρy · λ(y) = λst · σ ◦ θ−y for ν-a.e. y in R P 0
st-a.s.;

(ii) λ(x) = λst · E0
st(σ ◦ θ−x) for Leb-a.e. x in R;

(iii) λst · σ = ρTk ◦ ηk · λ(Tk) Pst-a.s. for all k ∈ Z.

Proof. Suppose that P � Pst, with RN-density σ. First note that ν � Leb by Lemma

5.1. Write λ(·) for an RN-density and note that λ(x) 	= 0 for ν-a.e. x ∈ R.

Let B ∈ M̄∞ and let A be a Borel-set in R. We will use (2.3) and the remark about

uniqueness in the paragraph thereafter. By (5.2) we have:

E(Φ(A) · 1B(Φ)) =
∑
k∈Z

P ([Tk ∈ A] ∩B)

=
∑
k∈Z

λstE
0
st(
∫
A

σ ◦ θ−x · 1B ◦ θ−x · 1[T
−k≤−x<T−k+1]dx)

= λstE
0
st(

∫
A

σ ◦ θ−x · 1B ◦ θ−xdx)

=
∫
A

E0
st(λst · σ ◦ θ−x · 1B ◦ θ−x/λ(x))dν(x).

Note that the choice B = M∞ yields

∫
A

1dν(x) =
∫
A

E0
st(λst · σ ◦ θ−x/λ(x))dν(x)

for all Borel-subsets A of R. Hence, Q0,x(C) := λstE
0
st(σ ◦ θ−x · 1C)/λ(x), C ∈ M̄∞,

defines a probability measure for ν-a.e. x ∈ R, and it follows that

E(Φ(A) · 1B(Φ)) =
∫
A

Q0,x[θ−xϕ ∈ B]dν(x).

From (2.3) and the remark on uniqueness in the paragraph thereafter it follows that

P 0,x = Q0,x for ν-a.e x ∈ R. We conclude that - for ν-a.e. x ∈ R - P 0,x is dominated

by P 0
st and that the RN’s ρx satisfy (i). Note that, since 1 = P 0,x(M∞), the above also

yields that ν(A) equals

∫
A

P 0,x(M∞)λ(x)dx =
∫
A

E0
st(ρx · λ(x))dx = λst

∫
A

E0
st(σ ◦ θ−x)dx
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for all A ∈ Bor(R). So, (ii) follows.

Suppose that ν � Leb and P 0,x � P 0
st for ν-a.e. x ∈ R. By applying the last

equality of (2.7) with Rk replaced by R, the domination property of {P 0,x}, (1.7) with

n replaced by k, Fubini’s theorem, and substituting y for −x + Tk(ϕ), we obtain that

P (B) equals

∞∫
−∞

Est(
1

α0

· ρTk−y(ηk) · 1B ◦ θy · λ(Tk − y) · 1[T0≤y<T1])dy/λst.

Recall the definition of Ix in the paragraph preceding (2.7). Note that for fixed y ∈ R,

T0(ψ) ≤ y < T1(ψ) ⇔ ψ(Iy) = 0 ⇔ θyψ ∈ [ϕ(−y + Iy) = 0]

for all ψ ∈ M∞. Note also that all ψ ∈ M∞ with T0(ψ) ≤ y < T1(ψ) satisfy

Tk(ψ)− y = Tk(θyψ); ηk(ψ) = ηk(θyψ); α0(ψ) = α0(θyψ).

By using the stationarity property (iii) of Pst it follows that

P (B) =
+∞∫
−∞

Est(
1

α0
· ρTk(ηk) · 1B · λ(Tk) · 1[ϕ(−y+Iy)=0])dy/λst

= Est(1B ·
∫

(−T1,−T0]

1

α0
· ρTk(ηk) · λ(Tk))dy/λst

= Est(1B · ρTk(ηk) · λ(Tk))/λst

for all k ∈ Z. This yields: P � Pst and (iii). �

Remarks. As an immediate consequence of (i) and (ii), note that it holds P 0
st-a.s. that

ρy =
σ ◦ θ−y

E0
st(σ ◦ θ−y)

for ν-a.e. y ∈ R.

Starting with some preliminary, time-stationary model Pst (for instance a sta-

tionary Poisson process), we can use any measurable function σ : M∞ → R with

Est(σ) = 1 to transform Pst into a new model P (possibly non-stationary) via P (B) =

Est(σ · 1B), B ∈ M̄∞. The accompanying family {P 0,x} of shifted Palm distributions

is then dominated by the (event-stationary) Palm distribution that belongs to the pre-

liminary model. The family of RN-densities {ρx} is determined by (i) with λ(·) as in

(ii).

However, starting with some preliminary event-stationary model P 0
st, we cannot freely

choose the RN-densities ρx : M0 → R with E0
st(ρx) = 1. Relation (i) puts a stamp

on the family {ρx} of RN-densities that can be used to transform an event-stationary
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model P 0
st into a family of more general Palm distributions. Obviously, ρx(ϕ) has (for

ϕ ∈ M0) to satisfy ρx(ϕ) = f(θ−x(ϕ))g(x) for suitable functions f : M∞ → [0,∞) and

g : R → (0,∞) satisfying (E0
stf ◦ θ−x) · g(x) = 1 for Leb-a.e. x.

Having knowledge of the relationship described in (iii), we can, very elegantly,

deduce it from (i). Start with the second equality for Pst(A) in (1.5) while taking

A := [λst · σ = ρTk ◦ ηk · λ(Tk)]. The result (iii) follows from (1.3). �

The following lemma gives equivalent expressions for relation (i). In the lemma, Leb ×

P 0
st is a product measure on the product space R×M0.

Lemma 6.2. Relation (i) can be rewritten in three equivalent ways:

P 0
st[ν{y ∈ R : λst · σ(θ−yϕ) 	= λ(y) · ρy(ϕ)} = 0] = 1

⇔

P 0
st[λst · σ(θ−yϕ) = λ(y) · ρy(ϕ)] = 1 for ν-a.e y ∈ R

⇔

λst · σ(θ−yϕ) = λ(y) · ρy(ϕ) for (ν × P 0
st)-a.e. pair (y, ϕ) ∈ R×M0.

Proof. The proof of the first equivalence is similar to the proof of Corollary 4.3; replace

the definitions of the function U : M∞ → [0,∞] and the set S ∈ Bor(R)× M̄∞ by

U(ϕ) := ν{y ∈ R : λst · σ(θ−yϕ) 	= λ(y) · ρy(ϕ)} for ϕ ∈ M∞,

S := {(y, ϕ) ∈ R×M∞ : λst · σ(θ−yϕ) 	= λ(y) · ρy(ϕ)}.

For the second equivalence, note that, by Fubini’s theorem,

∫
R

P 0
st[λst · σ(θ−yϕ) 	= λ(y) · ρy(ϕ)]dν(y) = 0

⇔
∫∫
R×M

1S(y, ψ)d(ν × P 0
st)(y, ψ) = 0 ⇔ (ν × P 0

st)(S) = 0. �

Theorem 6.3. Let P be the distribution of a point process. Then:

P ∼ Pst ⇔ ν ∼ Leb and P 0,x ∼ P 0
st for ν-a.e. x ∈ R.

Proof. Suppose that P ∼ Pst and let σ, λ(·) and ρx be defined and related as in Theorem

6.1. By this theorem, ν � Leb and P 0,x � P 0
st for ν-a.e. x ∈ R. By (1.5) we have, for

all k ∈ Z,

Pst[σ > 0] = λstE
0
st(

−Tk−1∫
−Tk

1[σ◦θ
−x>0]dx).



31

Since 1[σ◦θ
−x>0] = 1− 1[σ◦θ

−x=0] and Pst[σ > 0] = 1, we obtain

1 = λstE
0
st(αk−1)− λstE

0
st(

−Tk−1∫
−Tk

1[ρx·λ(x)=0]dx).

By (1.2) and (1.3),

0 = E0
st(

−Tk−1∫
−Tk

1[ρx·λ(x)=0]dx) for all k ∈ Z.

Consequently,

P 0
st[ρx > 0 and λ(x) > 0 for Leb-a.e. x ∈ R] = 1.

Hence, ν ∼ Leb and P 0,x ∼ P 0
st for ν-a.e. x ∈ R.

Next, suppose that ν ∼ Leb and P 0,x ∼ P 0
st for ν-a.e. x ∈ R. Then

λ(y) > 0 for Leb-a.e. y ∈ R,

P 0
st[ρy > 0] = 1 for Leb-a.e. y ∈ R.

By Lemma 6.2 we know that

P 0
st[ρy · λ(y) = λst · σ ◦ θ−y] = 1 for Leb-a.e. y ∈ R.

Hence, P 0
st[σ ◦ θ−y > 0] = 1 for Leb-a.e. y ∈ R. Since

Pst[σ > 0] = λstE
0
st(

0∫
−T1

1[σ◦θ
−x>0]dx) = λstE

0
st(α0) = 1,

it follows that P ∼ Pst. �

In Corollary 4.3 we expressed - under an additional assumption - P 0,x(B) explicitly

in terms of P and {ρy}, in case {P 0,y} was dominated by P 0
st. Now assume that the

equivalence P ∼ Pst holds. Since ν ∼ Leb and λ(x) > 0 Leb-a.e., the additional

assumption is now satisfied. So, the relation (i) of Theorem 6.1 can be used to transform

the equation for P 0,x(B) in Corollary 4.3 into an explicit expression in terms of P and

σ. A less complicated expression can be obtained by subsequently applying (4.1), (i) of

Theorem 6.1, (1.7), and Theorem 6.3. We obtain that, for all k ∈ Z and ν-a.e. x ∈ R,

P 0,x(B) =
1

λ(x)
E(

1

σα0
σ ◦ θ−x ◦ ηk · 1B ◦ ηk); B ∈ M̄∞. (6.1)

This equation yields that, for all k ∈ Z and ν-a.e. x ∈ R,

λ(x) · Ex(
1

σ
1B) = E(

1

σα0
1B ◦ θ−x ◦ ηk), (6.2)
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Ex(
1

σ
) = λst/λ(x). (6.3)

Long-run properties

We consider some consequences of Theorem 6.1. Suppose that one of the two equivalent

domination criteria of that theorem holds.

First recall (4.6) and (4.7), especially Q0. In Section 4 this event-stationary distri-

bution was heuristically considered as the distribution observed at an arbitrarily chosen

occurrence. By applying Lemma 1.1(b) and (1.6) with n = 0 (in the fourth equality

below), we obtain

Q0(A) = E(E0
st(1A|I)) = Est(σ · E0

st(1A|I)) = Est(Est(σ|I) · E
0
st(1A|I))

= λstE
0
st(α0 · Est(σ|I) · E

0
st(1A|I)) = λstE

0
st(ᾱ · σ̄ · 1A),

where ᾱ = E0
st(α0|I) as before and σ̄ := Est(σ|I). By (4.7) we obtain:

λst..σ̄ =
δ̄

ᾱ
P 0
st-a.s. (6.4)

This relation can be considered as a conditional version of (i) in Theorem 6.1.

Next recall the time-stationary distribution Q in (4.11). Since (6.4) also holds

P -a.s., we can rewrite (4 11) as follows:

Q(A) = Est(σ̄1A); A ∈ M̄∞. (6.5)

We next confront our results with (2.12). It is an easy exercise to show that

1

ν(0, t]

∫
(0,t]

P 0,x(B)dν(x) → E0
st(σ̄1B)/E

0
st(σ̄) as t → ∞ (6.6)

for all B ∈ M̄∞. The limits in (6.6) determine an event-stationary probability measure

R0 on (M∞, M̄∞). Also note that

Φ(0, t]

ν(0, t]
→

Φ̄

Est(σ̄Φ̄)
as t → ∞ P -a.s.,

and that the limit equals 1 (the proviso in (2.12)) iff P 0
st is pseudo-ergodic. However,

pseudo-ergodicity of P 0
st implies that R0 = Q0 since, by (6.4) and Corollary 4.2,

R0(B) =
E0
st(δ̄1B/ᾱ)

E0
st(δ̄/ᾱ)

=
E0
st(δ̄1B)

E0
st(δ̄)

=
Q0(B)

1
.
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So, the limit distribution in (2.12) is indeed equal to Q0.

Example 6.4. Suppose that P � Pst and that the RN-density σ is such that σ(ϕ) =

σ(η0ϕ) for all ϕ ∈ M∞. By Corollary 4.2 it follows that the intermediate distributions

Pn are dominated by P 0
st, with RN-densities δ−n equal to λstα−nσ ◦ η−n; cf. (1.6).

Furthermore, for ν-a.e. x ∈ R and B ∈ M̄∞ we have:

P 0,x(B) = E0
st(1B · σ ◦ θ−x)/E

0
st(σ ◦ θ−x);

E0
st(1B · σ ◦ θ−x) =

∑
k∈Z

E0
st(1B · σ ◦ η−k · 1[T

−k≤−x<T−k+1])

=
∑
k∈Z

E0
st(σ · 1B ◦ ηk · 1[x+T0≤Tk<x+T1]).

Writing ΦB[x+T0, x+T1) for
∑

k∈Z(1B ◦ηk ·1[x+T0≤Tk<x+T1]), the number of occurrences

in the interval [x+ T0, x+ T1) from which the eventuality B is seen, we obtain that for

ν-a.e. x in R :

P 0,x(B) =
E0
st(σ ·ΦB[x+ T0, x+ T1))

E0
st(σ · Φ[x+ T0, x+ T1))

=
Est(σ ·ΦB[x+ T0, x+ T1)/α0)

Est(σ · Φ[x+ T0, x+ T1)/α0)

=
E(ΦB[x+ T0, x+ T1)/α0)

E(Φ[x+ T0, x+ T1)/α0)
.

The denumerator in this ratio equals λ(x); cf. (ii) of Theorem 6.1. Interpret the numera-

tor of the ratio as the local rate at x for the expected number of occurrences from which

B is seen (the so-called expected number of B-occurrences). Then we can interpret

P 0,x(B) as the relative rate at x of expected number of B-occurrences when compared

to the rate at x of expected number of M -occurrences.

Notice that the relationship between P 0,x and P as expressed by the last equality

above is the same for all RN-densities σ satisfying σ(ϕ) = σ(η0(ϕ)) on M∞. Also note

that the distribution P in Example 5.4 (allowing the experience of event-stationarity

from all occurrences onwards) has σ(ϕ) := 1/(λst ·α0) and hence belongs to the class of

distributions considered in the present example. With σ(ϕ) = σ0(ϕ)/Estσ0 and σ0(ϕ)

equal to one of the following functions, we find other examples as well:

ϕ(T0(ϕ), T0(ϕ) + 1],
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ϕ(y + T0(ϕ), y + T1(ϕ)],

f(η0(ϕ)),

T1(ϕ)∫
T0(ϕ)

g(θs(ϕ))ds;

y ∈ R and ϕ ∈ M∞, and f and g suitable functions on M∞. �
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