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1 Introduction

The model of bankruptcy situations as introduced by O’Neill (1982) is a
general framework for various kinds of simple allocation problems. In a
bankruptcy problem, there is an estate to be divided and each player has a
single claim on the estate. The total of the claims is larger than the estate
available, so one has to find criteria on the basis of which the money is to
be divided. In this context, many rules have been proposed to come to a
fair allocation of the estate. For a recent overview of such rules, the reader
is referred to Thomson (2003).

A bankruptcy situation can be seen as the most basic form of an allo-
cation problem. As a consequence, many bankruptcy rules have a straight-
forward interpretation and appropriate properties of such rules are easily
formulated. In a transferable utility game, the allocation problem is of a
more complicated nature: instead of each player having a single claim, each
coalition of players has a value which has to be taken into account. Our
aim is to extend bankruptcy rules to the class of transferable utility games
in such a way that both the interpretation and the appealing properties are
maintained.

In this paper, we provide such an extension to the class of compromise
admissible (or quasi-balanced) games (cf. Tijs and Lipperts (1982)). This
approach has already been applied in Quant et al. (2003) and González
Dı́az et al. (2003) for two specific rules: the Talmud rule and the adjusted
proportional rule, respectively. For compromise stable TU-games (ie, games
for which the core coincides with the core cover), the compromise extension
of the Talmud rule coincides with the nucleolus, while the APROP∗ rule is
shown to coincide with the barycentre of the edges of the core cover. In the
current paper, we look at the problem of extending bankruptcy rules from
a more general viewpoint, using the concept of compromise extension of a
bankruptcy rule.

An important concept in the bankruptcy literature is duality (cf. Au-
mann and Maschler (1985)). We use this notion to define for each rule a
dual compromise extension and show that this coincides with the compro-
mise extension of the dual rule.

In addition, we consider some more well-known specific cases: the run-to-
the-bank-rule and the TAL-family of rules, which includes the constrained
equal award rule, the Talmud rule and the constrained equal loss rule. We
characterise the former by a consistency property and use a lexicographic
construction to obtain a characterisation of each rule in the TAL-family.
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This paper is organised as follows. In section 2 we present some basic
definitions concerning transferable utility games and bankruptcy situations
and define the concept of compromise extension. In section 3, we analyse
the dual extension. Section 4 deals with the run-to-the-bank rule, while the
TAL-family of rules is studied in section 5.

2 Bankruptcy and compromise extensions

A transferable utility game (in short TU-game) is a pair (N, v), where N
denotes a finite set of players and v : 2N → RN is a function assigning to
each coalition S ∈ 2N a payoff v(S). By convention v(∅) = 0. The set of all
TU-games with player set N is denoted by TUN .

Let (N, v) be a TU-game. The utopia demand of a player i ∈ N , Mi(v)
is defined by

Mi(v) = v(N)− v(N\{i}).
The minimum right of a player i, mi(v), is the minimum value this player
can achieve by satisfying all other players in a coalition by giving them their
utopia demands:

mi(v) = max
S:i∈S

{
v(S)−

∑

j∈S\{i}
Mj(v)

}
.

The core cover of a game v ∈ TUN , CC(v), consists of all efficient
allocation vectors, such that no player receives more than his utopia payoff
or less than his minimum right:

CC(v) =
{

x ∈ RN |
∑

i∈N

xi = v(N), m(v) ≤ x ≤ M(v)
}

.

A game is called compromise admissible if it has a nonempty core cover. The
class of all compromise admissible games with player set N is denoted by
CAN . From the definition of the core cover we immediately have that v ∈
CAN if and only if m(v) ≤ M(v) and

∑
i∈N mi(v) ≤ v(N) ≤ ∑

i∈N Mi(v).
The core cover is a polytope with at most |N |! extreme points. These

so-called larginal vectors are introduced in Quant et al. (2003) and have
been extensively studied in González Dı́az et al. (2003).

An order on N is a bijective function σ : {1, . . . , |N |} → N . The player
at position i in the order σ is denoted by σ(i). The set of all orders on N
is denoted by Π(N). For σ ∈ Π(N), the larginal `σ(v) is the efficient payoff
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vector giving the first players in σ their utopia demands as long as it is still
possible to satisfy the remaining players with their minimum rights.

Let v ∈ CAN and σ ∈ Π(N). The larginal vector `σ(v) is defined by

`σ
σ(i)(v) =





Mσ(i)(v) if
i∑

j=1

Mσ(j)(v) +
|N |∑

j=i+1

mσ(j)(v) ≤ v(N),

mσ(i)(v) if
i−1∑

j=1

Mσ(j)(v) +
|N |∑

j=i

mσ(j)(v) ≥ v(N),

v(N)−
i−1∑

j=1

Mσ(j)(v)−
|N |∑

j=i+1

mσ(j)(v) otherwise

for every i ∈ {1, . . . , |N |}.
It is readily seen that the core cover equals the convex hull of all larginals:

CC(v) = conv
{
`σ(v) | σ ∈ Π(N)

}
.

An allocation rule f on a subclass A ⊂ CAN is a function f : A → RN

assigning to each game v ∈ A a payoff vector f(v) in RN . This paper intro-
duces a new type of allocation rule on CAN based on bankruptcy situations.

A bankruptcy situation is a triple (N, E, d), often abbreviated to (E, d).
N is a set of players, E ≥ 0 is the estate which has to be divided among
the players and d ∈ RN

+ is a vector of claims, where for i ∈ N , di represents
player i’s claim on the estate. It is assumed that the estate is not large
enough to satisfy all claims, so

E ≤
∑

i∈N

di.

We denote the class of all bankruptcy situations with player set N by BRN .
One can associate a bankruptcy game vE,d to a bankruptcy problem

(E, d) ∈ BRN . The value of a coalition S is determined by the amount of
E that is not claimed by N\S, so for all S ⊂ N ,

vE,d(S) = max
{

0, E −
∑

i∈N\S
di

}
.

This class of games is a proper subset of the class of compromise admissible
games.

A bankruptcy rule f is a function f : BRN → RN
+ assigning to each

bankruptcy situation (E, d) ∈ BRN a payoff vector f(E, d) ∈ RN
+ , such that∑

i∈N fi(E, d) = E and fi(E, d) ≤ di for all i ∈ N .
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Many bankruptcy rules have been proposed in the literature, of which
some are listed below.

• Constrained equal award rule (CEA):

CEAi(E, d) = min{α, di},

with α such that
∑

i∈N min{α, di} = E.

• Constrained equal loss rule (CEL):

CELi(E, d) = max{0, di − β},

with β such that
∑

i∈N max{0, di − β} = E.

• Proportional rule (PROP):

PROPi(E, d) =
di∑

j∈N dj
· E.

• Talmud rule (TAL):

TAL(E, d) =





CEA(E, 1
2d) if

∑

j∈N

dj ≥ 2E,

d− CEA
( ∑

j∈N dj − E, 1
2d

)
if

∑

j∈N

dj < 2E.

• Run-to-the-bank rule (RTB):

RTB(E, d) =
1
|N |!

∑

σ∈Π(N)

rσ(E, d),

where for σ ∈ Π(N), j ∈ {1, . . . , n},

rσ
σ(j)(E, d) = max

{
min{dσ(j), E −

j−1∑

k=1

dσ(k)}, 0
}

.

• Adjusted proportional rule (APROP):

APROP (E, d) = m(E, d) + PROP (E′, d′),

where mi(E, d) = max{E −∑
j∈N\{i} dj , 0}, E′ = E −∑

i∈N mi(E, d)
and for all i ∈ N , d′i = min{di −mi(E, d), E′}.
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Bankruptcy rules can be extended to allocation rules on the class of com-
promise admissible games in the following way.

Definition 2.1 Let v ∈ CAN and let f : BRN → RN be a bankruptcy rule.
Then the compromise extension of f , f∗ : CAN → RN is defined by

f∗(v) = m(v) + f
(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)
)
.

Note that because v ∈ CAN , the bankruptcy situation to which f is ap-
plied is well-defined. Generally, if f is a bankruptcy rule and f∗ is its
compromise extension, then f∗ will be efficient (

∑
i∈N f∗i (v) = v(N) for all

v ∈ CAN ). Furthermore, for all bankruptcy rules mentioned earlier f∗ is
relatively invariant with respect to strategic equivalence (for v, v̂ ∈ CAN

with v̂ = kv + a, k > 0, a ∈ RN , we have f∗(v̂) = kf∗(v) + a). To prove
this, it suffices to show that it satisfies homogeneity, ie, for all k > 0 and all
(E, d) ∈ BRN it holds that f(kE, kd) = kf(E, d).

It is immediately clear that the compromise value (or τ value) introduced
by Tijs (1981) equals PROP∗, since τ is the efficient convex combination of
the vectors M(v) and m(v). The TAL∗ rule is considered in Quant et al.
(2003), while González Dı́az et al. (2003) study the APROP∗ rule. Note
that for a game v ∈ CAN with m(v) = 0 and Mi(v) ≤ v(N) for all i ∈ N ,
we have APROP ∗(v) = PROP ∗(v).

In the following example general compromise extensions are illustrated.

Example 2.1 Let v ∈ CAN with N = {1, 2, 3} be the game defined by

S 1 2 3 12 13 23 N

v(S) 0 0 0 3 2 4 6

Then M(v) = (2, 4, 3) and m(v) = (0, 1, 0). The larginals are given in the
table below.

σ `σ(v)
(123) (2, 4, 0)
(132) (2, 1, 3)
(213) (2, 4, 0)
(231) (0, 4, 2)
(312) (2, 1, 3)
(321) (0, 3, 3)
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The RTB∗ solution equals

RTB∗(v) = (0, 1, 0) + RTB(5, (2, 3, 3))

= (0, 1, 0) +
1
6
(8, 11, 11)

= (
8
6
,
17
6

,
11
6

)

Note that for this game v, the RTB∗ solution coincides with the average of
the larginals. It is proved later that this is true in general. Since this game
only has three players, the core coincides with the core cover and n(v) =
TAL∗(v) = (1, 3, 2). Furthermore τ(v) = (10

8 , 23
8 , 15

8 ), φ(v) = (3
2 , 5

2 , 2),
CEL∗(v) = (1, 3, 2) and CEA∗(v) = (5

3 , 8
3 , 5

3).

The following example shows that a compromise solution which is sym-
metric, is not necessarily a core element, although the game (N, v) is convex.

Example 2.2 Let v ∈ CAN with N = {1, 2, 3, 4, 5} be the game defined by

S |S| = 1 12
other

|S| = 2 123 124 125
other

|S| = 3 |S| = 4 N

v(S) 0 6 0 6 6 6 2 8 14

In this game, players 1 and 2 are symmetric, as are players 3, 4 and 5. The
payoff of a coalition S depends on the size of S and on whether {1, 2} is a part
of S. The utopia vector equals M(v) = (6, 6, 6, 6, 6) and the minimum right
vector equals m(v) = (0, 0, 0, 0, 0). Consider a symmetric bankruptcy rule f
and its compromise extension f∗. Because all players are symmetric with re-
spect to the value of m(v) and M(v) it holds that f∗(v) = (14

5 , 14
5 , 14

5 , 14
5 , 14

5 ).
Since f∗1 (v) + f∗2 (v) = 28

5 < 6, f∗(v) 6∈ C(v).

However, if (N, v) is a compromise stable game, then all compromise solu-
tions are core elements.

3 Duality

In section 2, we define the compromise extension of a bankruptcy rule f by

f∗(v) = m(v) + f

(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)

)
.

Another way to extend a bankruptcy rule to an allocation rule on CAN is to
take a dual approach. Instead of first giving each player his minimum right
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and then dividing what is left, one could first give each player his utopia
demand and take back the excess amount using f . This dual extension of a
rule f : BRN → RN is defined by

fF = M(v)− f
( ∑

i∈N

Mi(v)− v(N),M(v)−m(v)
)
.

The dual of a bankruptcy rule f (cf. Aumann and Maschler (1985)), f̄ is
defined by

f̄(E, d) = d− f(
∑

i∈N

di − E, d)

and a rule is called self-dual if f = f̄ . Of the rules presented in the previous
section, only PROP , TAL and RTB are self-dual.

As is stated in the following proposition, first taking the dual of f and
then extending it yields the same rule as taking the dual extension of f .

Proposition 3.1 Let f : BRN → RN be a bankruptcy rule. Then f̄∗(v) =
fF(v) for all v ∈ CAN .

Proof: Let v ∈ CAN . Then

f̄∗(v) = m(v) + f̄

(
v(N)−

∑

i∈N

mi(v),M(v)−m(v)

)

= m(v) + M(v)−m(v)−

f

(∑

i∈N

Mi(v)−
∑

i∈N

mi(v)− (v(N)−
∑

i∈N

mi(v)),M(v)−m(v)

)

= M(v)− f

(∑

i∈N

Mi(v)− v(N),M(v)−m(v)

)

= fF(v).

¤
As a corollary, we obtain that if f is self-dual, then fF = f∗.

4 Run-to-the-bank rule

In this section we consider the compromise extension of the run-to-the-bank
rule. We provide an interpretation in terms of larginals and a characterisa-
tion based on a consistency property.
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RTB∗ is similar to the Shapley value in the sense that it is the average
of all larginals (rather than marginals)1. This is shown in the following
theorem.

Theorem 4.1 Let v ∈ CAN , then RTB∗(v) = 1
|N |!

∑
σ∈Π(N) `σ(v).

Proof: Consider the game w defined by w(S) = v(S) − ∑
i∈S mi(v) for

all S ⊂ N . Then w ∈ CAN and `σ(w) = `σ(v) − m(v) for all σ ∈ Π(N),
m(w) = 0 and M(w) = M(v)−m(v). Next, it is readily seen that `σ(w) =
rσ

(
w(N),M(w))

)
for all σ ∈ Π(N) and hence,

RTB∗(w) = RTB
(
w(N),M(w)

)

=
1
|N |!

∑

σ∈Π(N)

rσ
(
w(N),M(w)

)

=
1
|N |!

∑

σ∈Π(N)

`σ(w).

Because RTB∗ is relative invariant with respect to strategic equivalence, we
have

RTB∗(v) = m(v) + RTB∗(w)

= m(v) +
1
|N |!

∑

σ∈Π(N)

`σ(w)

= m(v) +
1
|N |!

∑

σ∈Π(N)

[`σ(v)−m(v)]

=
1
|N |!

∑

σ∈Π(N)

`σ(v).

¤
Theorem 4.1 implies that if (N, v) is a compromise stable game, then

RTB∗(v) is the barycentre of C(v). For example, in big boss games (cf.
Muto, Nakayama, Potters, and Tijs (1988)) the RTB∗ solution is the barycen-
tre of the core and equals the nucleolus and the compromise value.

The RTB rule is the unique bankruptcy rule satisfying consistency. A
bankruptcy rule f satisfies consistency (cf. O’Neill (1982)) if

fi(E, d) =
1
|N |

(
min{di, E}+

∑

j∈N\{i}
fi(N\{j}, E −min{dj , E}, dN\{j})

)

1Note however that larginals do not satisfy additivity, since the vector m is not additive.
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for all (N, E, d) ∈ BRN and all i ∈ N .
Note that in the definition of consistency, for each player j ∈ N\{i},

the corresponding situation without j is again a well-defined bankruptcy
situation. To extend this property to our framework of compromise admis-
sible games, we have to consider a subclass, which is closed with respect to
“sending one player away with his claim”. The class AN ⊂ CAN consists of
all TU-games v ∈ CAN such that for all S ∈ 2N ,

(i) v(S) ≥ 0,

(ii) v(S) +
∑

k∈N\S mk(v) ≤ v(N).

We denote A =
⋃

N AN .

Property 4.1 (Consistency) An allocation rule f on A satisfies consis-
tency if for all N , for all v ∈ AN and all i ∈ N we have

fi(v) =
1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

1
|N |

∑

j∈N\{i}

(
mi(v) + fi(vj)

)
,

where the game vj ∈ TUN\{j} is defined by vj(S) = max{v(S ∪ {j} −∑
k∈S mk(v)−Mj(v), 0} for all S ⊂ N\{j}, j ∈ N\{i}.

The game vj in the previous property can be interpreted as if each player
gets his minimal right and player j leaves the group and takes Mj(v) if
possible. The game vj is again an element of A, as is shown in the following
lemma.

Lemma 4.1 Let v ∈ AN , then vj ∈ AN\{j} for all j ∈ N .

Proof: Let j ∈ N . Then it is immediately clear from the definition of vj(S)
that vj(S) ≥ 0 for all S ⊂ N\{j}. Note that it follows from condition (ii)
applied to (N, v) that for all S ⊂ N\{j} we have

v(S ∪ {j})−
∑

i∈S

mi(v)−Mj(v) ≤ v(N)−
∑

i∈N\{j}
mi(v)−Mj(v),

from which it easily follows that

vj(S) ≤ vj(N\{j}). (1)
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We assume that vj(N\{j}) > 0, since if vj(N\{j}) = 0, then vj(S) = 0
for all S ⊂ N\{j} and vj ∈ AN\{j} trivially. It remains to prove that
vj ∈ CAN\{j} and that vj satisfies condition (ii).

First we calculate M(vj) and m(vj). Let i ∈ N . If vj(N\{i, j}) = 0,
then Mi(vj) = vj(N\{j}). Otherwise,

Mi(vj) = vj(N\{j})− vj(N\{i, j})
= v(N)− v(N\{i})−mi(v)
= Mi(v)−mi(v).

Combining the two cases, we obtain

Mi(vj) = min
{
Mi(v)−mi(v), vj(N\{j})

}
.

We next show that mi(vj) = 0. To do so, we prove that for each S ⊂
N\{j} and i ∈ S we have

ρS
i ≤ 0, (2)

where ρS
i = vj(S)−∑

k∈S\{i}Mk(vj). Since mi(vj) ≥ vj({i}) ≥ 0 this proves
that mi(vj) = 0.

Let S ⊂ N\{j}, i ∈ S. If vj(S) = 0, then (2) follows from the fact that
Mk(vj) ≥ 0 for all k ∈ N\{j}. Assume that vj(S) > 0. We consider two
cases.

Case 1: Mk(vj) = Mk(v)−mk(v) for all k ∈ S\{i}. Then

ρS
i = vj(S)−

∑

k∈S\{i}

(
Mk(v)−mk(v)

)

= v(S ∪ {j})−
∑

k∈S

mk(v)−Mj(v)−
∑

k∈S\{i}

(
Mk(v)−mk(v)

)

= v(S ∪ {j})−
∑

k∈S∪{j}\{i}
Mk(v)−mi(v)

≤ 0,

where the inequality follows from the definition of mi(v).

Case 2: There exists a k ∈ S\{i} with Mk(vj) = vj(N\{j}). Then

ρS
i = vj(S)− vj(N\{j})−

∑

`∈S\{i,k}
M`(vj) ≤ 0,
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because of (1) and M`(vj) ≥ 0 for all ` ∈ N\{j}.

Hence, ρS
i ≤ 0 for all S ⊂ N\{j}, i ∈ S and m(vj) = 0. Condition (ii)

then directly follows from (1).
It remains to prove that vj ∈ CAN\{j}. We already have m(vj) = 0 ≤

M(vj) and
∑

i∈N\{j}mi(vj) = 0 ≤ vj(N\{j}). Furthermore, for k ∈ N\{j}
we have

vj(N\{j})−
∑

i∈N\{j}
Mi(vj) = vj(N\{j})−

∑

i∈N\{j,k}
Mi(vj)−Mk(vj)

= ρ
N\{j}
k −Mk(vj)

≤ 0.

Hence condition (ii) is satisfied as well and vj ∈ AN\{j}. ¤
The following theorem characterises RTB∗.

Theorem 4.2 RTB∗ is the unique rule on A satisfying consistency.

Proof: Let f be an allocation rule on A satisfying consistency. Consistency
uniquely determines the outcome of f for all one-player games and, by in-
duction, every game in A. Therefore, there can only be one rule satisfying
consistency on A. Hence, it suffices to show that RTB∗ satisfies consistency
on A.

Let v ∈ AN . From consistency of RTB it follows that for all i ∈ N we
have

RTB∗
i (v) = mi(v) + RTBi

(
N, v(N)−

∑

j∈N

mj(v),M(v)−m(v)
)

= mi(v) +
1
|N |

[
min{Mi(v)−mi(v), v(N)−

∑

j∈N

mj(v)}+

+
∑

j∈N\{i}
RTBi(N\{j}, Ej , d−j)

]

with Ej = v(N)−∑
j∈N mj(v)−min{Mj(v)−mj(v), v(N)−∑

j∈N mj(v)}
and d = M−j −m−j = (Mk(v)−mk(v))k∈N\{j}. Note that by construction
Ej = vj(N\{j}). Then,

RTB∗
i (v) =

1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

+
1
|N |

∑

j∈N\{i}

(
mi(v) + RTBi

(
N\{j}, vj(N\{j}),M−j −m−j

))
.
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Since (M−j −m−j)k ≥ min{vj(N\{j}),M−j −m−j)} = Mk(vj) for all k ∈
N\{j}, the truncation property2 gives

RTB∗
i (v) =

1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

+
1
|N |

∑

j∈N\{i}

(
mi(v) + RTBi

(
N\{j}, vj(N\{j}),M(vj)

))

=
1
|N | min

{
Mi(v), v(N)−

∑

j∈N\{i}
mj(v)

}
+

+
1
|N |

∑

j∈N\{i}

(
mi(v) + RTB∗

i (vj)
)
,

where the last equality holds because m(vj) = 0 for all j ∈ N . Hence, RTB∗

satisfies consistency. ¤

5 TAL-family rules

In this section we consider the compromise extension of the so-called TAL-
family of rules (cf. Moreno-Ternero and Villar (2002)). This family of rules
is parametrised by θ ∈ [0, 1] and defined by

Fθ(E, d) =
{

CEA(E, θd) if E ≤ θD,
θd + CEL (E − θD, (1− θ)d) if E > θD.

Obviously, if θ = 1, then Fθ coincides with CEA and if θ = 0, then Fθ

coincides with CEL. If θ = 1
2 , then θd + CEL(E − θD, (1 − θ)d) = d −

CEA(D − E, θd) and Fθ coincides with TAL.
We are going to characterise F ∗

θ on the class CAN
0 = {v ∈ CAN |m(v) =

0}. For v ∈ CAN
0 , F ∗

θ is given by

F ∗
θ (v) =





CEA (v(N), θM(v)) if v(N) ≤ θ
∑

i∈N Mi(v),
θM(v) + CEL

(
v(N)−

θ
∑

i∈N Mi(v), (1− θ)M(v)
)

if v(N) > θ
∑

i∈N Mi(v).

Since Fθ = F̃1−θ for all θ ∈ [0, 1], we have that the compromise exten-
sion of CEA coincides with the dual compromise extension of CEL, ie,

2A bankruptcy rule f satisfies the truncation property if for all (E, d) ∈ BRN it holds
that f(E, d) = f(E, d′), with d′i = min{E, di} for all i ∈ N . The RTB rule satisfies the
truncation property.
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CEA∗ = CELF and vice versa, CEAF = CEL∗.

Our characterisation is inspired by the definition of the nucleolus (cf. Schmei-
dler (1969)). The nucleolus of a game is the unique point in the imputation
set for which it holds that the so-called excesses (which measure the dis-
satisfaction of each coalition with the proposed allocation) are as small and
as equal as possible. Using this idea, we provide a characterisation of F ∗

θ

by replacing the excess function by the appropriate auxiliary function (de-
pending on θ) and by considering elements of the core cover rather than the
imputation set.

The phrase “as small and as equal as possible” in the previous paragraph
is formalised by lexicographic optimisation. Let x, y ∈ Rt. Then we say that
x is lexicographically smaller than y, or x ≤L y, if x = y or if there exists an
s ∈ {1, . . . , t} such that xk = yk for all k ∈ {1, . . . , s− 1} and xs < ys. For
a finite set A, we denote x ≤∗L y with x, y ∈ RA, if x′ ≤L y′ where x′ (y′) is
the vector in R|A| containing the elements of x (y) in increasing order.

For θ ∈ [0, 1] and v ∈ CAN
0 , we define the function gv

θ : CC(v) → RN by

(gv
θ (x))i =

{
min{xi, θMi(v)} if v(N) ≤ θ

∑
i∈N Mi(v),

min{(Mi(v)− xi), θMi(v)} if v(N) > θ
∑

i∈N Mi(v)
(3)

for all x ∈ CC(v), i ∈ N .

Theorem 5.1 Let v ∈ CAN
0 . Then gv

θ (F ∗
θ (v)) ≥∗L gv

θ (x) for all x ∈ CC(v).

Proof: Throughout this proof we say that for x, y ∈ CC(v), x is larger
than y if gv

θ (x) ≥∗L gv
θ (y) and we use the term maximal accordingly. We

distinguish between two cases:

1. v(N) ≤ θ
∑

i∈N Mi(v): First note that if x ∈ CC(v) is such that xi >
θMi(v) for some i ∈ N , then because of the minimum expression in (3),
there always exists another point in CC(v) which is strictly larger. If
v(N)
|N | ≤ θMi(v) for all i ∈ N , then the point (v(N)

|N | , . . . , v(N)
|N | ) ∈ CC(v)

is obviously maximal, and equals CEA(v(N), θM(v)). Otherwise, the
maximum is located at the boundary of CC(v), where some of the
players with the lowest claims receive their full claim and the others
receive an equal amount. A similar construction as in the proof of
Theorem 1 in Moreno-Ternero and Villar (2002) can be used to show
that the resulting allocation equals CEA(v(N), θM(v)).

2. v(N) > θ
∑

i∈N Mi(v): In this case, as a result of the minimum oper-
ator, we can immediately conclude that a point x ∈ CC(v) cannot be

14



maximal if xi < θMi(v) for some i ∈ N . The remainder of the proof
is analogous to the first case.

From these two cases we conclude that the point F ∗
θ (v) is maximal. ¤

A similar argument as in Maschler et al. (1992) can be used to show
that the lexicographic maximum is unique and hence, Theorem 5.1 provides
a characterisation of F ∗

θ on CAN
0 .
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