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Abstract. Consider n i.i.d. random vectors on R2, with unknown, common distribution

function F . Under a sharpening of the extreme value condition on F , we derive a weighted ap-

proximation of the corresponding tail copula process. Then we construct a test to check whether

the extreme value condition holds by comparing two estimators of the limiting extreme value dis-

tribution, one obtained from the tail copula process and the other obtained by first estimating the

spectral measure which is then used as a building block for the limiting extreme value distribu-

tion. We derive the limiting distribution of the test statistic from the aforementioned weighted

approximation. This limiting distribution contains unknown functional parameters. Therefore we

show that a version with estimated parameters converges weakly to the true limiting distribution.

Based on this result, the finite sample properties of our testing procedure are investigated through

a simulation study. A real data application is also presented.
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1 Introduction

Let (X,Y ), (X1, Y1), ..., (Xn, Yn) be i.i.d. random vectors with continuous distribution func-

tion (d.f.) F . Suppose that there exist norming constants an, cn > 0 and bn, dn ∈ R such

that the sequence of d.f.’s

P

(
max1≤i≤n Xi − bn

an

≤ x,
max1≤i≤n Yi − dn

cn

≤ y

)

converges to a limit d.f., say G(x, y), with non-degenerate marginal d.f., that is,

(1.1) lim
n→∞

F n(anx + bn, cny + dn) = G(x, y)

for all but countably many x and y. Then, for a suitable choice of an, bn, cn and dn, there

exist γ1, γ2 ∈ R such that

G(x,∞) = exp
(−(1 + γ1x)−1/γ1

)
, G(∞, y) = exp

(−(1 + γ2y)−1/γ2
)
.

The d.f. G is called an extreme value d.f. and γ1, γ2 are called the (marginal) extreme value

indices.

Any extreme value d.f. G can be represented as

(1.2) G

(
x−γ1 − 1

γ1

,
y−γ2 − 1

γ2

)
= exp

(
−

∫ π/2

0

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ)

)
,

with Φ the d.f. of the so-called spectral measure. There is a one-to-one correspondence

between extreme value d.f.’s G and finite measures with d.f. Φ that satisfy

∫ π/2

0

(1 ∧ tan θ) Φ(dθ) =

∫ π/2

0

(1 ∧ cot θ) Φ(dθ) = 1,

via (1.2).

Alternatively one can characterize the extreme value d.f.’s G by: there is a measure Λ

on [0,∞]2 \ {(∞,∞)} such that, with

(1.3) l(x, y) := − log G

(
x−γ1 − 1

γ1

,
y−γ2 − 1

γ2

)
,

we have

1. l(x, y) = Λ
({(u, v) ∈ [0,∞]2 : u ≤ x or v ≤ y}) ,

2. l(tx, ty) = tl(x, y) for t, x, y > 0.
(1.4)
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Combining the two characterizations we find

(1.5) l(x, y) =

∫ π/2

0

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ).

Relation (1.1) implies (cf. Einmahl, de Haan and Piterbarg (2001))

(1.6) lim
t↓0

t−1P ((1− F1(X)) ∧ (1− F2(Y )) ≤ t, 1− F2(Y ) ≤ (1− F1(X)) tan θ) = Φ(θ)

for continuity points θ ∈ (0, π/2] of Φ, where F1(x) := F (x,∞) and F2(y) := F (∞, y). Also

(1.7) lim
t↓0

t−1P (1− F1(X) ≤ tx or 1− F2(Y ) ≤ ty) = l(x, y)

for (x, y) ∈ [0,∞)2. More generally

(1.8) lim
t↓0

t−1P ((1− F1(X), 1− F2(Y )) ∈ tA) = Λ(A)

for any Borel set A in [0,∞]2 \ {(∞,∞)} (with tA := {(tx, ty) : (x, y) ∈ A}) provided

Λ(∂A) = 0.

A non-parametric estimator for Φ, suggested by the limit relation (1.6) is (Einmahl et

al. (2001))

(1.9) Φ̂(θ) :=
1

k

n∑
i=1

I{RX
i ∨RY

i ≥n+1−k, n+1−RY
i ≤(n+1−RX

i ) tan θ}

where RX
i is the rank of Xi among X1, X2, ..., Xn, RY

i is the rank of Yi among Y1, Y2, ..., Yn.

Similarly a non-parametric estimator for l, suggested by the limit relation (1.7) is (Huang

(1992), see also Drees and Huang (1998))

l̂2(x, y) :=
1

k

n∑
i=1

I{Xi>Xn+1−dkxe:n or Yi>Yn+1−dkye:n}(1.10)

=
1

k

n∑
i=1

I{RX
i >n+1−kx or RY

i >n+1−ky},

where X1:n ≤ · · · ≤ Xn:n are the order statistics of the Xi, i = 1, 2, . . . , n (similarly for the

Yi), with dze the smallest integer ≥ z.

The mentioned papers give asymptotic normality results for Φ̂ and l̂2 under certain

conditions and with sequences k = k(n) satisfying k(n) → ∞, k(n)/n → 0, as n → ∞.

Another way of estimating l is via (1.5) and (1.9):

(1.11) l̂1(x, y) :=

∫ π/2

0

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ̂(dθ).
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The multivariate extreme value framework that we sketched is the appropriate one when

one, e.g., wants to estimate the probability of extreme sets i.e., sets outside the range of the

observations.; see de Haan and Sinha (1999). Condition (1.1) is fulfilled for many standard

distributions but not for all distributions. Hence before using this framework to estimate

probabilities of extreme sets, it is important to check whether (1.1) is a reasonable assump-

tion for the data set at hand. And one wants to do this beforehand, without specifying the

exact structure of the limiting distribution.

A promising approach to this testing problem seems to be to see if the two estimators

l̂1 and l̂2 for l, that have a different background, are not too different. The estimator l̂2 is

a natural one mimicking more or less the tail of the distribution itself. But this estimator

does not necessarily satisfy condition 2 of (1.4). On the other hand l̂1 does satisfy condition

2 of (1.4) but the estimator itself is of a somewhat more complicated nature. So one can

maintain that such a test would check whether condition 2 of (1.4) holds.

The proposed test statistic is of Anderson-Darling type:

(1.12) Ln :=

∫∫

0<x,y≤1

(
l̂1(x, y)− l̂2(x, y)

)2

(x ∨ y)−β dxdy

for certain β ≥ 0. The test statistic is similar to those used for testing a parametric null

hypothesis (like testing for normality), where the empirical distribution function is compared

with the true distribution function with estimated parameters. Here, however, the estimated

parameter Φ is a function (and we only deal with the tail of the distribution). Also note

that our methods allow us to deal with other test statistics than Ln as well.

Note that this test checks whether the dependence structure is of the right type. It is

only based on the relative positions (ranks) of the data and completely independent of the

marginal distributions of F for which tests have been developed already in Drees, de Haan

and Li (2004) and Dietrich, de Haan and Hüsler (2002).

We shall establish the asymptotic distribution of kLn as n → ∞ under (1.1) and some

extra conditions stemming from Huang (1992) and Einmahl et al. (2001), thus providing a

basis for applying a test.

Note that the test statistic Ln is based on observations for which at least one component

exceeds a certain threshold. Since the estimators depend on this threshold, one can plot

Ln as a function of k. This plot can be used as an exploratory tool for determining from
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which threshold on the two estimators l̂1 and l̂2 are close to each other suggesting that the

approximations (1.6) and (1.7) can be trusted, and hence yields a heuristic procedure for

determining k. So this a second use of the test statistic Ln.

The weak convergence of kLn is stated in Theorem 2.3. For the proof of this theorem

the known asymptotic normality result for Φ̂ (Einmahl et al. (2001)) is sufficient but not

the known one for l̂2 (Huang (1992)). Hence as a preliminary but important result, we first

develop a Gaussian approximation for the weighted tail copula process on (0, 1]2

√
k

(
l̂2(x, y)− l(x, y)

)
/(x ∨ y)η, 0 ≤ η < 1/2,

thus extending significantly the result of Huang (1992) where η = 0. This result, which

seems to be useful in other contexts as well, is stated in Theorem 2.2. The proofs are given

in section 3.

The limiting random variable in Theorem 2.3 is determined as an integral of a combi-

nation of Gaussian processes. They are parametrized by functions which can be estimated

consistently. In section 4 it is proved that the probability distribution of the limiting ran-

dom variable with these functions estimated converges to the distribution of the limiting

random variable with these functions equal to the actual ones, which makes the procedure

applicable in practice. In section 5 simulation results and an application to real data are

reported.

2 Main results

Before stating the main results, we introduce some notation. Define WΛ to be a Wiener

process indexed by the Borel sets in [0,∞]2 \{(∞,∞)}, depending on the parameter Λ from

(1.4), which is a measure and we assume it has a density λ, in the following way: WΛ is a

centered Gaussian process and for Borel sets C and C̃: EWΛ(C)WΛ(C̃) = Λ(C ∩ C̃). Define

the sets Cθ by

Cθ = {(x, y) ∈ [0,∞]2 : x ∧ y ≤ 1, y ≤ x tan θ}, θ ∈ [0, π/2],
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and the process Z by

Z(θ) =

∫ 1∨ 1
tan θ

0

λ(x, x tan θ)(W1(x) tan θ −W2(x tan θ)) dx

−W2(1)

∫ ∞

1∨ 1
tan θ

λ(x, 1) dx− I(π/4,π/2](θ)W1(1)

∫ tan θ

1

λ(1, y) dy, θ ∈ [0, π/2),(2.1)

Z
(π

2

)
= −W2(1)

∫ ∞

1

λ(x, 1) dx − W1(1)

∫ ∞

1

λ(1, y) dy,

where λ is the density of Λ, with W1(x) = WΛ([0, x]×[0,∞]) and W2(y) = WΛ([0,∞]×[0, y]).

Define for x, y > 0

(2.2) WR(x, y) = WΛ([0, x]× [0, y]), R(x, y) = Λ([0, x]× [0, y])

and

(2.3) R1(x, y) = ∂R(x, y)/∂x, R2(x, y) = ∂R(x, y)/∂y.

Theorem 2.1. Assume that condition (1.8) and Conditions 1 and 2 of Einmahl et al.

(2001) hold, and that Λ has a continuous density λ on [0,∞)2 \ {(0, 0)}. Then for a special

construction

sup
0<x,y≤1

∣∣∣
√

k(l̂1(x, y)− l(x, y))− A(x, y)
∣∣∣

x ∨ y

P→ 0

as n →∞, where

A(x, y) :=





x(WΛ(Cπ
2
) + Z(π

2
)) + y

∫ arctan y
x

π/4
1

sin2 θ
(WΛ(Cθ) + Z(θ))dθ, if y ≥ x,

x(WΛ(Cπ
2
) + Z(π

2
))− x

∫ π/4

arctan y
x

1
cos2 θ

(WΛ(Cθ) + Z(θ))dθ, if y < x.

Let

(2.4) Ui = 1− F1(Xi), Vi = 1− F2(Yi), i = 1, 2, ..., n.

Let C(x, y) is the distribution function of (Ui, Vi). By (1.8) and (2.2) we have R(x, y) =

limt↓0 t−1C(tx, ty). We assume, as in Huang (1992), that for some α > 0

(2.5) t−1C(tx, ty)−R(x, y) = O(tα) as t ↓ 0,

uniformly for x ∨ y ≤ 1, x, y ≥ 0.
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Theorem 2.2. Assume that conditions (1.8) and (2.5) hold and that k = o
(
n

2α
1+2α

)
. If R1

and R2 are continuous, then we have for 0 ≤ η < 1/2 and for a special construction

sup
0<x,y≤1

∣∣∣
√

k(l̂2(x, y)− l(x, y)) + B(x, y)
∣∣∣

(x ∨ y)η

P→ 0

as n →∞, where

B(x, y) := WR(x, y)−R1(x, y)W1(x)−R2(x, y)W2(y).

Theorem 2.3. Assume the conditions of Theorems 2.1 and 2.2 hold. Then for each 0 ≤
β < 3

(2.6)

∫∫

0<x,y≤1

k
(
l̂1(x, y)− l̂2(x, y)

)2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

as n →∞, and the limit is finite almost surely.

Remark 2.1. The case β = 0 is similar to the Cramér-von Mises test. Note that for β < 2,

Theorem 2.3 easily follows from an unweighted approximation in Theorems 2.1 and 2.2.

Therefore the case β = 2(!) is similar to the Anderson-Darling test.

Remark 2.2. Note that we do not merely test the multivariate extreme value condition but

also the refined conditions of Theorem 2.3. Hence we actually test a smaller null hypothe-

sis. But such a smaller hypothesis is needed for statistical applications, since these refined

conditions are the ones that yield that the normalized tail of F is sufficiently close to G.

Remark 2.3. The random variable on the right in Theorem 2.3 has a continuous distribu-

tion function. This follows from a property of Gaussian measures on Banach spaces: the

measure of a closed ball is a continuous function of its radius, see, e.g., Paulauskas and

Račkauskas (1989), Chapter 4, Theorem 1.2.

Remark 2.4. Since x∨y ≤ l(x, y) ≤ x+y ≤ 2(x∨y), (2.6) remains true with x∨y replaced

with l(x, y) or x + y, but when choosing l(x, y), the left-hand-side of (2.6) is not a statistic

and l has to be estimated.
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3 Proofs

Before proving Theorem 2.1, we first present two lemmas and a proposition.

Lemma 3.1.

l(x, y) =





xΦ(π
2
) + y

∫ arctan y
x

π/4
1

sin2 θ
Φ(θ)dθ, if y ≥ x,

xΦ(π
2
)− x

∫ π/4

arctan y
x

1
cos2 θ

Φ(θ)dθ, if y < x.

Proof. Since

l(x, y) =

∫ π/2

0

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ)

=

∫ π/4

0

(x tan θ) ∨ y Φ(dθ) +

∫ π/2

π/4

x ∨ (y cot θ) Φ(dθ)

and

x tan θ > y ⇔ x > y cot θ ⇔ θ > arctan
y

x
,

then

l(x, y) =

∫ π
4
∧arctan y

x

0

y Φ(dθ) +

∫ π
4

π
4
∧arctan y

x

x tan θ Φ(dθ)

+

∫ π
4
∨arctan y

x

π/4

y cot θ Φ(dθ) +

∫ π/2

π
4
∨arctan y

x

x Φ(dθ)

=





∫ π/4

0
y Φ(dθ) +

∫ arctan y
x

π/4 y cot θ Φ(dθ) +
∫ π/2

arctan y
x
x Φ(dθ), if y ≥ x,

∫ arctan y
x

0
y Φ(dθ) +

∫ π/4

arctan y
x
x tan θ Φ(dθ) +

∫ π/2

π/4
x Φ(dθ), if y < x.

In case of y ≥ x, via integration by parts, one has

l(x, y) = yΦ(
π

4
)− yΦ(0) + y cot(arctan

y

x
)Φ(arctan

y

x
)− y cot

π

4
Φ(

π

4
)

− y

∫ arctan y
x

π/4

Φ(θ)(− 1

sin2 θ
)dθ + xΦ(

π

2
)− xΦ(arctan

y

x
)

= xΦ(
π

2
) + y

∫ arctan y
x

π/4

1

sin2 θ
Φ(θ)dθ.
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In case of y < x, via integration by parts again, one has

l(x, y) = yΦ(arctan
y

x
)− yΦ(0) + x tan

π

4
Φ(

π

4
)− x tan(arctan

y

x
)Φ(arctan

y

x
)

− x

∫ π/4

arctan y
x

Φ(θ)
1

cos2 θ
dθ + xΦ(

π

2
)− xΦ(

π

4
)

= xΦ(
π

2
)− x

∫ π/4

arctan y
x

1

cos2 θ
Φ(θ)dθ.

2

Write

(3.1) Rn(x, y) =
n

k
C

(
kx

n
,
ky

n

)
, Tn(x, y) =

1

k

n∑
i=1

I{Ui<
kx
n

, Vi<
ky
n
}

(3.2) vn(x, y) =
√

k(Tn(x, y)−Rn(x, y)), vn,η(x, y) =
vn(x, y)

(x ∨ y)η

and

(3.3) vn,η,1(x) =
vn(x,∞)

xη
, vn,η,2(y) =

vn(∞, y)

yη
, vn,j = vn,0,j, j = 1, 2.

Proposition 3.1. Let T > 0. For 0 ≤ η < 1/2

(vn,η(x, y), x, y ∈ (0, T ], vn,η,1(x), x ∈ (0, T ], vn,η,2(y), y ∈ (0, T ])

converges in distribution to
(

WR(x, y)

(x ∨ y)η
, x, y ∈ (0, T ],

W1(x)

xη
, x ∈ (0, T ],

W2(y)

yη
, y ∈ (0, T ]

)

as n →∞.

Proof. Define

Zn,i =
1√
k
δ(n

k
Ui,

n
k

Vi)

and for all 0 < x, y ≤ T define the functions

fx,y = I[0,x)×[0,y)/(x ∨ y)η, f (1)
x = I[0,x)×[0,∞]/x

η, f (2)
y = I[0,∞]×[0,y)/y

η.

All these f ’s form the class F . We equip F with the semi-metric d defined by

d(fx,y, fu,v) =

√
E

(
WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

,
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d(fx,y, f (1)
u ) =

√
E

(
WR(x, y)

(x ∨ y)η
− W1(u)

uη

)2

,

etc.

For any ε > 0, the bracketing number N[ ](ε,F , Ln
2 ) is the minimal number of sets Nε in

a partition F =
⋃Nε

j=1Fεj of the index set into sets Fεj such that, for every partitioning set

Fεj

(3.4)
n∑

i=1

E∗ sup
f,g∈Fεj

|Zn,i(f)−Zn,i(g)|2 ≤ ε2.

We will use Theorem 2.11.9 in van der Vaart and Wellner (1996): For each n, let

Zn,1,Zn,2, . . . ,Zn,n be independent stochastic processes with finite second moments indexed

by a totally bounded semimetric space (F , d). Suppose

n∑
i=1

E∗‖Zn,i‖F1{‖Zn,i‖F>λ} → 0, for every λ > 0,

where ‖Zn,i‖F = supf∈F |Zn,i(f)|, and
∫ δn

0

√
log N[ ](ε,F , Ln

2 )dε → 0, for every δn ↓ 0.

Then the sequence
∑n

i=1(Zn,i−EZn,i) is asymptotically tight in `∞(F) and converges weakly,

provided the finite-dimensional distributions converge weakly.

We briefly sketch the total boundedness of (F , d). We only consider the subclass F2 of

F consisting of the bivariate fx,y’s; moreover we restrict ourselves to the case x ≥ y, u ≥ v

and x ≥ u, y ≥ v. For any δ > 0, assuming |x− u| ≤ δ and |y − v| ≤ δ, one has

d2(fx,y, fu,v) = E

(
WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

= E

(
uηWR(x, y)− xηWR(u, v)

(xu)η

)2

=
u2ηR(x, y)− 2xηuηR(u, v) + x2ηR(u, v)

(xu)2η
.

If u ≤ δ, then

d2(fx,y, fu,v) ≤ R(x, y)

x2η
+

2R(u, v)

u2η
+

R(u, v)

u2η

≤ x1−2η + 3u1−2η

≤ (2δ)1−2η + 3δ1−2η ≤ 5δ1−2η.
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If u > δ, then, since

R(x, y) ≤ R(u, v) + Λ([u, x]× [0,∞]) + Λ([0,∞]× [v, y])

≤ R(u, v) + 2δ,

we have

d2(fx,y, fu,v) ≤ R(u, v)(uη − xη)2

(xu)2η
+

2δu2η

(xu)2η

≤ u1−4η(uη − xη)2 + 2δ1−2η

≤ u1−4ηx2η−2(x− u)2 + 2δ1−2η

≤ u−1−2η(x− u)2 + 2δ1−2η ≤ 3δ1−2η.

So, since 1−2η > 0, we see that for every ε > 0 we can find a δ > 0 such that for |x−u| ≤ δ

and |y − v| ≤ δ, d2(fx,y, fu,v) < ε. Hence, since [0, T ]2 is totally bounded with respect to

the Euclidean metric, we obtain the total boundedness of (F , d).

Observe that

Zn,i(fx,y) =
1√
k
I{Ui<

k
n

x, Vi<
k
n

y}/(x ∨ y)η,

n∑
i=1

(Zn,i − EZn,i)(fx,y) = vn,η(x, y)

and similarly for the marginal processes. First we have to show that for every λ > 0

(3.5)
n∑

i=1

E||Zn,i||FI{||Zn,i||F>λ} → 0

as n →∞. Again we will restrict ourselves to the subclass F2. For the univariate f
(1)
x ’s and

f
(2)
y ’s, it can be shown in a similar but easier way.

Note that

sup
fx,y∈F2

1√
k
I{Ui<

k
n

x, Vi<
k
n

y}/(x ∨ y)η ≤ 1√
k

1

(n
k
(Ui ∨ Vi))η

,
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so for each λ > 0
n∑

i=1

E||Zn,i||F2I{||Zn,i||F2
>λ}

≤ n√
k
E

1

(n
k
(Ui ∨ Vi))η

I{n
k
(Ui∨Vi)<(

√
kλ)−1/η}

=
n√
k

∫ (
√

kλ)−1/η

0

x−ηdC
(k

n
x,

k

n
x
)

=
n√
k

(√
kλC

(k

n
(
√

kλ)−1/η,
k

n
(
√

kλ)−1/η
)

+ η

∫ (
√

kλ)−1/η

0

C
(k

n
x,

k

n
x
)
x−η−1dx

)

≤ n√
k

(√
kλ

k

n
(
√

kλ)−1/η + η

∫ (
√

kλ)−1/η

0

k

n
x−ηdx

)

= λ1−1/ηk1−1/(2η) +
√

k
η

1− η
(
√

kλ)1−1/η

=
1

1− η
λ1−1/ηk1−1/(2η) → 0, (η < 1/2).

Next we want to show

(3.6)

∫ δn

0

√
log N[ ](ε,F , Ln

2 ) dε → 0

for every δn ↓ 0. We present the proof for T = 1 for notational convenience; for general

T > 0 the proof is similar. Let ε > 0 be small, define a = ε3/(1−2η) and θ = 1− ε3. We again

consider only F2; the univariate f ’s are easier to handle. Define

F(a) = {fx,y ∈ F2 : x ∧ y ≤ a},
F(l, m) = {fx,y ∈ F2 : θl+1 ≤ x ≤ θl, θm+1 ≤ y ≤ θm}.

Then

F2 = F(a)
⋃




[ log a
log θ

]⋃
m=0

[ log a
log θ

]⋃

l=0

F(l,m)




First check (3.4) for F(a):

n∑
i=1

E sup
f,g∈F(a)

(Zn,i(f)− Zn,i(g))2 = nE sup
f,g∈F(a)

(Zn,i(f)− Zn,i(g))2

≤ 4nE sup
f∈F(a)

Z2
n,i(f) =

4n

k
E sup

x,y>0
x∧y≤a

I{Ui<
kx
n

,Vi<
ky
n
}/(x ∨ y)2η

≤ 4n

k
E (

n

k
Ui)

−2ηI{n
k

Ui<a} =
4n

k

∫ ak/n

0

(
n

k
x)−2η dx =

4

1− 2η
a1−2η ≤ ε2.

11



Now we consider (3.4) for the F(l,m); w.l.o.g. we take l ≤ m:

n∑
i=1

E sup
f,g∈F(l,m)

(Zn,i(f)− Zn,i(g))2

≤ nE

(
sup

f∈F(l,m)

Zn,i(f)− inf
f∈F(l,m)

Zn,i(f)

)2

≤ n

k
E

(
I{Ui<

k
n

θl, Vi<
k
n

θm}/(θ
l+1 ∨ θm+1)η − I{Ui<

k
n

θl+1, Vi<
k
n

θm+1}/(θ
l ∨ θm)η

)2

=
n

k
E

(
I{Ui<

k
n

θl, Vi<
k
n

θm}(
1

θη(l+1)
− 1

θηl
) + (I{Ui<

k
n

θl, Vi<
k
n

θm} − I{Ui<
k
n

θl+1, Vi<
k
n

θm+1})
1

θηl

)2

≤ 2n

k

(
C(

k

n
θl,

k

n
θm)

1

θ2ηl
(

1

θη
− 1)2 +

[
C(

k

n
θl,

k

n
θm)− C(

k

n
θl+1,

k

n
θm+1)

]
1

θ2ηl

)

≤ 2n

k

(
k

n

θl

θ2ηl
(

1

θη
− 1)2 +

2k

n

θl

θ2ηl
(1− θ)

)

≤ 2

(
1

θ1/2
− 1

)2

+ 4(1− θ) ≤ ε6 + 4ε3 ≤ ε2.

It is easy to see that the number of elements of the ”partition” of F2 is bounded by ε−7,

which yields (3.6). Hence we proved the asymptotic tightness condition.

It remains to prove that the finite-dimensional distributions of our process converge

weakly. This follows from the fact that multivariate weak convergence follows from weak

convergence of linear combinations of the components and the univariate Lindeberg-Feller

central limit theorem. It is easily seen that the Lindeberg condition is satisfied for these

linear combinations since the elements of F are weighted indicators and hence bounded. 2

Lemma 3.2. For 0 ≤ η < 1/2

P


 sup

x∨y≤ε
x,y>0

|WR(x, y)|
(x ∨ y)η

≥ λ


 ≤ 16

∞∑
m=0

exp

(
−λ2

2

2m(1−2η)

ε1−2η

)
.

Proof. For m = 0, 1, 2, ... define

Am = {(x, y) :
ε

2m+1
≤ x ≤ ε

2m
,

ε

2m+1
≤ y ≤ ε}.

12



Then, with Z a standard normal random variable,

P


 sup

x∨y≤ε
0<x≤y

|WR(x, y)|
(x ∨ y)η

≥ λ


 = P


 sup

x∨y≤ε
0<x≤y

|WR(x, y)|
yη

≥ λ




≤ P

(
sup

m∈{0,1,2,...}
sup

(x,y)∈Am

|WR(x, y)|
yη

≥ λ

)
≤

∞∑
m=0

P

(
sup

(x,y)∈Am

|WR(x, y)| ≥ λ
( ε

2m+1

)η
)

≤ 4
∞∑

m=0

P
(
|WR(

ε

2m
, ε)| ≥ λ

( ε

2m+1

)η)
≤ 4

∞∑
m=0

P

(
|Z| ≥ λ

2η

(
2m

ε

)1/2−η
)

≤ 8
∞∑

m=0

exp

(
−λ2

2

2m(1−2η)

ε1−2η

)
,

where the third inequality follows for instance from an adaptation of Lemma 1.2 in Orey and

Pruitt (1973) and the last inequality from Mill’s ratio. A symmetry argument completes

the proof. 2

By Theorem 2 in Einmahl et al. (2001) and Proposition 3.1 (and their proofs) it follows

that

(√
k(Φ̂(θ)− Φ(θ)), vn,η(x, y), vn,η,1(u), vn,η,2(v)

)

d→
(

WΛ(Cθ) + Z(θ)),
WR(x, y)

(x ∨ y)η
,
W1(u)

uη
,
W2(v)

vη

)
,

on D[0, π/2]×D[0, T ]2×D[0, T ]×D[0, T ]. By the Skorohod construction, there exists now

a probability space carrying Φ̂∗, v∗n, v∗n,1, v∗n,2, W ∗
Λ(C·), Z∗, W ∗

R, W ∗
1 and W ∗

2 such that
(
Φ̂∗, v∗n, v

∗
n,1, v

∗
n,2

)
d
=

(
Φ̂, vn, vn,1, vn,2

)
,

(
W ∗

Λ(C·), Z∗, W ∗
R,W ∗

1 ,W ∗
2

) d
=

(
WΛ(C·), Z, WR,W1,W2

)

and for 0 ≤ η < 1/2

(3.7) Dn := sup
0≤θ≤π/2

∣∣∣
√

k(Φ̂∗(θ)− Φ(θ))− (W ∗
Λ(Cθ) + Z∗(θ))

∣∣∣ = oP (1),

(3.8) sup
0<x,y≤T

|v∗n(x, y)−W ∗
R(x, y)|

(x ∨ y)η
= oP (1),

(3.9) sup
0<x≤T

|v∗n,1(x)−W ∗
1 (x)|

xη
= oP (1),
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(3.10) sup
0<x,y≤T

|v∗n,2(y)−W ∗
2 (y)|

yη
= oP (1),

as n → ∞. Henceforth we will work on this probability space, but drop the ∗ from the

notation.

Proof of Theorem 2.1. By Lemma 3.1

√
k(l̂1(x, y)− l(x, y))

=





x
√

k(Φ̂(π
2
)− Φ(π

2
)) + y

∫ arctan y
x

π/4
1

sin2 θ

√
k(Φ̂(θ)− Φ(θ))dθ, if y ≥ x,

x
√

k(Φ̂(π
2
)− Φ(π

2
))− x

∫ π/4

arctan y
x

1
cos2 θ

√
k(Φ̂(θ)− Φ(θ))dθ, if y < x.

Now, let’s first consider the case y ≥ x.

sup
0<x≤y≤1

∣∣∣∣∣

√
k(l̂1(x, y)− l(x, y))− A(x, y)

x ∨ y

∣∣∣∣∣

=
1

x ∨ y

∣∣∣x
(√

k(Φ̂∗(
π

2
)− Φ(

π

2
))− (W ∗

Λ(Cπ
2
)− Z∗(

π

2
)
)

+y

∫ arctan y
x

π/4

1

sin2 θ

(√
k(Φ̂∗(θ)− Φ(θ))− (W ∗

Λ(Cθ)− Z∗(θ))
)

dθ

∣∣∣∣∣ + oP (1)

≤ xDn

x ∨ y
+

yDn

x ∨ y

∫ π/2

π/4

1

sin2 θ
dθ + oP (1) → 0,

in probability as n →∞. In case of y < x, the proof is similar. 2

Let Q1n and Q2n be the empirical quantile functions of the {Ui}n
i=1 and {Vi}n

i=1, respec-

tively. Define

R̂(x, y) =
1

k

n∑
i=1

I{Ui<Q1n(kx/n), Vi<Q2n(ky/n)}.

Note that by (1.10)

l̂2(x, y) =
1

k

n∑
i=1

I{Ui<Q1n(kx/n) or Vi<Q2n(ky/n)}.

Proof of Theorem 2.2. It is easily seen that l̂2(x, y) + R̂(x, y) = (dkxe + dkye − 2)/k ≤

14



([kx] + [ky])/k, for each x, y ∈ (0, 1], almost surely. So we have

sup
0<x,y≤1

x∨y≥1/k

|
√

k(l̂2(x, y)− l(x, y)) +
√

k(R̂(x, y)−R(x, y))|
(x ∨ y)η

a.s.
= sup

0<x,y≤1

x∨y≥1/k

∣∣∣
√

k( 1
k
(dkxe+ dkye − 2)− (x + y))

∣∣∣
(x ∨ y)η

≤ k−η sup
0<x,y≤1

√
k(x + y − ([kx] + [ky])/k)

≤ 2
√

k · kη−1 = 2kη−1/2 → 0.

Write Sjn(x) = n
k
Qjn( k

n
x), j = 1, 2. Then we have

sup
0<x,y≤1

x∨y≥1/k

|
√

k(l̂2(x, y)− l(x, y)) + WR(x, y)−R1(x, y)W1(x)−R2(x, y)W2(y)|
(x ∨ y)η

a.s.
= sup

0<x,y≤1

x∨y≥1/k

|
√

k(R̂(x, y)−R(x, y))−WR(x, y) + R1(x, y)W1(x) + R2(x, y)W2(y)|
(x ∨ y)η

+ o(1)

= sup
0<x,y≤1

x∨y≥1/k

|
√

k(R̂(x, y)−Rn(S1n(x), S2n(y)))−WR(x, y)|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|
√

k(Rn(S1n(x), S2n(y)))−R(S1n(x), S2n(y))|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|
√

k(R(S1n(x), S2n(y))−R(x, y)) + R1(x, y)W1(x, y) + R2(x, y)W2(y)|
(x ∨ y)η

+ o(1)

=: D1 + D2 + D3 + o(1).

We will show that Dj → 0 in probability, j = 1, 2, 3. We have

D1 = sup
0<x,y≤1

x∨y≥1/k

|
√

k(Tn(S1n(x), S2n(y))−Rn(S1n(x), S2n(y)))−WR(x, y)|
(x ∨ y)η

≤ sup
0<x,y≤1

x∨y≥1/k

|
√

k(Tn(S1n(x), S2n(y))−Rn(S1n(x), S2n(y)))−WR(S1n(x), S2n(y))|
(S1n(x) ∨ S2n(y))η

·
(

S1n(x) ∨ S2n(y)

x ∨ y

)η

+ sup
0<x,y≤1

x∨y≥1/k

|WR(S1n(x), S2n(y))−WR(x, y)|
(x ∨ y)η
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≤ sup
0<s,t≤2

|vn(s, t)−WR(s, t)|
(s ∨ t)η

· sup
0<s,t≤k/n

s∨t≥1/n

(
Q1n(s) ∨Q2n(t)

s ∨ t

)η

+ sup
0<x,y≤1

x∨y≥1/k

|WR(S1n(x), S2n(y))−WR(x, y)|
(x ∨ y)η

=: D11 ·D12 + D13,

where the last inequality holds with arbitrarily high probability. Then D11 → 0 in proba-

bility because of (3.8) with T = 2. It is well known that

(3.11) sup
s≥1/n

Qjn(s)

s
= OP (1), j = 1, 2

(see Shorack and Wellner (1986), p. 419). Hence D11 ·D12 → 0, in probability. Now consider

for each ε > 1/k

D13 ≤ sup
0<x,y≤1
x∨y≥ε

|WR(S1n(x), S2n(y))−WR(x, y)|
εη

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(S1n(x), S2n(y))|
(S1n(x) ∨ S2n(y))η

· sup
s,t≥1/n

(
Q1n(s) ∨Q2n(y)

s ∨ t

)η

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(x, y)|
(x ∨ y)η

=: D14 + D15 + D16.

By the (uniform) continuity of WR and the fact that

(3.12) sup
0<t≤k/n

n

k
|Qjn(t)− t| → 0, a.s., j = 1, 2,

D14 → 0 in probability a.s. for any ε > 0. Let δ > 0, by (3.11) and Lemma 3.2 we see

that for large n, P (D15 ≥ δ) ≤ δ for ε > 0 small enough. Again from Lemma 3.2 we have

P (D16 ≥ δ) ≤ δ. Hence D13 → 0 in probability and consequently D1 → 0, in probability.

Consider D2. Take (a, b) with a ∨ b = u. Then according to (2.5)

1

t
C(ta, tb) =

u

ut
C(tu

a

u
, tu

b

u
)

= uR(
a

u
,
b

u
) + u1+αO(tα)

= R(a, b) + (a ∨ b)1+αO(tα).

Now with arbitrarily high probability

D2 ≤ sup
0<x,y≤2

|
√

k(Rn(x, y)−R(x, y))|
(x ∨ y)η

· sup
s∨t≥1/n

(
Q1n(s) ∨Q2n(t)

s ∨ t

)η

.
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We have seen before that second term of this product is OP (1). So it is suffices to show that

the first term is o(1):

sup
0<x,y≤2

|
√

k(Rn(x, y)−R(x, y))|
(x ∨ y)η

=

(
sup

0<x,y≤2

√
k(x ∨ y)1+α

(x ∨ y)η

)
O

((
k

n

)α)

= O

(
kα+1/2

nα

)
= o(1),

by assumption. Hence D2 → 0 in probability.

It remains to show that D3 → 0 in probability. By two applications of the mean-value

theorem we obtain

R(S1n(x), S2n(y))−R(x, y)

= R(S1n(x), S2n(y))−R(x, S2n(y)) + R(x, S2n(y))−R(x, y)

= R1(θ1n, S2n(y))(S1n(x)− x) + R2(x, θ2n)(S2n(y)− y)

with θ1n between x and S1n(x) and θ2n between y and S2n(y). So

D3 ≤ sup
0<x,y≤1

x∨y≥1/k

|R1(θ1n, S2n(y))
√

k(S1n(x)− x) + R1(x, y)W1(x)|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|R2(x, θ2n)
√

k(S2n(y)− y) + R2(x, y)W2(y)|
(x ∨ y)η

.

We consider only the first term in the right hand side of this expression; the second one can

be dealt with similarly. Write zn(x) =
√

k(S1n(x) − x). From (3.9) with η = 0 it follows

that

sup
0<x≤1

|zn(x) + W1(x)| → 0

in probability. From this it can be shown that for 0 ≤ η < 1/2

(3.13) sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

→ 0
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in probability (see, e.g., Einmahl (1992)). Now

sup
0<x,y≤1

x∨y≥1/k

|R1(θ1n, S2n(y))zn(x) + R1(x, y)W1(x)|
(x ∨ y)η

≤ sup
0<x,y≤1

R1(θ1n, S2n(y)) · sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

+ sup
0<x,y≤1

|R1(x, y)−R1(θ1n, S2n(y))| · sup
0<x≤1

|W1(x)|
xη

=: D31 + D32.

Since R1 is continuous on [0, 2]2 it is uniformly continuous and bounded. This together

with (3.13) yields D31 → 0 in probability. The uniform continuity of R1 together with (3.12)

and the fact that

sup
0<x≤1

|W1(x)|
xη

< ∞ a.s.,

yields D32 → 0 in probability and consequently D3 → 0 in probability.

Finally we show that

sup
0<x,y<1/k

|
√

k(l̂2(x, y)− l(x, y)) + B(x, y)|
(x ∨ y)η

= oP (1).

Observing that sup0<x,y<1/k l̂2(x, y) = 0 a.s., this follows easily. 2

Proof of Theorem 2.3. For each 0 ≤ β < 3, there exist α ∈ [0, 2) and η ∈ [0, 1/2) such

that β = α + 2η. By Theorem 2.1 and Theorem 2.2, and

∫ 1

0

∫ 1

0

1

(x ∨ y)α
dxdy < ∞,

it follows that as n →∞
∫∫

0<x,y≤1

k
(
l̂1(x, y)− l̂2(x, y)

)2

(x ∨ y)β
dxdy

= oP (1)

∫∫

0<x,y≤1

1

(x ∨ y)α
dxdy +

∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy .

2
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4 Approximating the limit

For testing purposes, we have to find the probability distribution of the limiting random

variable in Theorem 2.3. This can be done by simulating the processes A and B, but

unfortunately their distributions depend on the unknown measure Λ. Therefore, we generate

approximations An and Bn, respectively, of the processes A and B, not with parameter Λ

but with approximated parameter Λn. In this section, we consider the convergence of the

sequence of these approximated limiting random variables. Until further notice, we take

{Λn}n≥1 to be a sequence of deterministic measures.

Define

R1n(x, y) :=
1

2
k1/5Λn([x− k−1/5, x + k−1/5]× [0, y)),

R2n(x, y) :=
1

2
k1/5Λn([0, x)× [y − k−1/5, y + k−1/5]),

W1n(x) := WΛn([0, x]× [0,∞]), W2n(y) := WΛn([0,∞]× [0, y]),

WRn(x, y) := WΛn([0, x]× [0, y]),

and the process Bn by

Bn(x, y) := WRn(x, y)−R1n(x, y)W1n(x)−R2n(x, y)W2n(y).

Based on the definition of Z in (2.1) and the homogeneity property of λ (i.e., λ(tx, ty) =

1
t
λ(x, y)), we define the approximating process Zn by

(4.1)

Zn(θ) =





λn(1, tan θ) tan θ

∫ 1/ tan θ

0

W1n(x)

x
dx− λn(1, tan θ)

∫ 1

0

W2n(x)

x
dx

−W2n(1)

∫ ∞

1/ tan θ

λn(x, 1)dx, θ ∈ [0, π/4]

λn(1/ tan θ, 1)

∫ 1

0

W1n(x)

x
dx− λn(1/ tan θ, 1)

1

tan θ

∫ tan θ

0

W2n(x)

x
dx

−W2n(1)

∫ ∞

1

λn(x, 1)dx−W1n(1)

∫ tan θ

1

λn(1, y)dy, θ ∈ (π/4, π/2)

−W2n(1)

∫ ∞

1

λn(x, 1)dx−W1n(1)

∫ ∞

1

λn(1, y)dy, θ = π/2
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where λn is the approximation of λ defined by

λn(1, y) :=
1

4
k1/3Λn([1− k−1/6, 1 + k−1/6]× [y − k−1/6, y + k−1/6]), y > 0,

λn(x, 1) :=
1

4
k1/3Λn([x− k−1/6, x + k−1/6]× [1− k−1/6, 1 + k−1/6]), x > 0.

Finally define the process An by

An(x, y) :=





x(WΛn(Cπ
2
) + Zn(π

2
)) + y

∫ arctan y
x

π/4
1

sin2 θ
(WΛn(Cθ) + Zn(θ))dθ if y ≥ x,

x(WΛn(Cπ
2
) + Zn(π

2
))− x

∫ π/4

arctan y
x

1
cos2 θ

(WΛn(Cθ) + Zn(θ))dθ if y < x.

First we consider the weak convergence of the weighted approximating processes. We

write D2 := D([0, 1]2) for the generalization of D[0, 1] to dimension 2, and Ld for the Borel

σ-algebra on (D2, d), where d is the metric on D2 defined in Neuhaus (1971).

Proposition 4.1. Let Λ be as in Theorem 2.3. Suppose that {Λn}n≥1 is a sequence of

measures on [0,∞]2 \ {(∞,∞)} satisfying that for each x, y ≥ 0

(4.2) Λn([0, x]× [0,∞]) = [kx]/k, Λn([0,∞]× [0, y]) = [ky]/k

and

(4.3) sup
0<x,y≤1

|Λn([0, x]× [0, y])− Λ([0, x]× [0, y])| → 0

as n →∞. Further suppose that

(4.4) sup
0<x≤1

|λn(x, 1)− λ(x, 1)| → 0, sup
0<y≤1

|λn(1, y)− λ(1, y)| → 0,

(4.5) sup
0<x,y≤1

|Rjn(x, y)−Rj(x, y)| → 0, j = 1, 2,

as n →∞. Then for each 0 ≤ η < 1/2

{
An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}
→

{
A(x, y) + B(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}
,

weakly in D2.

Before proving this proposition, we present three corollaries. The last one is the main

result of this section.
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Corollary 4.1. Under the conditions of Proposition 4.1 for each 0 ≤ β < 3

(4.6)

∫∫

0<x,y≤1

(An(x, y) + Bn(x, y))2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

as n →∞.

Let QΛn be the quantile function of the random variable on the left hand side of (4.6)

and QΛ the quantile function of the random variable on the right hand side of (4.6).

Corollary 4.2. Under the conditions of Proposition 4.1, for each 0 ≤ β < 3 and for each

continuity point 1− α (0 < α < 1) of QΛ,

lim
n→∞

QΛn(1− α) = QΛ(1− α).

Next, with abuse of notation, we estimate Λn from the data, so it becomes random. In

Einmahl et al. (2001), Λn is defined as

Λn(A) :=
1

k

n∑
i=1

I k
n

A

(
1

n

n∑
j=1

I(−∞,Ui](Uj),
1

n

n∑
j=1

I(−∞,Vi](Vj)

)
(4.7)

=
1

k

n∑
i=1

IkA

(
n + 1−RX

i , n + 1−RY
i

)

where Ui := 1− F1(Xi), Vi := 1− F2(Yi) for i = 1, 2, ..., n. Note that for x, y > 0

Λn([0, x)× [0, y)) =
1

k

n∑
i=1

I{Ui<Q1n(kx/n), Vi<Q2n(ky/n)}.

So Λn([0, x) × [0,∞]) = (dkxe − 1)/k ≤ [kx]/k = Λn([0, x] × [0,∞]) a.s. and Λn([0,∞] ×
[0, y)) = (dkye − 1)/k ≤ [ky]/k = Λn([0,∞]× [0, y]) a.s.

The final and main corollary deals with the random measures Λn, where the functions

derived from Λn, like λn, are defined as before. In particular, we define QΛn , as the quantile

function of the random variable on the left hand side of (4.6), conditional on Λn, so it is

also random.

Corollary 4.3. Let Λn be as in (4.7). Under the conditions of Theorem 2.3, we have for

each 0 ≤ β < 3 and each continuity point 1− α (0 < α < 1) of QΛ, that

QΛn(1− α)
P→ QΛ(1− α), as n →∞.
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For testing purposes, Corollary 4.3 shows that simulation of the limiting random variable

in Theorem 2.3 with Λ replaced with the estimated Λn is asymptotically correct.

Now we turn to the proofs. In order to prove Proposition 4.1, by Prohorov’s theorem it

is necessary and sufficient to prove that

(i) The finite-dimensional distributions of {(An(x, y)+Bn(x, y))/(x∨y)η, (x, y) ∈ [0, 1]2}n≥1

converge to those of {(A(x, y) + B(x, y))/(x ∨ y)η, (x, y) ∈ [0, 1]2},
(ii) {(An(x, y) + Bn(x, y))/(x ∨ y)η, (x, y) ∈ [0, 1]2}n≥1 is relatively compact.

For the relative compactness, we need several lemmas. First we present in Lemma 4.1

sufficient conditions for relative compactness ; the proof is similar to that of Theorem 15.5

in Billingsley (1968), see also Neuhaus (1971).

Lemma 4.1. Let Pn be probability measures on (D2,Ld). Suppose that, for each positive η,

there exists an M > 0 such that

Pn(x ∈ D2 : |x(0, 0)| > M) ≤ η, n ≥ 1.

Suppose further that, for each positive ε and η, there exist a δ, 0 < δ < 1, and an integer

n0 such that

Pn(x ∈ D2 : sup
|u1−u2|≤δ,|v1−v2|≤δ

|x(u1, v1)− x(u2, v2)| > ε) ≤ η, n ≥ n0.

Then {Pn}n≥1 is relatively compact.

Lemma 4.2. Under the conditions of Proposition 4.1, for each c, a > 0

(i)
∫ c

0

Wjn(t)

t
dt ∼ N(0, σ2

n), with σ2
n ≤ 2c, j = 1, 2,

(ii) P (supt≥c |Wjn(t)

t
| ≥ a) ≤ 2P (|W (2/c)| ≥ a), j = 1, 2, where W is a standard Wiener

process.

Proof. (i) This follows from Proposition 1, page 42, in Shorack and Wellner (1986).

(ii) Let W be a standard Wiener process. Since {W (t)/t, t ≥ c} =d {W (1/t), t ≥ c},
then

P (sup
t≥c

|W (t)/t| ≥ a) = P ( sup
0<s≤1/c

|W (s)| ≥ a) ≤ 2P (|W (1/c)| ≥ a).
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Write Λ1n(t) for Λn([0, t]× [0,∞]). Since {W1n(t), t > 0} d
= {W (Λ1n(t)), t > 0}, then

P (sup
t≥c

|W1n(t)/t| ≥ a) = P (sup
t≥c

∣∣∣∣
W (Λ1n(t)) · Λ1n(t)

Λ1n(t) · t

∣∣∣∣ ≥ a)

≤P ( sup
Λ1n(t)≥c/2

|W (Λ1n(t))/Λ1n(t)| ≥ a) ≤ 2P (|W (2/c)| ≥ a),

eventually (since t− 1/k ≤ Λ1n(t) ≤ t). For j = 2 the proof is the same. 2

Lemma 4.3. Define

Hn := sup
θ∈[0,π/2]

|WΛn(Cθ) + Zn(θ)|.

Then under the conditions of Proposition 4.1, there exists an n0 ∈ N such that

sup
n≥n0

P (Hn ≥ a) = O(e−a) as a →∞.

Proof. Define H1n := supθ∈[0,π/4] |WΛn(Cθ)+Zn(θ)|, H2n := supθ∈(π/4,π/2) |WΛn(Cθ)+Zn(θ)|,
and H3n := |WΛn(Cπ/2) + Zn(π/2)|. It suffices to verify that there exists an n0 ∈ N such

that

sup
n≥n0

P (Hjn ≥ a) = O(e−a), j = 1, 2, 3

as a → ∞. Here we only check it in case of j = 1. For the other two cases, the proofs are

similar.

Since for all n ≥ 1

{WΛn(Cθ), θ ∈ [0, π/2]} d
= {W (Λn(Cθ)), θ ∈ [0, π/2]},

with W a standard Wiener process, we have

P (H1n ≥ a) ≤ P ( sup
θ∈[0,π/4]

|W (Λn(Cθ))| ≥ a/2) + P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2)

≤ 2P (|W (Λn(Cπ/4))| ≥ a/2) + P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2).

Clearly Λn(Cπ/4) ≤ 1 for all n ≥ 1, and hence supn≥1 P (|W (Λn(Cπ/4))| ≥ a/2) = O(e−a), as

a →∞.

From Einmahl et al. (2001), one has supx>0 λ(x, 1) < ∞ and supy>0 λ(1, y) < ∞. Then

by (4.4) there exists a constant λ0 > 0 such that sup0<x≤1 λn(x, 1) < λ0 and sup0<y≤1 λn(1, y) <

λ0 for large n. Using (4.2) and the fact that Λn is a step function, one can prove with some
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effort that
∫∞
1

λn(x, 1)dx ≤ 2 and
∫∞
1

λn(1, y)dy ≤ 2 for sufficiently large n, hence by the

definition of Zn(θ), one has

sup
θ∈[0,π/4]

|Zn(θ)|

≤ λ0

∣∣∣∣
∫ 1

0

W1n(x)

x
dx

∣∣∣∣ + λ0 sup
θ∈[0,π/4]

∣∣∣∣∣tan θ

∫ 1/ tan θ

1

W1n(x)

x
dx

∣∣∣∣∣ + λ0

∣∣∣∣
∫ 1

0

W2n(x)

x
dx

∣∣∣∣ + 2 |W2n(1)|

≤ λ0

∣∣∣∣
∫ 1

0

W1n(x)

x
dx

∣∣∣∣ + λ0 sup
x≥1

∣∣∣∣
W1n(x)

x

∣∣∣∣ + λ0

∣∣∣∣
∫ 1

0

W2n(x)

x
dx

∣∣∣∣ + 2 |W2n(1)| ,

for sufficiently large n. By Lemma 4.2(i),
∫ 1

0
W1n(x)

x
dx and

∫ 1

0
W2n(x)

x
dx have centered normal

distributions with uniformly bounded variances for all n ≥ 1. By Lemma 4.2(ii) there exist

an n0 ∈ N such that

sup
n≥n0

P (λ0 sup
x≥1

|W1n(x)|/x ≥ a/8) ≤ 2P (W (2) ≥ a/(8λ0)) = O(e−a)

as a →∞. Hence

sup
n≥n0

P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2) = O(e−a)

as a →∞. So supn≥n0
P (H1n ≥ a) = O(e−a) as a →∞. 2

Lemma 4.4. Under the conditions of Proposition 4.1, for each 0 ≤ η < 1/2
{

Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

is relatively compact.

Proof. By the definition of R1n and R2n, one has

R1n(x, y) =
1

2
k1/5Λn([x− k−1/5, x + k−1/5]× [0,∞])

=
1

2
k1/5

(
[k(x + k−1/5)]

k
− [k(x− k−1/5)]

k

)

≤ 1 + 1/k4/5 ≤ 2 if k ≥ 1.

Also R2n(x, y) ≤ 2 for k ≥ 1. Hence it is sufficient to prove

{WRn(x, y)/(x∨y)η, x, y ∈ [0, 1]}n≥1, {W1n(x)/xη, x ∈ [0, 1]}n≥1, {W2n(y)/yη, y ∈ [0, 1]}n≥1

are relatively compact. Here we only show the proof of the first one. The proofs of the

others are similar.
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Setting 0/0 = 0, by Lemma 4.1 it suffices to prove that for each positive ε, there exist a

δ (0 < δ < 1) and n0 ∈ N (n0 may depend on δ) such that

(4.8) P


 sup

x,y,u,v∈[0,1]
|x−u|≤δ,|y−v|≤δ

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η
− WΛn([0, u]× [0, v])

(u ∨ v)η

∣∣∣∣ > ε


 ≤ ε, n ≥ n0.

We partition the square [0, 1] × [0, 1] into m2 (m ∈ N) small squares, say [0, 1] × [0, 1] =
⋃m

i=1

⋃m
j=1 ∆ij, with ∆ij := {(x, y) : iδ ≤ x ≤ (i + 1)δ, jδ ≤ y ≤ (j + 1)δ}, δ := 1/m and

i, j = 0, 1, ...,m − 1. In order to prove (4.8), it suffices to prove that for each positive ε,

there exist a δ (0 < δ < 1) and n0 = n0(δ) ∈ N such that

(4.9)
m−1∑
i=0

m−1∑
j=0

P

(
sup
∆ij

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η
− WΛn([0, iδ]× [0, jδ])

δη(i ∨ j)η

∣∣∣∣ > ε

)
≤ ε, n ≥ n0.

We consider the case i∨ j ≥ 1 and the case i = j = 0 separately. Let’s first look at the case

i ∨ j ≥ 1. Assume i > j. Let S(x, y) := [0, x]× [0, y]. Note that for (x, y) ∈ ∆ij

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η
− WΛn([0, iδ]× [0, jδ])

δη(i ∨ j)η

∣∣∣∣

=

∣∣∣∣
WΛn(S(x, y))

xη
− WΛn(S(iδ, jδ))

(iδ)η

∣∣∣∣

=
|(iδ)ηWΛn(S(iδ, jδ)) + (iδ)ηWΛn(S(x, y)\S(iδ, jδ))− xηWΛn(S(iδ, jδ))|

xη(iδ)η

≤ |(iδ)ηWΛn(S(x, y)\S(iδ, jδ))− (xη − (iδ)η)WΛn(S(iδ, jδ))|
(iδ)2η

(since x ≥ iδ ≥ y). Hence

P

(
sup
∆ij

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η
− WΛn([0, iδ]× [0, jδ])

δη(i ∨ j)η

∣∣∣∣ > ε

)

≤ P (sup
∆ij

|WΛn(S(x, y)\S(iδ, jδ))

(iδ)η
| > ε

2
) + P (sup

∆ij

|x
η − (iδ)η

(iδ)2η
WΛn(S(iδ, jδ))| > ε

2
)

≤ 4P (|WΛn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ))

(iδ)η
| > ε

4
) + P (|(1 + 1/i)η − 1

(iδ)η
WΛn(S(iδ, jδ))| > ε

2
).

Since Λn(S((i+1)δ, (j+1)δ)\S(iδ, jδ)) ≤ 2δ+4/k for all i∨j ≥ 1, there exist n∗ = n∗(δ) ∈ N
such that k∗ = k(n∗) ≥ 1/δ and hence

Λn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ)) ≤ 6δ, n ≥ n∗.
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uniformly in i ∨ j ≥ 1. It follows that (iδ)−ηWΛn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ)) has a

normal distribution with mean zero and variance σ2
n(i, j) satisfying σ2

n(i, j) ≤ 6δ1−2η for all

i > j, i ≥ 1, and n ≥ n∗. Hence for all ε > 0

sup
n≥n∗

sup
i>j, i≥1

P (|(iδ)−ηWΛn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ))| > ε/4) = O(e−δη−1/2

)

as δ → 0. On the other hand, note that (1+1/i)η−1
(iδ)η WΛn(S(iδ, jδ)) has a normal distribution

with mean zero and variance σ̃2
n(i, j) satisfying σ̃2

n(i, j) ≤ (iδ)1−2η((1 + 1/i)η − 1)2 ≤ 4δ1−2η.

So

sup
n≥n∗

sup
i>j, i≥1

P (|(1 + 1/i)η − 1

(iδ)η
WΛn(S(iδ, jδ))| > ε/2) = O(e−δη−1/2

)

as δ → 0.

In case of j > i, j ≥ 1 and case of i = j ≥ 1, we can get similar results as above. Hence

(4.10)

sup
n≥n∗

m−1∑
i∨j≥1

P

(
sup
∆ij

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η
− WΛn([0, iδ]× [0, jδ])

δη(i ∨ j)η

∣∣∣∣ > ε

)
= O(δ−2e−δη−1/2

)

as δ → 0.

Now let us look at the case i = j = 0. By Lemma 3.2 (in fact we can replace R by Λn

in that lemma), one has

(4.11) sup
n≥1

P

(
sup

x∨y≤δ

∣∣∣∣
WΛn([0, x]× [0, y])

(x ∨ y)η

∣∣∣∣ > ε

)
= O(e−δη−1/2

)

as δ → 0.

Since (4.10) and (4.11) imply (4.9), the result follows. 2

Lemma 4.5. Under the conditions of Proposition 4.1, for each 0 ≤ η < 1
{

An(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

is relatively compact.

Proof. The proof is similar to that of Lemma 4.4. We use the same notation for ∆ij

and S. We only need to check that for each positive ε, there exist a δ (0 < δ < 1) and

n0 = n0(δ) ∈ N such that

(4.12)
m−1∑
i=0

m−1∑
j=0

P

(
sup
∆ij

∣∣∣∣
An(x, y)

(x ∨ y)η
− An(iδ, jδ)

δη(i ∨ j)η

∣∣∣∣ > ε

)
≤ ε, n ≥ n0.
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We consider the case i ∨ j ≥ 1 and the case i = j = 0 separately. Let us first look at the

case i ∨ j ≥ 1. In case of i > j, i ≥ 1, note that for (x, y) ∈ ∆ij

|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η|

=

∣∣∣∣∣(x
1−η − (iδ)1−η)(WΛn(Cπ/2)− Zn(π/2))− (x1−η − (iδ)1−η)

∫ π/4

arctan y/x

1

cos2 θ
(WΛn(Cθ) + Zn(θ))dθ

+(iδ)1−η

∫ arctan y/x

arctan j/i

1

cos2 θ
(WΛn(Cθ) + Zn(θ))dθ

∣∣∣∣∣

≤ (iδ)1−η((1 + 1/i)η − 1)(1 + π/2)Hn + (iδ)1−η

(
arctan

j + 1

i
− arctan

j

i

)
2 Hn

where Hn is defined in Lemma 4.3. Since (iδ)1−η((1+1/i)η−1) = O(δ1−η) and (iδ)1−η(arctan j+1
i
−

arctan j
i
) = O(δ1−η) as δ → 0 and uniformly in i, j (i > j, i ≥ 1), then by Lemma 4.3 there

exists n∗ = n∗(δ) ∈ N such that

(4.13) sup
n≥n∗

sup
i>j, i≥1

P (|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η| > ε/2) = O(e−δ(η−1)/2

)

as δ → 0.

In case of j > i, j ≥ 1 and case of i = j ≥ 1 we can get a similar result as (4.13). Hence

there exists n01 = n01(δ) ∈ N such that

(4.14) sup
n≥n01

m∑
i∨j≥1

P (|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η| > ε) = O(δ−2e−δ(η−1)/2

)

as δ → 0.

Now let’s consider the case i = j = 0 and w.l.o.g. assume y ≥ x. Then for 0 ≤ x ≤ y ≤ δ

|An(x, y)/(x ∨ y)η|

= |xy−ηWΛn(Cπ/2) + Zn(π/2)) + y1−η

∫ arctan y/x

π/4

sin−2 θ(WΛn(Cθ) + Z(θ))dθ|

≤ δ1−η(1 + π/2)Hn.

Hence there exists n02 = n02(δ) ∈ N such that

(4.15) sup
n≥n02

P ( sup
x∨y≤δ

|An(x, y)/(x ∨ y)η| > ε) = O(e−δ(η−1)/2

)

as δ → 0.
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Now (4.14) and (4.15) imply (4.12). 2

Proof of Proposition 4.1. By Lemmas 4.4 and 4.5,

(4.16)

{
An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

is relatively compact. It is easy to check that the finite-dimensional distributions of our

estimated processes in (4.16) converge to those of the limiting process, which completes the

proof. 2

Proof of Corollary 4.1. After applying a Skorohod construction to the weak convergence

statement of Proposition 4.1, the proof is similar to that of Theorem 2.3. 2

Proof of Corollary 4.2. Proposition 4.1 implies the weak convergence of the distribution

function of the left hand side of (4.6) to the distribution function of the right hand side of

(4.6). This property carries over to the inverse functions QΛn and QΛ. 2

Proof of Corollary 4.3. From another Skorohod construction we obtain an a.s. version

of the statement of Theorem 2.2; without changing the notation we now work with this

construction. Since for 0 < x, y ≤ 1

Λ([0, x]× [0, y]) = x + y − l(x, y),

Λn([0, x]× [0, y]) = dkxe/k + dkye/k − l̂2(x, y)− δn(x, y)/k

(δn(x, y) takes values in {0, 1, 2}), it follows that for each ε > 0

(4.17) sup
0<x,y≤1

k1/2−ε
∣∣∣Λn([0, x]× [0, y])− Λ([0, x]× [0, y])

∣∣∣ → 0 a.s.

as n →∞.

We now show that (4.2), (4.3), (4.4), (4.5) hold a.s. We already saw, below (4.7), that

(4.2) holds a.s. and the a.s. version of (4.3) follows immediately from (4.17).

By (4.17) and (4.2), it is easily follows that

(4.18) sup
E∈E

k1/2−ε
∣∣∣Λn(E)− Λ(E)

∣∣∣ → 0 a.s.

as n → ∞, where E := {E| E = [x1, x2] × [y1, y2], 0 < x1 ≤ x2 ≤ 2, 0 < y1 ≤ y2 ≤ 2}. Let
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En(x) = [x− k−1/6, x + k−1/6]× [1− k−1/6, 1 + k−1/6]. Then

sup
0<x≤1

|λn(x, 1)− λ(x, 1)|

= sup
0<x≤1

|1
4
k1/3Λn(En(x))− 1

4
k1/3Λ(En(x)) +

1

4
k1/3Λ(En(x))− λ(x, 1)|

≤ sup
0<x≤1

1

4
k1/3|Λn(En(x))− Λ(En(x))|+ sup

0<x≤1
|1
4
k1/3Λ(En(x))− λ(x, 1)|

→ 0 a.s. as n →∞,

as n → ∞, by (4.18) and λ(0, 1) = 0. The proofs of sup0<y≤1 |λn(1, y) − λ(1, y)| → 0 a.s.

and sup0<x,y≤1 |Rjn(x, y) − Rj(x, y)| → 0, j = 1, 2, a.s. are similar. Hence (4.4) and (4.5)

hold a.s.

According to Corollary 4.2 we have

QΛn(1− α) → QΛ(1− α) a.s.

as n →∞, hence also in probability. 2

5 Simulation study and real data application

In this section we present a small simulation study, making use of the results of section 4.

We will consider one distribution satisfying the domain of attraction condition and one that

fails to satisfy it. At the end of the section, we will apply our procedure to financial data.

Throughout we take β = 2 in the test statistic of (1.12).

Consider the bivariate Cauchy distribution restricted to the first quadrant, with density

f(x, y) =
2

π(1 + x2 + y2)
3
2

, x, y > 0.

It readily follows that

Λ([0, x]× [0, y]) = x + y −
√

x2 + y2, λ(x, y) =
xy

(x2 + y2)3/2
, x, y > 0.

This distribution satisfies the conditions of Theorem 2.3; in particular (2.5) holds with α = 2

(see Einmahl et al. (2001), pp. 1409-1410). First we present in Table 1 the quantiles of the

limiting random variable
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)2
dxdy,
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using the approximation of section 4. We used 100,000 replications. With high probability

these quantiles are accurate up to 0.01.

p 0.25 0.50 0.75 0.90 0.95

Q(p) 0.10 0.14 0.22 0.34 0.44

Table 1: Quantiles of the limiting r.v. for β = 2 for the Cauchy distribution.

Now for sample size n = 2000, we simulate 1000 times the test statistic

k

∫∫

0<x,y≤1

(l̂1(x, y)− l̂2(x, y))2

(x ∨ y)2
dxdy,

for various values of k. Using the 0.95-th quantile above, we find the simulated type-I error

probabilities; see Table 2. In the ideal situation the number of rejections is a binomial r.v.

k 20 40 60 80 100 125 150 175 200 250 300 400

α̂ .049 .048 .055 .039 .038 .049 .046 .055 .049 .060 .055 .082

Table 2: Simulated type-I error for the Cauchy distribution: n = 2000 and α = 0.05.

with parameters 1000 and 0.05. So the numbers in the table are remarkebly close to 0.05.

Only for k = 400, the bias seems to set in. In addition, in Figure 1 we see, for various k,

on the left for one sample of size n = 2000 the values of the test statistic and on the right

the median and 0.95-th quantile for the test statistic based on 800 samples. Note that the

behavior of the test statistic fluctuates with k, but that for all k in the figure the value is

far below 0.44, the 0.95-th quantile of the limiting random variable.

Next we consider a distribution with uniform-(0, 1) marginals (a copula), which does not

satisfy the bivariate domain of attraction condition. Since both marginals are uniform, they

are in the univariate domain of attraction of the reverse Weibull law. So it is the dependence

structure that causes the failure. The distribution is an adaptation of a distribution in

Schlather (2001): take a density of 3/2 on the following rectangles: [2−(2m+1), 2−(2m)] ×
[2−(2r+1), 2−(2r)] , for m = 0, 1, 2, . . . and r = 0, 1, 2, . . .; in this way a probability mass of

2/3 is assigned. The remaining 1/3 is assigned by taking the uniform distribution on the

line segments from (2−(2m+2), 2−(2m+2)) to (2−(2m+1), 2−(2m+1)), m = 0, 1, 2, . . ., such that
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Figure 1: Cauchy distribution: test statistic (left) and quantiles of the test statistic (right).
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Figure 2: Alternative distribution: test statistics and 0.95-th quantiles of 2 samples.

the mass of the m-th segment is equal to 2−(2m+2). In Figure 2, we see for varying k the

test statistics and simulated 0.95-th quantiles of two samples of size n = 2000 from this
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distribution. Again the test statistics fluctuate with k, but from a certain k on (and for

most values of k), the null hypothesis is clearly rejected.

Finally, we apply the test to real data, similarly as we just did for the simulated data

sets in Figure 2. The data are 3283 daily logarithmic equity returns over the period 1991-

2003 for two Dutch banks, ING and ABN AMRO bank. The bivariate, heavy-tailed data

are shown in Figure 3 on the left; on the right we see again the test statistic and 0.95-th

quantile. Since the test statistic is everywhere clearly below the quantile, we cannot reject
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Figure 3: Daily equity returns of two Dutch banks (left) and test statistics and 0.95-th

quantiles (right).

the null hypothesis. This is a satisfactory result, because it allows us to analyze these data

further, using statistical theory of extremes.
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