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Closed-form pricing of Benchmark Equity Default Swaps under

the CEV assumption

Abstract

Equity Default Swaps are new equity derivatives designed as a product

for credit investors. Equipped with a novel pricing result, we provide closed-

form values that give an analytic contribution to the viability of cross-asset

trading related to credit risk.

JEL-Classi�cation: G12, G33.

Keywords: Cross-Asset Trading of Credit Risk, Constant-Elasticity-of-

Variance (CEV) Di¤usion.



1 Introduction

Following rapid growth in the equity and credit derivatives markets, cross-

asset products, which combine elements of credit and equity, have become

more prominent. One such product is the Equity Default Swap (EDS) and

it presents a challenge in terms of pricing �how to incorporate credit events

into pricing models for equity-based instruments. EDSs are similar to Credit

Default Swaps (CDS) insofar as a protection buyer makes a regular fee pay-

ment at intervals until either a trigger event or the contract maturity and

receives from a protection seller a protection payment on the happening of

the trigger event. The di¤erence is in how the trigger event is determined.

In a CDS, the trigger event is the occurrence of a credit event with respect

to the reference entity. In an EDS, the trigger event is a fall in the share

price of the reference entity to below a certain percentage of the price level

at the inception of the trade. Since their �rst appearance in May 20031,

EDSs have been growing popular. EDSs can be used in yield-enhancement

strategies (implemented by selling protection on reference entities that com-

bine high equity volatility with a good credit rating) and as an alternative

market access tool (counterparties that face limits on their exposure through

CDSs have EDSs as an alternative method of trading credit risk). EDSs are

1Wolcott (2004), p. 24, writes "Since the launch of EDSs last May, JP Morgan claims

to have executed over $1 billion in notional." See also Sawyer (2003) and Sawyer (2004).
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also viewed as attractive alternatives to CDSs in the context of synthetic

Collateralized Debt Obligations for two reasons. First, the risk of a trigger

event occurring on an EDS is more transparent. Second, determining the

protection payment for an EDS is more certain since the EDS recovery rate

is tipically �xed at 50% of the notional amount.

We focus on the �Benchmark EDS�. We de�ne it as an EDS contract

with a trigger event corresponding to a 100% drop in share price since the

commencement of the trade-share price absorption at zero. Default as share

price absorption at zero is consistent with corporate �nance theory and its

clear equity-based de�nition renders valuation easy to implement2. Thus, we

think the 100%-drop event in the equity market as an identi�able subset of

the more opaque credit event that triggers the protection payment in a CDS.

The Geometric Brownian Motion (GBM) assumption is clearly mismated

with the Benchmark EDS pricing task and we value the contract by means

of assuming that the share price follows a Constant-Elasticity-of-Variance

(CEV) di¤usion, which brings in for free a well-known closed form of the

probability of the 100%-drop event. We derive in closed form the truncated

Laplace transform of the probability density function (p.d.f.) of the �rst

hitting time of the CEV process at the zero level, which can serve as the

2Structural models of EDS pricing (see Medova and Smith (2004)) also have corporate

�nance foundations. For such models, viability may be an issue-not all corporate liabilities

are always tradable and leverage-ratio information is not always reliable.
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Present Value (PV) of a Benchmark EDS protection payment. This result is,

to the best of our knowledge, novel in the CEV-based asset-pricing literature3

and it naturally lends itself to credit derivatives pricing applications that

enable cross-asset trading of credit risk. Our CEV approach comes along

with parsimonious pricing �exibility. In particular, the closed-form CEV

probability of default enables easy parameter calibration to implied risk-

neutral probabilities of default. Among other models, Albanese and Chen

(2004) also use the CEV model in the context of an EDS/CDS pricing study.

They focus on the numerical assessment of the ratio of EDS rates to CDS

rates rather than on CEV-based analytic pricing.

The rest of the work is organized as follows. Section 2 discusses the CEV

assumption. Section 3 provides the pricing results. After the Conclusions

(Section 4), an Appendix gathers the technical proofs.

3The CEV process has been �rst introduced to �nance by Cox (1975). Among others,

the CEV-based asset-pricing literature includes the works of Albanese, Campolieti, Carr,

and Lipton (2001), Beckers (1980), Boyle and Tian (1999), Cox and Ross (1976), Davydov

and Linetsky (2001), Emanuel and MacBeth (1982), Forde (2005), Goldenberg (1991),

Leung and Kwok (2005), Lo, Hui, Yuen (2000), Lo, Hui, and Yuen (2001), Lo, Tang, Ku,

and Hui (2004), Sbuelz (2004), and Schroder (1989).

3



2 The CEV assumption

The reference entity�s share has current price S and we assume that, under

the equivalent martingale measure Q, the share price process is a Constant-

Elasticity-of-Variance (CEV) di¤usion:

dS = (r � q)Sdt+ �S�dz;

where r is the constant riskfree rate, q is the constant dividend yield, � is a

constant scale factor for the instantaneous volatility, and dz is the increment

of a Wiener process under Q. The CEV process takes its name from the fact

that the elasticity of the instantaneous volatility �S��1 with respect to the

level of the process is constant and equal to �� 1:

S
@

@S
ln
�
�S��1

�
= �� 1:

In line with much empirical evidence, we assume

�� 1 < 0

so that an inverse relationship between volatility and share price arises.

3 Pricing the Benchmark EDS

Given the maturity T > 0 of the Benchmark EDS contract and a 1$ notional

amount, we want to calculate the no-arbitrage PV of the Benchmark EDS

4



protection payment,

EQ
�
exp (�r� 0) 1f�0�Tg � 50% j S

�
;

where � 0 is the �rst hitting time of the CEV process at the zero level, � 0 :=

inf fs : Ss = 0g. The object of interest is the truncated Laplace transform of

� 0�s p.d.f. with Laplace parameter � set at the riskfree rate level (� = r) and

its closed-form expression is stated in the following proposition4 (the proof

4See Davydov and Linetsky (2001) and Sbuelz (2004) for CEV-based non-truncated

Laplace transform results. In particular, Davidov and Linetsky (2001), see pp. 953 and

956, point out that the T -truncated Laplace transform of �0�s Q-p.d.f. with Laplace para-

meter � can be obtained by numerically inverting the closed-form non-truncated Laplace

transform
1

a
EQ0 [exp (� (�+ a) �0)] ;

where the inversion parameter is a > 0.
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is in the Appendix). This notation backs the proposition:

x = S2(1��);

A =
2 (r � q)
�2(1� �) ;

B =
�

2 (r � q) (1� �) ;

� =
1

2(1� �) ;

K =
�2(1� �)
2 (r � q)

�
1� e�2T (r�q)(1��)

�
;

H =
(r � q)S2(1��)

�2(1� �) [1� e�2(r�q)(1��)T ] :

Proposition 1 Under the CEV assumption, the truncated Laplace trans-

form of � 0�s p.d.f. with Laplace parameter � (� 0) admits this closed-form
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expression:

EQ
�
exp (��� 0) 1f�0�Tg j S

�
= lim

�#0

1X
n=0

an (A;B)
�x
2

�n �(� � n; x
2K
; x
2�
)

�(�)
;

�(�) =

Z +1

0

u��1e�udu; (Gamma Function)

�(� � n; x
2K
;
x

2�
) =

Z x
2�

x
2K

u�nu��1e�udu; (Generalized Incomplete Gamma Function)

an (A;B) = (�1)nC (B; n)An;

C (B; n) =

Qn
k=1 (B � (k � 1))

n!
1fn�1g + 1fn=0g:

If � � n =2 �N for each integer n � 0 (that is, for � =2 f1=2; 3=4; 5=6; : : :g),

then

EQ
�
exp (��� 0) 1f�0�Tg j S

�
=

1X
n=0

an (A;B)
�x
2

�n � �� � n; x
2K

�
� (�)

:

For � = 0, the well known Q-probability of a 100% drop within time T is
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recovered:

EQ
�
1f�0�Tg j S

�
=

�(�;H)

�(�)
;

where

�(�;H) =

Z +1

H

u��1e�udu: (Incomplete Gamma Function)

The Generalized Incomplete Gamma Function, the Incomplete Gamma

Function, and the Gamma function are built-in routines in many computing

software like MATLAB and Mathematica, which renders the above expres-

sions fully viable.

Proposition 2 prices the Benchmark EDS fee quoted per annum as a

fraction of the notional.

Proposition 2 Under the CEV assumption and given k fee payments equally

spaced within the year, the no-arbitrage fee of a Benchmarck EDS with ma-

turity T ( T 2 N
k
, k 2 N= f0g ) is

fCEV =
EQ

�
exp (�r� 0) 1f�0�Tg j S

�
� 50%PkT

j=1
1
k
exp (�rTj)

�
1� EQ

�
1f�0�Tjg j S

�� ;
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where the Tjs are the 1
k
-spaced fee payment dates (Tj 2 f1=k; 2=k; 3=k; : : : ; kT=kg)

and the quantities EQ
�
exp (�r� 0) 1f�0�Tg j S

�
and EQ

�
1f�0�Tg j S

�
are cal-

culated as in Proposition 1.

Proof. Under Q, the transaction must result into a zero Net PV. The

sum of the fee payment PVs (the accrual at � 0 of the last fee payment being

disregarded) must equal the PV of the Benchmark EDS protection payment.

For a numerical inspection of the Benchmark EDS fee formula, consider

semi-annual fee payments (k = 2) and �x r = 5% and q = 2%. The share

price volatility parameter is

� = S1�� � 35%;

so that the reference entity�s share price has an initial volatility of 35%. Set-

ting � in such a fashion also makes the fCEV fee independent from the current

share price. Table 1 exhibits the fCEV fees5 (in basis points) across di¤erent

maturities as well as across di¤erent intensities of the inverse relationship

between volatility and share price. As the elasticity � � 1 becomes more

negative, the CEV assumption is able to generate rich Benchmark EDS fees

even for short maturities.

5The �rst 20 series terms of the quantities in Proposition 1 are used.
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Table 1: The Benchmark EDS fee. The parameter values are k = 2, r = 5%, q = 2%, and

� = S1�� � 35%.

T = 1
2 T = 1 T = 2:5 T = 5 T = 7:5 T = 10

�� 1 = �0:75 000:0013 001:0819 042.6970 108:8289 132:1360 138:3188

�� 1 = �1:00 000:4694 018:6033 122.5820 179:8243 184:1596 177:7929

�� 1 = �1:50 033:4100 147:1834 269.7857 262:6213 234:7123 211:4019

�� 1 = �2:00 154:8685 313:5072 359.6726 296:7078 249:3659 217:1242

4 Conclusions

We employ a CEV equity market model to price in closed form the Bench-

mark EDS, a close equity-based counterpart of the CDS contract. This is

done by deriving and applying a new result in the CEV asset pricing liter-

ature. The CEV assumption comes equipped with the ability of parsimo-

niously calibrating alternative credit-risk market information. Credit-related

10



analytic pricing under the CEV assumption o¤ers a promising valuation out-

look for hybrid corporate securities and for other hybrid �nancial products.
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5 Appendix

The proof of Proposition 1 follows.

Proof. By Remark 2.1 and Corollary 3.1 in Delbaen and Shirakawa

(2002), � 0 has the same Q-law as the random variable

1

2 (r � q) (1� �) log
�

�2 (1� �)
�2 (1� �)� 2 (r � q)b� 0

�
1nb�0<�2(1��)

2(r�q)

o + (+1) 1nb�0��2(1��)
2(r�q)

o

=
B

�
log

�
1

1� Ab� 0
�
1fb�0< 1

Ag + (+1) 1fb�0� 1
Ag

where b� 0 := inf
n
s : X

(2(1��))
s = 0

o
is the �rst hitting time at zero of the

2 (1� �)-dimensional squared Bessel process,
n
X
(2(1��))
t

o
, starting at S2(1��).

Such a squared Bessel process has dynamics:

dX(2(1��)) = 2 (1� �) dt+ 2
���X(2(1��))��� 12 dz:

Since

�2 (1� �)
2 (r � q) >

�2 (1� �)
2 (r � q)

�
1� e�2(r�q)(1��)T

�
;

that is,

1

A
> K;

the equivalence in law justi�es the following statements:

EQ
�
e���01f�0�Tg j S

�
= EQ

�
e
�B log

�
1

1�Ab�0
�
1fb�0< 1

Ag1fb�0<Kg j S
�

= EQ
h
(1� Ab� 0)B 1fb�0<Kg j Si :
12



Goeing-Jaeschke and Yor (2003) - formula 28 - show that b� 0 has the following
law:

Q (b� 0 2 dt j S) = 1

t� (�)

� x
2t

��
e�

x
2tdt:

We can write

EQ
�
e���01f�0�Tg j S

�
=

Z K

0

(1� At)B 1

t� (�)

� x
2t

��
e�

x
2tdt:

We perform the following power series expansion:

(1� At)B =
1X
n=0

(�1)nC (B; n)Antn;

where Cn(B) is the n-th generalized binomial coe¢ cient:

C (B; n) =

Qn
k=1 (B � (k � 1))

n!
1fn�1g + 1fn=0g:

We focus on t greater or equal of an arbitrarily small but strictly positive �.

The series

1

� (�)

�x
2

��
t�1��

1X
n=0

(�1)nCn (B)Antn

has a convergence radius of 1
A
. Since

1X
n=0

(�1)nCn (B)Antn
1

t� (�)

� x
2t

��
e�

x
2t � 1

� (�)

�x
2

��
t�1��

1X
n=0

(�1)nCn (B)Antn;

the left-hand-side series uniformly converges in t 2 [�;K]. Thus, we have

EQ
�
e���01f�0�Tg j S

�
= lim

�#0

Z K

�

1X
n=0

(�1)nCn (B)Antn
1

t� (�)

� x
2t

��
e�

x
2tdt

= lim
�#0

1X
n=0

(�1)nCn (B)An
�x
2

�n Z x
2�

x
2K

1

� (�)
u(��n)�1e�udu

= lim
�#0

1X
n=0

(�1)nCn (B)An
�x
2

�n � �� � n; x
2K
; x
2�

�
� (�)

:
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If � � n =2 �N for each integer n � 0, the properties of the Incomplete

Gamma Function imply that

EQ
�
e���01f�0�Tg j S

�
=

1X
n=0

(�1)nCn (B)An
�x
2

�n � �� � n; x
2K

�
� (�)

:

The above condition on the parameter � translates into � =2 f1=2; 3=4; 5=6; : : :g.

If � = 0, then B = 0 and we can easily recover the well known Q-probability

of absorbtion at zero of the CEV model. Indeed, by setting u = x
2t
, we have

EQ
�
1f�0�Tg j S

�
=

Z +1

H

u��1e�u

�(�)
du;

where

H =
(r � q)S2(1��)

�2(1� �) [1� e�2(r�q)(1��)T ] :
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