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The Half-Half plot∗

John H.J. Einmahl Maria Gantner

October 1, 2009

Abstract: The Half-Half (HH) plot is a new graphical method to investigate qualita-

tively the shape of a regression curve. The empirical HH-plot counts observations in the

lower and upper quarter of a strip that moves horizontally over the scatter plot. The plot

displays jumps clearly and reveals further features of the regression curve. We prove a

functional central limit theorem for the empirical HH-plot, with rate of convergence 1/
√
n.

In a simulation study the good performance of the plot is demonstrated. The method is

also applied to two case studies.

JEL codes: C13, C14.

Key words: Data analysis, functional central limit theorem, graphical methods, jump

detection, nonparametric regression.

1 Introduction

Assume the pairs (X, Y ), (X1, Y1), . . . , (Xn, Yn), n ∈ N, are independent and identically

distributed (iid) with bivariate distribution function (df) F . From the regression perspec-

tive we can define ε = Y − m(X) where m, the nonparametric regression function, is a

location functional (like the median, mean or mode) applied to the conditional distribution

of Y |X = x. Equivalently, this can be written in the ‘standard form’:

Y = m(X) + ε.

∗John Einmahl (E-mail: j.h.j.einmahl@uvt.nl) is Professor of Statistics and Maria Gantner (E-mail:
m.gantner@uvt.nl) is Ph.D. Candidate of Statistics, Department of Econometrics & OR and CentER,
Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands.
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A first step in data analysis is exploratory diagnostics. Using a good graphical rep-

resentation of the data sheds light on their main features. The standard procedure for

depicting m is kernel estimation, which produces a smooth regression function. When

there are sudden changes in m, such as jumps, those are forced into the smoothed picture

and therefore ignored. More refined procedures that allow for and detect jumps of m have

been introduced and will be discussed later.

In this paper, we present a novel, nonparametric method for explaining regression

curves. Its computation is very simple: for small sample sizes, it could even be done by

hand. This method displays important features of a regression curve, such as jumps and

in- or decreases. If it is a goal to search for jumps, then an ad hoc estimator (introduced

in Section 3.2) can be used to find their locations. These procedures impose no particular

model on the data; also the regression function m need not be estimated.

Let F be absolutely continuous with density f . Denote the corresponding probability

measure with P . Write F1, F2 for the marginals of F and Q1, Q2 for their (left-continuous)

inverse or quantile functions. The empirical counterparts of these functions are denoted

with a subscript n, in particular Fn denotes the empirical df of the (Xi, Yi), i = 1, . . . , n,

i.e.

Fn(x, y) = 1
n

n∑
i=1

1(−∞,x]×(−∞,y](Xi, Yi), (x, y) ∈ −∞ < x, y ≤ ∞.

Fix α ∈ (0, 1
2
). For x ∈ (Q1(α), Q1(1− α)) define the vertical α-strip centered at x by

Sα(x) := {(u, v) ∈ R2 : Q1(F1(x)− α) ≤ u ≤ Q1(F1(x) + α)}.

Consider the univariate distribution function on this strip

Gx,α(y) := 1
2α

[F (Q1(F1(x) + α), y)− F (Q1(F1(x)− α), y)] , y ∈ R.

The corresponding quantile function is denoted by Qx,α. For convenience, we write in the

sequel x− = Q1(F1(x)− α) and x+ = Q1(F1(x) + α).

Definition 1 Let the coverage α ∈ (0, 1
2
) be fixed. The Half-Half (HH) value for x ∈

(Q1(α), Q1(1− α)) is defined by

Hα(x) = F
(
x,Qx,α

(
1
4

))
− F

(
x−, Qx,α

(
1
4

))
−
(
F
(
x+, Qx,α

(
3
4

))
− F

(
x,Qx,α

(
3
4

)))
+ 1

2
α.

2



The HH-value is obtained by first vertically dividing the strip Sα(x) into two halves of equal

mass: the middle half and the outer half (lower and upper quarter). Then the mass of the

lower quarter (i.e. below Qx,α(1
4
)) that is in the left half of the strip (i.e. in (x−, x]×R) is

added to the mass of the upper quarter that is in the right half of the strip. To standardize

the statistic, 1
2
α is subtracted; this is the sum of these masses corresponding to X and Y

being independent. Hence, in that case Hα ≡ 0. In general, Hα ∈ [−1
2
α, 1

2
α]. Note that

Hα(x) = F
(
x,Qx,α

(
1
4

))
− F

(
x−, Qx,α

(
1
4

))
+ F

(
x,Qx,α

(
3
4

))
− F

(
x−, Qx,α

(
3
4

))
− α.

Definition 2 Let α ∈ (0, 1
2
). The Half-Half (HH) plot is the graph of the function

x 7→ Hα(x), x ∈ (Q1(α), Q1(1− α)) .

Define for x ∈ (Qn,1(α), Qn,1(1− α)) the empirical counterpart of Gx,α by

Gn,x,α(y) = 1
2α

[
Fn(Qn,1(Fn,1(x) + α), y)− Fn(Qn,1(Fn,1(x)− dnαe

n
), y)

]
, y ∈ R,

where d·e denotes the ceiling function. Write X[1] ≤ X[2] ≤ · · · ≤ X[n] for the order

statistics of the Xi, i = 1, . . . , n. It is easily seen that

Gn,x,α(y) = 1
2α

[
Fn(X[i+dnαe], y)− Fn(X[i−dnαe], y)

]
,

where i is such that X[i] ≤ x < X[i+1]. Denote the quantile function of Gn,x,α with Qn,x,α.

The HH-statistic is for x ∈ (Qn,1(α), Qn,1(1− α)) defined to be the empirical version of

the HH-value:

Hn,α(x) = Fn
(
x,Qn,x,α

(
1
4

))
− Fn

(
Qn,1

(
Fn,1(x)− dnαe

n

)
, Qn,x,α

(
1
4

))
+ Fn

(
x,Qn,x,α

(
3
4

))
− Fn

(
Qn,1

(
Fn,1(x)− dnαe

n

)
, Qn,x,α

(
3
4

))
− α

= Fn
(
X[i], Qn,x,α

(
1
4

))
− Fn

(
X[i−dnαe], Qn,x,α

(
1
4

))
+ Fn

(
X[i], Qn,x,α

(
3
4

))
− Fn

(
X[i−dnαe], Qn,x,α

(
3
4

))
− α.

The empirical HH-plot is defined to be the graph of the function

x 7→ Hn,α(x), x ∈ (Qn,1(α), Qn,1(1− α)) .

Jumps of m are depicted in the HH-plot by a high positive (jump up) or negative (jump

down) value. In the first example, we consider m1(x) = 1[0.5,∞)(x), with X uniformly
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Figure 1: Theoretical (a) and empirical (c) HH-plot with α = 0.1 (grey line) and α = 0.2 (black
line) of a sample of size n = 500 (b) of m1 with ε standard normal and X ∼ UN(0, 1).
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Figure 2: Theoretical (a) and empirical (c) HH-plot with α = 0.1 (grey line) and α = 0.2 (black
line) of a sample of size n = 500 (b) of m2 with ε standard normal and X ∼ UN(0, 1).

distributed on (0, 1) and ε standard normal and independent of X, see Figure 1. The

jump is clearly indicated by the large HH-value and -statistic at x = 0.5. Additionally,

the HH-plot reveals that the regression curve is constant before and after the jump, which

is indicated by values of Hα(x) and Hn,α(x) close to 0.

Another important feature of the HH-plot can be observed in Figure 2. Let X and ε be

as above, but m2(x) = x−1[0.5,∞)(x). The jump down is indicated by large negative values

of Hα(0.5) and Hn,α(0.5), whereas the positive values indicate that m2 is increasing. Hence

the HH-plot can be used for detecting jumps as well as continuous increases or decreases

of the regression curve.

It is advised to calculate the HH-plot for two values of α. Changes in the regression are

typically easier detected by using larger α-strips. But because the empirical HH-statistic

is only defined for x ∈ (Qn,1(α), Qn,1(1 − α)), a larger α reduces the range. A natural

4



maximum here seems to be α = 0.25. Hence, in order to get an impression of how the

regression curve behaves in the beginning and the end, additionally a HH-plot with a small

α should be depicted. A rule of thumb is that for n ≥ 200 the larger α should be taken

0.2, and the smaller α can be chosen such that nα ≥ 25; for n < 200 we advise to draw

the HH-plot for only one α, for instance 0.2.

There exists a large body of literature on the specific topic of estimating jump points

in nonparametric regression. A good overview can, for example, be found in Gijbels et

al. (2007). The most common approach is to compare left- and right-sided estimators

of the regression function at point x. These estimators are attained by kernel methods

[amongst others, Müller (1992), Hall and Titterington (1992), and Wu and Chu (1993)] or

local polynomial regression [amongst others, McDonald and Owen (1986), Loader (1996),

Horváth and Kokoszka (2002), Grégoire and Hamrouni (2002), and Gijbels et al. (2007)].

Some papers propose a two-step procedure, where in a first step the location of jump

is estimated and in a second step the curve is fitted [cf. Gijbels et al. (1999), Sánchez-

Borrego et al. (2006)]. Wavelet methods are, amongst others, employed in Wang (1995),

Antonidiadis and Gijbels (2002) and Park and Kim (2006). In Kim and Marron (2006),

another graphical method, the SiZer for jump detection, is introduced. The SiZer is a

kernel-based approach which combines multiple bandwidths in one plot. Its main goal is

to get a first, general overview of the regression curve.

In the papers mentioned above, the specific assumptions on the regression curve and

the errors play an important role. In contrast, we have no direct assumptions on m or ε.

In Dempfle and Stute (2002) an approach based on U-statistics is used. As in the present

paper, this approach requires minimal assumptions on the model and avoids smoothing

for estimating the location of the jump.

The paper is organized as follows. The asymptotic behavior of the HH-statistic is

expounded in Section 2, where it is shown that the rate of convergence of the empirical

HH-statistic to the theoretical one is 1/
√
n, uniformly in x. The limiting process of the

HH-value is also used to facilitate the depiction of jumps. In Section 3 three simulation

studies are presented and an ad hoc estimator for a jump location is introduced in Section

3.2. Two real data applications can be found in Section 4. The paper is completed by a

section containing the proof of the result of Section 2.

5



2 Asymptotic results

Define for n ∈ N the empirical process indexed by points as

Un(x, y) := n
1
2

{
Fn(x, y)− F (x, y)

}
, −∞ < x, y ≤ ∞.

Furthermore, let BF be a bounded, mean zero Gaussian process on (−∞,∞]2 that is

uniformly continuous and has covariance function F (x1 ∧ x2, y1 ∧ y2)−F (x1, y1)F (x2, y2),

(x1, y1), (x2, y2) ∈ (−∞,∞]2. Then, by the functional central limit theorem for Un and the

Skorohod representation theorem, there exist B̃F
d
= BF and a sequence Ũn

d
= Un, n ∈ N,

such that

sup
−∞<x,y≤∞

∣∣Ũn(x, y)− B̃F (x, y)
∣∣→ 0 a.s. as n→∞.(1)

Henceforth we will use (1), but drop the tildes from the notation.

We will use the following assumptions:

(A) Let S := {(x, y) ∈ R2 : f(x, y) > 0} = (x∗, x
∗) × R for some −∞ ≤ x∗ < x∗ ≤ ∞

and F be of class C2 on S and f2 be bounded.

Hence, the function Gx,α(·) is increasing and continuous on (Q1(α), Q1(1− α)); also we can

write F ′x(x, y) := ∂
∂x
F (x, y) =

∫ y
−∞ f(x, v)dv and F ′y(x, y) := ∂

∂y
F (x, y) =

∫ x
−∞ f(u, y)du.

For the second assumption we first introduce some more notation: Let F̃ (u, y) :=

F (Q1(u), y) denote the in the first coordinate uniformized distribution function, and write

F̃ ′x(u, y) := ∂
∂u
F̃ (u, y) = F ′

x(Q1(u),y)
f1(Q1(u))

and F̃ ′y(u, y) := ∂
∂y
F̃ (u, y) = F ′y(Q1(u), y).

(B) F̃ ′x and F̃ ′y are uniformly continuous on (0, 1)× R.

Let α ∈ (0, 1
2
) and define In := (Q1(α), Q1(1− α)) ∩ (Qn,1(α), Qn,1(1− α)) and I0 :=

(Q1(α), Q1(1− α)). Denote the HH-process with

Vn,α(x) := n
1
2

(
Hn,α(x)−Hα(x)

)
, x ∈ In,
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and for s ∈ {1
4
, 3

4
} define

Bα,s(x) = BF

(
x,Qx,α(s)

)
− BF

(
x−, Qx,α(s)

)
−
F ′x
(
x−, Qx,α(s)

)
f1

(
x−
) [

BF

(
x,∞) − BF

(
x−,∞)

]
(2)

+
F ′y
(
x−, Qx,α(s)

)
− F ′y

(
x,Qx,α(s)

)
F ′y
(
x+, Qx,α(s)

)
− F ′y

(
x−, Qx,α(s)

){BF

(
x+, Qx,α(s)

)
−BF

(
x−, Qx,α(s)

)
+
F ′x
(
x+, Qx,α(s)

)
f1

(
x+
) [

BF (x,∞) − BF

(
x+,∞

)]
−
F ′x
(
x−, Qx,α(s)

)
f1

(
x−
) [

BF (x,∞) − BF

(
x−,∞

)]}
, x ∈ I0.

Theorem 1 Under the assumptions (A) and (B), we have for all α ∈ (0, 1
2
), on the

probability space of (1),

sup
x∈In

∣∣Vn,α(x)−
(
Bα,1/4(x) +Bα,3/4(x)

)∣∣→ 0 a.s. as n→∞.

Remark 1 For X and Y independent (m is constant), the distribution of the limiting

process from Theorem 1 for fixed x ∈ I0 simplifies to a N(0, 1
4
α)-distribution.

Proof of Remark 1 In this case the limiting process specializes to

Bα,1/4(x) +Bα,3/4(x) = 1
2

{[
BF (x,Q2

(
1
4

)
)−BF (x−, Q2

(
1
4

)
)
]

−
[
BF (x+, Q2

(
1
4

)
)−BF (x,Q2

(
1
4

)
)
]

+
[
BF (x,Q2

(
3
4

)
)−BF (x−, Q2

(
3
4

)
)
]

−
[
BF (x+, Q2

(
3
4

)
)−BF (x,Q2

(
3
4

)
)
]
−
[
BF (x,∞)−BF (x−,∞)

]
+
[
BF (x+,∞)−BF (x,∞)

]}
.

Taking the sets As := (x−, x]× (−∞, Q2(s)], Bs := (x, x+]× (−∞, Q2(s)], Cs := (x−, x]×
(Q2(s),∞) and Ds := (x, x+] × (Q2(s),∞), as depicted in Figure 3, as well as E− :=

(x−, x]× R and E+ := (x, x+]× R, into account, we have P (As) = P (Bs) = sα, P (Cs) =

P (Ds) = (1− s)α, P (E−) = P (E+) = α.

Extending the definition of BF to semi-infinite rectangles in the usual way, we get

Bα,1/4(x) +Bα,3/4(x)(3)

= 1
2

{
BF (A1/4)−BF (B1/4) +BF (A3/4)−BF (B3/4)−BF (E−) +BF (E+)

}
= 1

2

{
BF (A1/4)−BF (B1/4)−BF (C3/4) +BF (D3/4)

}
.

7



Qx,α(s)

x− x+x

As Bs

Cs Ds

Figure 3: Regions taken into account for the calculation of the limiting process at x, where
s ∈ {1

4 ,
3
4}.

Let WF be the Wiener process defined on semi-infinite rectangles R by WF (R) = BF (R)+

P (R)Z, where Z ∼ N(0, 1) and BF are independent. Then the right-hand side of (3) can

be rewritten as

1
2

{
WF (A1/4)−WF (B1/4)−WF (C3/4) +WF (D3/4)

}
,(4)

which is easily seen to be N(0, 1
4
α)-distributed. �

3 Simulation study

For an easier interpretation of the HH-plot, we add a horizontal band to the picture. If the

empirical HH-plot escapes the band, this indicates jumps or steep in- or decreases of the

regression curve. In addition, this band gives a standard to assess the relative magnitude

of the HH-statistic. The band is obtained by calculating high quantiles of

α 0.05 0.1 0.15 0.2 0.25

qα(0.9) 0.40 0.53 0.61 0.67 0.72

qα(0.95) 0.42 0.56 0.66 0.73 0.79

qα(0.99) 0.47 0.64 0.75 0.84 0.91

Table 1: The 0.90, 0.95 and 0.99 quantiles of the random variable in (5), for α ∈
{0.05, 0.1, 0.15, 0.2, 0.25}.

8



sup
x∈I0

∣∣Bα,1/4(x) +Bα,3/4(x)
∣∣ ,(5)

in case X and Y are independent; (4) is useful for this calculation. These quantiles are

denoted qα (see Table 1) and have to be divided by
√
n and −

√
n, respectively, in order

to obtain the upper and lower boundary of the band.

3.1 X and Y independent

First, we consider the case of X,Y being independent, with sample sizes of n = 250 and 500

for coverage levels α = 0.1 and 0.2. For each n, 10,000 samples are taken. Table 2 provides

the fraction of exceedances of qα(0.95)/
√
n by max{|Hn,α(x)| : Qn,1(α) < x < Qn,1(1−α)}.

We see that these numbers are close to, but somewhat lower than, 1− 0.95 = 0.05. This

might be due to the fact that for fixed x, the effective sample size (i.e. the number of

observations in the lower and upper quarter of the strip) is nα, which can be as small

as 25. Indeed, for n = 500 and α = 0.2, we see that the asymptotic quantiles are quite

accurate.

max(|Hn,α(x)|) ≥
qα(0.95)/

√
n

n α = 0.1 α = 0.2

250 0.025 0.032

500 0.037 0.044

Table 2: Simulated Type I error probabilities for X and Y independent.

3.2 Regression functions m1 and m2 of Section 1

Next, we consider m1 and m2 as in Section 1. We simulate from the models presented

there, and additionally take the parameters σ = 0.1 and σ = 0.5 for the normal distribution

of the errors into account. Sample sizes and numbers of replications are taken as above.

As before, the upwards (m1) and downwards (m2) fraction of exceedances of qα/
√
n and

−qα/
√
n, respectively, is measured. In addition, the fraction of how often there is indeed

a jump up of m1 detected at x = 0.5, thus how often the empirical HH-plot at x = 0.5

exceeds qα(0.95)/
√
n, is reported. Similarly, this fraction is also given for the jump down

of m2.

9



m1 max(Hn,α(x)) ≥ Hn,α(0.5) ≥
qα(0.95)/

√
n qα(0.95)/

√
n sd(θ̂)

σ n α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2

0.1 250 1 1 1 1 0.007 0.007

500 1 1 1 1 0.003 0.003

0.5 250 0.993 1 0.979 1 0.011 0.011

500 1 1 1 1 0.006 0.006

1 250 0.412 0.957 0.243 0.858 0.069 0.038

500 0.902 1 0.766 0.998 0.027 0.020

Table 3: Simulation study as described in Section 3.2 for the regression function m1.

m2 min(Hn,α(x)) ≤ Hn,α(0.5) ≤
−qα(0.95)/

√
n −qα(0.95)/

√
n sd(θ̂)

σ n α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2

0.1 250 1 1 1 1 0.005 0.004

500 1 1 1 1 0.002 0.002

0.5 250 0.965 1 0.931 1 0.012 0.012

500 1 1 1 1 0.006 0.006

1 250 0.289 0.737 0.159 0.569 0.070 0.038

500 0.777 0.985 0.616 0.958 0.026 0.020

Table 4: Simulation study as described in Section 3.2 for the regression function m2.

The exceedance rates close to 100% in Tables 3 and 4 show that the HH-plot is a very

good tool to detect jumps. Only at σ = 1, when the picture is very blurry, the effective

sample size of nα = 25 (n = 250, α = 0.1) is too small and the HH-plot has less power.

Last, an ad hoc estimator θ̂ of the jump location is given, by taking in every simulation

the mean of argmax{Hn,α(x) : x ∈ (Qn,1(α), Qn,1(1−α))} (and, for m2, similarly the mean

of the argmin). Due to symmetry, this estimator is unbiased. The standard deviations,

presented in the last two columns of Tables 3 and 4, show that this approach of averaging

the locations of the extrema leads to a good estimator of the jump location.
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3.3 Regression function as in Gijbels et al. (1999)

The final simulation is an example from Gijbels et al. (1999), with regression function

m3(x) =


exp{−2(x− 0.35)} − 1 if x ∈ [0, 0.35)

exp{−2(x− 0.35)} if x ∈ [0.35, 0.65)

exp{2(x− 0.65)}+ exp{−0.6} − 2 if x ∈ [0.65, 1].

(6)

It is depicted in Figure 4(a); a scatter plot with X ∼ UN(0, 1), ε standard normal and

independent of X, and n = 250 is given in Figure 4(b).
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Figure 4: Panel (a) shows m3 as given in (6) and panel (b) one simulation of m3 with ε standard
normal, X ∼ UN(0, 1) and n = 250.

In Figure 5, the theoretical HH-plots for m3 with X ∼ UN(0, 1) and ε ∼ N(0, σ2),

σ ∈ {0.1, 0.5, 1}, for both α = 0.1 and α = 0.2, are given. The features of the HH-plot are

nicely shown in Figure 5(a). The possible range of H0.1 is [−0.05, 0.05], and that of H0.2 is

[−0.10, 0.10], and in both cases it is fully utilized. The negative slope of the first part of

m3 is depicted in the negative, almost horizontal line of the HH-plot for α = 0.1 and the

negative values of H0.2. The latter one starts at x = 0.2 and hence already takes the jump

upwards into account (2α = 0.4 > 0.35), which is depicted by the increasing HH-values.

For α = 0.1, this increase starts at x = 0.35 − α = 0.25. The jump point at x = 0.35

is for both coverage levels α depicted by a distinct local maximum. The regression curve

after this jump is again decreasing, hence the HH-values become negative, even before

x− > 0.35. For x ∈ (0.45, 0.55), the plot of H0.1 only depicts the negative slope, and

hence almost reaches its minimal possible value. The jump at x = 0.65 is then difficult to

see from the HH-plot, because the HH-values for both α = 0.1 and α = 0.2 only change

slightly in a region left of the jump point. The last part of m3 has a positive slope, hence

the HH-values become positive again.
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Figure 5: The theoretical HH-plot for m3 is shown for various standard deviations ((a) σ = 0.1,
(b) σ = 0.5 and (c) σ = 1) of the normal error, for α = 0.1 (grey line) and α = 0.2 (black line).

Figures 5(b) and (c) bear similar features as (a). The jumps are indicated by the

extrema of the HH-plot, the steep in- and decreases by positive/negative HH-values. But

in contrast to panel (a), the jumps down of the regression curve are depicted by distinct

minima of the HH-plot. Also observe that the range of the HH-values is getting smaller

when σ increases.

In Table 5, the outcomes of the simulations are presented, with columns as described

for m1 and m2. The standard deviations of θ̂ are moved to Table 6. The outcomes of the

simulations presented in Table 5 are very similar to the outcomes of the simulations for

m1 and m2; in general the HH-plot depicts the main features of the regression curve very

well, but again the combination of a smaller nα with a larger σ results in a lower power.

m3 max(Hn,α(x)) ≥ Hn,α(0.35) ≥ min(Hn,α(x)) ≤ Hn,α(0.65) ≤
qα(0.95)/

√
n qα(0.95)/

√
n −qα(0.95)/

√
n −qα(0.95)/

√
n

σ n α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2

0.1 250 1 1 1 1 1 1 1 1

500 1 1 1 1 1 1 1 1

0.5 250 0.911 0.978 0.821 0.949 0.991 1 0.960 1

500 1 1 0.999 1 1 1 1 1

1 250 0.210 0.378 0.091 0.228 0.389 0.911 0.198 0.726

500 0.658 0.794 0.444 0.658 0.882 0.999 0.695 0.989

Table 5: Simulation study as described in Section 3.3 for the regression function m3.
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In Table 6 the biases and standard deviations of the extrema of the HH-statistic are

presented. [Here we have restricted argmaxHn,α in the definition of θ̂max to (Qn,1(α), 1
2
]

(and similarly argminHn,α to [1
2
, Qn,1(1− α)) ) in order not to confuse the steep increase

for large x with the jump at x = 0.35.] The estimator of the jump up (at x = 0.35) is

indicated as θ̂max, that of the jump down (at x = 0.65) with θ̂min. For comparison with

Gijbels et al. (1999), we also include n = 100. As expected from the above discussion of

Figure 5, θ̂min has a negative bias and a larger standard deviation. It is remarkable, but

explainable through Figure 5, that θ̂min is performing better in the more ‘difficult’ setup

of σ = 0.5 than in that of σ = 0.1.

Although estimation is not our main goal, our estimator compares well with Gijbels

et al. (1999). We liken our best results to the best results of Gijbels et al. (1999). The

estimators for the jump locations there will be denoted in the following with θ̂Gmax for the

first jump at x = 0.35, and θ̂Gmin for the second jump at x = 0.65. The absolute values

of the biases of our θ̂max are always smaller or equal than those of θ̂Gmax; the standard

deviations are similar. For the jump down at x = 0.65, σ plays a role. For σ = 0.1,

the absolute values of the biases and the standard deviations of θ̂min are both greater or

equal than those of θ̂Gmin. But with σ increased, θ̂min has similar biases and even smaller

standard deviations than θ̂Gmin. To conclude, our ad hoc estimator is a competing method

to detect jump locations, especially recommended when the picture is blurry.

m3 bias(θ̂max) sd(θ̂max) bias(θ̂min) sd(θ̂min)

σ n α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2

100 0.0004 0.0003 0.009 0.008 −0.042 −0.049 0.025 0.020

0.1 250 0.0000 0.0001 0.004 0.003 −0.019 −0.043 0.022 0.020

500 0.0000 0.0000 0.002 0.001 −0.006 −0.034 0.011 0.022

100 0.0019 0.0060 0.025 0.026 −0.012 −0.022 0.028 0.029

0.5 250 0.0007 0.0027 0.011 0.012 −0.005 −0.015 0.013 0.020

500 0.0002 0.0016 0.006 0.007 −0.003 −0.009 0.007 0.014

100 −0.0043 0.0067 0.059 0.049 −0.012 −0.029 0.054 0.045

1 250 0.0019 0.0071 0.030 0.031 −0.012 −0.027 0.033 0.034

500 0.0011 0.0047 0.017 0.019 −0.009 −0.024 0.021 0.029

Table 6: Simulation study as described in Section 3.3 for the regression function m3.
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4 Real data applications

The real data examples in this section are based on a fixed, equidistant design, rather than

a random regressor X. In this case we observe

Yn,i = m
(

i
n+1

)
+ εn,i, with independent and centered εn,i ∼ Fn,i , i = 1, . . . , n.

If all the Fn,i, i = 1, . . . , n, are equal and sufficiently smooth, then the limiting process

is as in Remark 1 and (5), therefore Table 1 remains applicable, for n large enough. In

the finite sample case, the only minor difference between fixed and random design is the

domain of Vn,α, which is I0 in the above fixed design setting.

4.1 Nile data

The Nile data, reported in Cobb (1978), are a popular dataset first used in the context of

nonparametric change-point estimation in Carlstein (1988). Figure 6, left panel, shows the

annual volume of discharge (1010m3) from the Nile River for each year from 1871 through

1970. In Cobb (1978) it is assumed that the observations are independent, and parametric

methods are used to find a change-point in 1897. Meteorological studies confirm this

change. According to Kraus (1955), the rainfall decreased in most regions abruptly at the
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Figure 6: Annual volume discharge of the Nile; (a) scatter plot, (b) HH-plot for α = 0.2.
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end of the 19th century, which was due to a narrowing of the rainfall belt and a shortening

of the wet seasons.

The HH-plot with α = 0.2 displays this change clearly. Because of the small sample size,

we calculate the horizontal band directly from a simulation for equal Fn,i, i = 1, . . . , n; n =

100, cf. the beginning of Section 3. This gives a value of ±0.07 for the boundary of the

band. Because the HH-statistics are below the band in 1895–1897, we can conclude that

there is an abrupt change of the regression curve which is located, according to the ad

hoc method, at 1896. In the second half of the period under consideration, the regression

curve seems to be slightly increasing. Here, the HH-plot performs well for a sample of

relatively small size.

4.2 Prague temperatures

As a second application, we consider the average annual temperatures in Prague from 1775

through 1989. In previous analyses it is found that the number of jump points is two or

three, see Table 7. (Note that in Antonidiadis and Gijbels (2002) the data are studied only

up to 1902.) From the HH-plot, the change-point recurring in the literature at around

1835 is easily detected. The plot, see Figure 7(b), is for the years in 1823–1835 below
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Figure 7: Average annual temperatures in Prague from 1775 to 1989; (a) scatter plot, (b)
HH-plot for α = 0.2.
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methods years of jump

Horváth, Kokoszka and Steinebach (1999) 1835 1893 1927

Antonidiadis and Gijbels (2002) 1787 1837 –

Gijbels and Goderniaux (2004) 1786.5 1836.5 1942.5

HH-plot 1830 1932

Table 7: Jump points in the literature.

−q0.2(0.95)/
√
n and in 1911, 1914, 1928–1929 and 1932–1933 above q0.2(0.95)/

√
n. Hence

there is a drastic change between 1823 and 1835; according to the spikes we might locate

it at 1830. After this jump down follows a strong increase of the regression curve with a

possible jump up between 1911 and 1933. Using the ad hoc estimator, we can locate such

a jump in the year 1932. This change is in accordance with changes found in the literature

(1927 and 1942.5). The early jump found in the literature (at 1787) is difficult to assess

since there are only 12 observations before 1787; this year is outside the domain of the

HH-plot.

5 Proofs

Because α is fixed, it is henceforth dropped from the notation as a subscript. Set F̃n(u, y) :=

Fn(Q1(u), y), F̃n,1 := F̃n(u,∞), and denote its generalized inverse by F̃−1
n,1 . The corre-

sponding standard Brownian bridge is B1(u) := BF (Q1(u),∞). Because the marginals of

F̃ (u, y), the identity and F2, are uniformly continuous, F̃ itself is also uniformly continuous

on (0, 1)× R, and for all (u, y) ∈ (0, 1)× R, since F̃ (u,∞) = u,

F̃ ′x(u, y) ≤ 1.(7)

5.1 Lemmas

The proof of Theorem 1 is based on three lemmas.

Lemma 1 Let Sn(u, y) := n
1
2

(
F̃
(
F̃−1
n,1(u), y

)
− F̃ (u, y)

)
, with 0 < u < 1, y ∈ R, n ∈ N.

With assumptions (A) and (B), on the probability space of (1),

sup
0<u<1

sup
y∈R

∣∣∣Sn(u, y) + F̃ ′x(u, y)B1(u)
∣∣∣→ 0 a.s. as n→∞.(8)
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Proof With the mean-value theorem with u∗ between u and F̃−1
n,1(u), we can write

Sn(u, y) = n
1
2

(
F̃−1
n,1(u)− u

)
F̃ ′x(u

∗, y), and hence the left-hand side of (8) is bounded

from above by

sup
0<u<1

∣∣∣n 1
2

(
F̃−1
n,1(u)− u

)
+B1(u)

∣∣∣ sup
0<u<1

sup
y∈R

F̃ ′x(u
∗, y)

+ sup
0<u<1

|B1(u)| sup
0<u<1

sup
y∈R

∣∣∣F̃ ′x(u, y)− F̃ ′x(u∗, y)
∣∣∣ .(9)

From (1) we get that

lim
n→∞

sup
0<u<1

∣∣∣n 1
2

(
F̃n,1 (u)− u

)
−B1 (u)

∣∣∣ = 0 a.s.,

from which it follows with the Vervaat (1972) lemma that

lim
n→∞

sup
0<u<1

∣∣∣n 1
2

(
F̃−1
n,1(u)− u

)
+B1 (u)

∣∣∣ = 0 a.s.(10)

Hence, with (10) and (7), the first term of (9) is equal to 0 as n → ∞. With (10) and

assumption (B), the second factor of the second term of (9) is going to 0 as n→∞, and

because of the boundedness of B1, we obtain (8). �

Let α ∈ (0, 1
2
). For x ∈ I0 and y ∈ R, write

Lx(y) := 1
2α

{
BF

(
Q1(F1(x) + α), y

)
−BF

(
Q1(F1(x)− α), y

)
+ F̃ ′x

(
F1(x) + α, y

)
[BF (x,∞) − BF (Q1 (F1(x) + α) ,∞)]

− F̃ ′x (F1(x)− α, y) [BF (x,∞) − BF (Q1 (F1(x)− α) ,∞)]

}
.

Note that

sup
(x,y)∈I0×R

|Lx(y)| <∞,(11)

and that the functions {Lx : x ∈ I0} are uniformly equicontinuous.

Lemma 2 Let α ∈ (0, 1
2
). Under the assumptions (A) and (B), on the probability space

of (1),

lim
n→∞

sup
(x,y)∈In×R

∣∣∣∣n1
2
[
Gn,x(y)−Gx(y)

]
− Lx(y)

∣∣∣∣ = 0 a.s.
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Proof First, rewrite 2αn
1
2 [Gn,x(y)−Gx(y)] in the following way:

n
1
2

[
F̃n

(
F̃−1
n,1 (Fn,1(x) + α) , y

)
− F̃ (F1(x) + α, y)(12)

− F̃n

(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, y
)

+ F̃ (F1(x)− α, y)

]
(12a) = n

1
2

[
F̃n

(
F̃−1
n,1 (Fn,1(x) + α) , y

)
− F̃

(
F̃−1
n,1 (Fn,1(x) + α) , y

)]
(12b) + n

1
2

[
F̃
(
F̃−1
n,1 (Fn,1(x) + α) , y

)
− F̃ (Fn,1(x) + α, y)

]
(12c) + n

1
2

[
F̃ (Fn,1(x) + α, y)− F̃ (F1(x) + α, y)

]
(12d) − n

1
2

[
F̃n

(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, y
)
− F̃

(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, y
)]

(12e) − n
1
2

[
F̃
(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, y
)
− F̃

(
Fn,1(x)− dnαe

n
, y
)]

(12f) − n
1
2

[
F̃
(
Fn,1(x)− dnαe

n
, y
)
− F̃ (F1(x)− α, y)

]
.

From (1)

lim
n→∞

sup
(x,y)∈In×R

∣∣∣∣n 1
2

[
F̃n

(
F̃−1
n,1 (Fn,1(x) + α) , y

)
− F̃

(
F̃−1
n,1 (Fn,1(x) + α) , y

)]
−BF (Qn,1 (Fn,1(x) + α) , y)

∣∣∣∣ = 0 a.s.

Because of the uniform continuity of F̃ , with (10), (12a) converges almost surely for

n → ∞, uniformly in x ∈ In and y ∈ R, to BF (Q1 (F1(x) + α) , y). Similarly, the

expression in (12d) converges almost surely for n → ∞, uniformly in x ∈ In and y ∈ R,

to −BF (Q1 (F1(x)− α) , y).

From Lemma 1, assumption (B), and the uniform continuity of B1, we

have that the expression in (12b) converges uniformly on In × R, as n → ∞, to

−F̃ ′x (F1(x) + α, y) B1 (F1(x) + α) almost surely; similarly the expression in (12e) con-

verges to F̃ ′x (F1(x)− α, y) B1 (F1(x)− α) almost surely.

18



For the convergence of (12c) and (12f), a similar argument as for (12b) and (12e) holds.

For the expression in (12f), with (1), (7) and the mean-value theorem,

lim sup
n→∞

sup
(x,y)∈In×R

∣∣∣∣ n 1
2

[
F̃
(
Fn,1(x)− dnαe

n
, y
)
− F̃ (F1(x)− α, y)

]
− F̃ ′x (F1(x)− α, y) BF (x,∞)

∣∣∣∣
≤ lim

n→∞
sup

(x,y)∈In×R

∣∣∣∣∣∣
F̃
(
Fn,1(x)− dnαe

n
, y
)
− F̃ (F1(x)− α, y)

Fn,1(x)− F1(x) + α− dnαe
n

− F̃ ′x (F1(x)− α, y)

∣∣∣∣∣∣
· lim
n→∞

sup
x∈R

∣∣∣n 1
2 (Fn,1(x)− F1(x))

∣∣∣+ sup
(x,y)∈I0×R

∣∣∣F̃ ′x (F1(x)− α, y)
∣∣∣

· lim
n→∞

sup
x∈In

∣∣∣n 1
2 (Fn,1(x)− F1(x))−BF (x,∞)

∣∣∣ = 0 a.s.,

because of assumption (B). Similarly,

lim
n→∞

sup
(x,y)∈In×R

∣∣∣∣ n 1
2

[
F̃ (Fn,1(x) + α, y)− F̃ (F1(x) + α, y)

]
− F̃ ′x(F1(x) + α, y) BF (x,∞)

∣∣∣∣ = 0 a.s. �

Lemma 3 Under (A) and (B), we have for fixed s ∈ (0, 1), on the probability space of

(1),

lim
n→∞

sup
x∈In
|Qn,x(s)−Qx(s)| = 0 a.s.(13)

and

lim
n→∞

sup
x∈In

∣∣∣n 1
2 (Qn,x(s)−Qx(s)) + Q′x(s)Lx (Qx(s))

∣∣∣ = 0 a.s.(14)

Proof Since Gx(·) is increasing on R,

|Qn,x(s)−Qx(s)| = |Qx (Gx (Qn,x(s)))−Qx(s)|

=

∣∣∣∣Qx (Gx (Qn,x(s)))−Qx(s)

Gx (Qn,x(s))− s
(Gx (Qn,x(s))− s)

∣∣∣∣ .(15)

Because Qx is differentiable, the mean-value theorem yields that the right-hand side of

(15) is equal to

|Q′x(s∗n) (Gx (Qn,x(s))− s)| =

∣∣∣∣ 1

G′x (Qx(s∗n))
(Gx (Qn,x(s))− s)

∣∣∣∣ ,(16)
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for some s∗n between Gx (Qn,x(s)) and s. From Lemma 2 it follows that

lim sup
n→∞

sup
x∈In

∣∣∣n 1
2 (Gx (Qn,x(s))− s) + Lx (Qn,x(s))

∣∣∣
= lim

n→∞
sup
x∈In

∣∣∣−n 1
2 (Gn,x (Qn,x(s))−Gx (Qn,x(s))) + Lx (Qn,x(s))

∣∣∣ = 0 a.s.,(17)

and hence, since Lx bounded,

lim
n→∞

sup
x∈In
|Gx (Qn,x(s))− s| = 0 a.s.(18)

Note that infx∈I0 Q1 (F1(x) + α) − Q1 (F1(x)− α) > 0 and, for 0 < s1 < s < s2 < 1, uni-

formly in x ∈ I0 almost surely for n large enough, Qx(s
∗
n) ∈ [Q2(2αs1), Q2 (1− 2α(1− s2))].

Hence

inf
x∈In

G′x (Qx(s
∗
n)) ≥ inf

x∈I0
1
2α

Q1(F1(x)+α)∫
Q1(F1(x)−α)

f (u,Qx(s
∗
n)) du > 0.(19)

This proves (13).

From (15)–(17), with s∗n between Gx (Qn,x(s)) and s, it follows immediately that the

left-hand side of (14) is equal to

lim sup
n→∞

sup
x∈In
|−Q′x(s∗n)Lx (Qn,x(s)) +Q′x(s)Lx (Qx(s))|

= lim sup
n→∞

sup
x∈In
|−Q′x(s∗n) [Lx (Qn,x(s))− Lx (Qx(s))]− Lx (Qx(s)) [Q′x(s

∗
n)−Q′x(s)]| .(20)

Since the functions {Lx : x ∈ I0} are uniformly equicontinuous, with (13),

lim
n→∞

sup
x∈In
|Lx (Qn,x(s))− Lx (Qx(s))| = 0 a.s.(21)

As in (19), we have infx∈In G
′
x (Qx(s)) > 0. With assumption (B), (13), and (19), it follows

that

lim sup
n→∞

sup
x∈In
|Q′x(s∗n)−Q′x(s)|

= lim
n→∞

sup
x∈In

∣∣∣∣∣ F̃ ′y (F1(x) + α,Qx(s))− F̃ ′y (F1(x) + α,Qx(s
∗
n))

2αG′x (Qx(s∗n))G′x (Qx(s))

+
F̃ ′y (F1(x)− α,Qx(s

∗
n))− F̃ ′y (F1(x)− α,Qx(s))

2αG′x (Qx(s∗n))G′x (Qx(s))

∣∣∣∣∣ = 0 a.s.(22)

Equations (11), (19), (21) and (22) give that (20) is equal to zero and hence equation (14)

is proven. �
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5.2 Proof of Theorem 1

For the proof of Theorem 1 it suffices to show that for s ∈
{

1
4
, 3

4

}
, on the probability space

of (1),

sup
x∈In

∣∣∣∣ n1
2

{[
Fn (x,Qn,x (s))− Fn

(
Qn,1

(
Fn,1(x)− dnαe

n

)
, Qn,x(s)

)]
−
[
F
(
x,Qx (s)

)
− F

(
Q1 (F1(x)− α) , Qx(s)

)]}
− Bs(x)

∣∣∣∣→ 0 a.s. as n→∞.(23)

First, rewrite in the following way:

n
1
2

{[
Fn
(
x,Qn,x (s)

)
− Fn

(
Qn,1

(
Fn,1(x)− dnαe

n

)
, Qn,x(s)

)]
(24)

−
[
F
(
x,Qx (s)

)
− F

(
Q1 (F1(x)− α) , Qx(s)

)]}
(24a) = n

1
2
{
Fn
(
x,Qn,x (s)

)
− F

(
x,Qn,x (s)

)}
(24b) + n

1
2
{
F
(
x,Qn,x (s)

)
− F

(
x,Qx (s)

)}
(24c) − n

1
2

{
F̃n

(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, Qn,x(s)

)
− F̃

(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, Qn,x(s)

)}
(24d) − n

1
2

{
F̃
(
F̃−1
n,1

(
Fn,1(x)− dnαe

n

)
, Qn,x(s)

)
− F̃

(
Fn,1(x)− dnαe

n
, Qn,x(s)

)}
(24e) − n

1
2

{
F̃
(
Fn,1(x)− dnαe

n
, Qn,x(s)

)
− F̃ (F1(x)− α,Qn,x(s))

}
(24f) − n

1
2
{
F̃ (F1(x)− α,Qn,x(s))− F̃ (F1(x)− α,Qx(s))

}
.

The subtrahends (24c), (24d) and (24e) are equal to (12d), (12e) and (12f), respectively,

evaluated at y = Qn,x(s). Therefore, with Lemma 3, uniformly in x ∈ In for n→∞, with

a similar reasoning as for (12d), (24c) converges to −BF (Q1 (F1(x)− α) , Qx(s)) almost

surely. Analogous to (24c), (24a) converges uniformly in x ∈ In for n→∞ almost surely

to BF (x,Qx(s)). Taking moreover (B) into account, it follows immediately from Lemma 1

and Lemma 3 that (24d) converges to F̃ ′x (F1(x)− α,Qx(s)) B1 (F1(x)− α) almost surely

and (24e) converges to −F̃ ′x (F1(x)− α,Qx(s)) BF (x,∞) almost surely.

For (24b), we have

lim sup
n→∞

sup
x∈In

∣∣∣n 1
2 [F (x,Qn,x (s))− F (x,Qx (s))] + F ′y (x,Qx(s))Q

′
x(s)Lx (Qx(s))

∣∣∣
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= lim sup
n→∞

sup
x∈In

∣∣∣∣F (x,Qn,x(s))− F (x,Qx(s))

Qn,x(s)−Qx(s)
n

1
2 (Qn,x(s)−Qx(s))

+ F ′y (x,Qx(s))Q
′
x(s)Lx (Qx(s))

∣∣∣∣
≤ lim sup

n→∞
sup
x∈In

∣∣∣∣F (x,Qn,x(s))− F (x,Qx(s))

Qn,x(s)−Qx(s)

[
n

1
2 (Qn,x(s)−Qx(s)) +Q′x(s)Lx (Qx(s))

]∣∣∣∣
+ lim sup

n→∞
sup
x∈In

∣∣∣∣Q′x(s)Lx (Qx(s))

[
F (x,Qn,x(s))− F (x,Qx(s))

Qn,x(s)−Qx(s)
− F ′y (x,Qx(s))

]∣∣∣∣ .(25)

With assumption (B), Lemma 3, and the mean-value theorem, it follows that

lim
n→∞

sup
x∈In

∣∣∣∣F (x,Qn,x(s))− F (x,Qx(s))

Qn,x(s)−Qx(s)
− F ′y (x,Qx(s))

∣∣∣∣ = 0 a.s.,(26)

and with assumption (A) we get

sup
x∈In

F ′y (x,Qx(s)) ≤ sup
y∈R

f2(y) <∞,

which, with (26), bounds the first factor of the first term of the right-hand side of (25).

Lemma 3 yields that the second factor of this term is equal to zero almost surely. From

(11), (19), and (26) it now follows directly that (25) is equal to zero almost surely.

Accordingly (24f) converges uniformly in x ∈ In for n→∞, almost surely to

F ′y (Q1 (F1(x)− α) , Qx(s)) Q
′
x(s) Lx (Qx(s)) . �
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Horváth, L., Kokoszka, P., and Steinebach, J. (1999), “Testing for Changes in Multivariate Dependent
Observations With an Application to Temperature Changes,” Journal of Multivariate Analysis, 68,
96–119.

Kim, C.S., and Marron, J.S. (2006), “SiZer for Jump Detection,” Journal of Nonparametric Statistics,
18, 13–20.

Kraus, E.B. (1955), “Secular Changes of Tropical Rainfall Regimes,” Quarterly Journal of the Royal
Meteorological Society, 81, 198–210.

Loader, C.R. (1996), “Change Point Estimation Using Nonparametric Regression,” The Annals of Statis-
tics, 24, 1667–1678.

McDonald, J.A., and Owen, A.B. (1986), “Smoothing with Split Linear Fits,” Technometrics, 28, 195–
208.

Müller, H.-G. (1992), “Change-Points in Nonparametric Regression Analysis,” The Annals of Statistics,
20, 737–761.

Park, C., and Kim, W.-C. (2006), “Wavelet Estimation of a Regression Function With a Sharp Change
Point in a Random Design,” Journal of Statistical Planning and Inference, 136, 2381–2394.

Sánchez-Borrego, I.R., Mart́ınez-Miranda, M.D., and González-Carmona, A. (2006), “Local Linear Ker-
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