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Abstract

This paper considers integer-valued autoregressive processes where the autoregression parameter is

close to unity. We consider the asymptotics of this ‘near unit root’ situation. The local asymptotic

structure of the likelihood ratios of the model is obtained, showing that the limit experiment is Pois-

sonian. This Poisson limit experiment is used to construct efficient estimators and tests.
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1 Introduction

Integer-valued autoregressive processes of the order 1 (INAR(1)) were introduced by Al-Osh and Alzaid
(1987) as a nonnegative integer-valued analogue of the familiar AR(1) processes. An INAR(1) process
(starting at 0) is defined by the recursion, X0 = 0, and,

Xt = ϑ ◦Xt−1 + εt, t ∈ N, (1)

where,

ϑ ◦Xt−1 =
Xt−1∑

j=1

Z
(t)
j .

Here (Z(t)
j )j∈N,t∈N is a collection of i.i.d. Bernoulli variables with success probability θ ∈ [0, 1], indepen-

dent of the i.i.d. innovation sequence (εt)t∈N with distribution G on Z+ = N ∪ {0}. All these variables
are defined on a probability space (Ω,F ,Pθ,G). If we work with fixed G, we usually drop the subscript G.
The random variable ϑ ◦Xt−1 is called the Binomial thinning of Xt−1 (this operator was introduced by

∗Econometrics group, CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. The authors are
grateful to Marc Hallin and Johan Segers for useful discussions.
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Steutel and Van Harn (1979)) and, conditionally on Xt−1, it follows a Binomial distribution with success
probability θ and number of trials equal to Xt−1. Equation (1) can be interpreted as a branching process
with immigration. The outcome Xt is composed of ϑ ◦ Xt−1, the elements of Xt−1 that survive during
(t−1, t], and εt, the number of immigrants during (t−1, t]. Here the number of immigrants is independent
of the survival of elements of Xt−1. Moreover, each element of Xt−1 survives with probability θ and its
survival has no effect on the survival of the other elements. From a statistical point of view, the difference
between the literature on INAR processes and the literature on branching processes with immigration is
that in the latter setting one observes both the X process and the ε process, whereas one only observes
the X process in the INAR setting, which complicates inference drastically. Compared to the familiar
AR(1) processes inference for INAR(1) processes is also more complicated, since, even if θ is known, ob-
serving X does not imply observing ε. From the definition of an INAR process it immediately follows that
Eθ,G [Xt | Xt−1, . . . , X0] = EGε1 + θXt−1, which (partially) explains the ‘AR’ in ‘INAR’. It is well-known
that, if θ ∈ [0, 1) and EGε1 < ∞, the ‘stable’ case, there exists an initial distribution, νθ,G, such that X

is stationary if L(X0) = νθ,G. Of course, the INAR(1) process is non-stationary if θ = 1: under P1 the
process X is nothing but a standard random walk with drift on Z+ (but note that X is nondecreasing
under P1). We call this situation ‘unstable’ or say that the process has a ‘unit root’. Although the unit root
is on the boundary of the parameter space, it is an important parameter value since in many applications
the estimates for θ are close to 1.

Denote the law of (X0, . . . , Xn) under Pθ,G on the measurable space (Xn,An) = (Zn+1
+ , 2Z

n+1
+ ) by P(n)

θ,G. In
our applications we mainly consider two sets of assumptions on G: (i) G is known or (ii) G is completely
unknown (apart from some regularity conditions). For expository reasons, let us, for the moment, focus
on the case that G is completely known and that the goal is to estimate θ. We use ‘local-to-unity’ asymp-
totics to take the ‘increasing statistical difficulty’ in the neighborhood of the unit root into account, i.e.
we consider local alternatives to the unit root in such a way that the increasing degree of difficulty to dis-
criminate between these alternatives and the unit root compensates the increase of information contained
in the sample as the number of observations grows. This approach is well-known; it originated by the
work of Chan and Wei (1987) and Philips (1987), who studied the behavior of a given estimator (OLS) in
a nearly unstable AR(1) setting, and Jeganathan (1995), whose results yield the asymptotic structure of
nearly unstable AR models. Following this approach, we introduce the sequence of nearly unstable INAR
experiments En(G) = (Xn,An, (P(n)

1−h/n2 | h ≥ 0)), n ∈ N. The ‘localizing rate’ n2 (for the nearly unstable
AR(1) model one has rate n

√
n (non-zero intercept) or n (no intercept)) will become apparent later on.

Suppose that we have found an estimator ĥn with ‘nice properties’, then this yields the estimate 1− ĥn/n2

of θ in the experiment of interest. To our knowledge Ispány et al. (2003) were the first to study estimation
in a nearly unstable INAR(1) model. These authors study the behavior of the OLS estimator and they
use a localizing rate n instead of n2. However, as we will see shortly, n2 is indeed the proper localizing
rate and in Proposition 4.4 we show that the OLS estimator is an exploding estimator in (En(G))n∈N,
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i.e. it has not even the ‘right’ rate of convergence. The question then arises how we should estimate h.
Instead of analyzing the asymptotic behavior of a given estimator, we derive the asymptotic structure of
the experiments themselves by determining the limit experiment (in the Le Cam sense) of (En(G))n∈N.
This limit experiment gives bounds to the accuracy of inference procedures and suggests how to construct
efficient ones.

The main goal of this paper is to determine the limit experiment of (En(G))n∈N. Remember that (see,
for example, Chapter 9 in Van der Vaart (2000) or Van der Vaart (1991)), the sequence of experiments
(En(G))n∈N is said to converge to a limit experiment (in Le Cam’s weak topology) E = (X ,A, (Qh | h ≥ 0))
if, for every finite subset I ⊂ R+ and every h0 ∈ R+, we have




dP(n)

1− h
n2

dP(n)

1− h0
n2




h∈I

d−→
(

dQh

dQh0

)

h∈I

, under P(n)

1− h0
n2

.

To see that it is indeed reasonable to expect n2 as the proper localizing rate, we briefly discuss the case of
Geometrically distributed innovations (in the remainder we treat general G). In case G = Geometric(1/2),
i.e., G puts mass (1/2)k+1 at k ∈ Z+, it is an easy exercise to verify for h > 0 (the Geometric distribution
allows us, using Newton’s Binomial formula, to obtain explicit expressions for the transition-probabilities
from Xt−1 to Xt if Xt ≥ Xt−1),

dP(n)

1− h
rn

dP(n)
1

p−→





0 if rn

n2 → 0,

exp
(
−hG(0)EGε1

2

)
if rn

n2 → 1,

1 if rn

n2 →∞,

under P1.

This has two important implications. First, it indicates that n2 is indeed the proper localizing rate. In-
tuitively, if we go faster than n2 we cannot distinguish P(n)

1−h/rn
from P(n)

1 , and if we go slower we can

distinguish P(n)
1−h/rn

perfectly from P(n)
1 . Secondly, since exp(−hG(0)EGε1/2) < 1 we cannot, by Le Cam’s

first lemma, hope, in general, for contiguity of P(n)
1−h/n2 with respect to P(n)

1 (Remark 2 after Theorem 2.1
gives an example of sets that yield this non-contiguity). This lack of contiguity is unfortunate for several
reasons. Most importantly, if we would have contiguity the limiting behavior of (dP(n)

1−h/n2/ dP(n)
1 )h∈I deter-

mines the limit experiment, whereas we now need to consider the behavior of (dP(n)
1−h/n2/ dP(n)

1−h0/n2)h∈I

for all h0 ≥ 0 (so to be clear: the preceding display does not yet yield the limit experiment for the
Geometric(1/2) case). And it implies that the global sequence of experiments has not the common LAQ
structure (see, for example, Definition 1 in Jeganathan (1995)) at θ = 1. The traditional AR(1) process
Y0 = 0, Yt = µ + θYt−1 + ut, ut i.i.d. N(0, σ2), with µ 6= 0 and σ2 known, does enjoy this LAQ property
at θ = 1, the limit experiment at θ = 1 is the usual normal location experiment (i.e., the model has the
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LAN property) and the localizing rate is n3/2. The limit experiment at θ = 1 for Y0 = 0, Yt = θYt−1 + ut,
ut i.i.d. N(0, σ2), with σ2 known, does not have the LAN-structure; the limit experiment is of the LABF
type and the localizing rate is n. Thus although the INAR(1) process behaves the same as the traditional
AR(1) process at θ = 1, their statistical properties ‘near θ = 1’ are very different. In Section 3 we prove
that the limit-experiment of (En(G))n∈N corresponds to one draw from a Poisson distribution with mean
hG(0)EGε1/2, i.e.

E(G) =
(
Z+, 2Z+ ,

(
Poisson

(
hG(0)EGε1

2

)
| h ≥ 0

))
.

We indeed recognize exp (−hG(0)EGε1/2) as the likelihood ratio at h relative to h0 = 0 in the experiment
E(G). Due to the lack of enough smoothness of the likelihood ratios around the unit root, this convergence
of experiments is not obtained by the usual (general applicable) techniques, but by a direct approach.
Since the transition probability is the convolution of a Binomial distribution with G and the fact that
certain Binomial experiments converge to a Poisson limit experiment (see Remark 4 after Theorem 3.1
for the precise statement), one might be tempted to think that the convergence En(G) → E(G) follows, in
some way, from this convergence. Remark 4 after Theorem 3.1 shows that this reasoning is not valid.

The rest of the paper is organized as follows. In Section 2 we discuss some preliminary properties which
provide insight in the behavior of a nearly unstable INAR(1) process and are needed in the rest of the
paper. The main result is stated and proved in Section 3. Section 4 uses our main result to analyze some
estimation and testing problems. In Section 4.1 we consider efficient estimation of h, the deviation from a
unit root, in the nearly unstable case for two settings. The first setting, discussed in Section 4.1.1, treats
the case that the immigration distribution G is completely known. And the second setting, analyzed in
4.1.2, considers a semiparametric model, where hardly any conditions on G are imposed. Furthermore, we
show in Section 4.1.1 that the OLS-estimator is explosive. In Section 4.2 we provide an efficient estimator
of θ in the ‘global’ model. Finally, we discuss testing for a unit root in Section 4.3. We show that the
traditional Dickey-Fuller test has no (local) power, but that an intuitively obvious test is efficient.

2 Preliminaries

This section discusses some basic properties of nearly unstable INAR(1) processes. Besides giving insight
in the behavior of a nearly unstable INAR(1) process, these properties are a key input in the next sections.

First, we introduce the following notation. The mean of εt is denoted by µG and its variance by σ2
G.

The probability mass function corresponding to G, the distribution of the innovations εt, is denoted by
g. The probability mass function of the Binomial distribution with parameters θ ∈ [0, 1] and n ∈ Z+ is
denoted by bn,θ.
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Given Xt−1 = xt−1, the random variables εt and ϑ ◦ Xt−1 are independent and Xt−1 − ϑ ◦ Xt−1, ‘the
number of deaths during (t− 1, t]’, follows a Binomial(Xt−1, 1− θ) distribution. This interpretation yields
the following representation of the transition probabilities, for xt−1, xt ∈ Z+,

P θ
xt−1,xt

= Pθ {Xt = xt | Xt−1 = xt−1} =
xt−1∑

k=0

Pθ {εt = xt − xt−1 + k, Xt−1 − ϑ ◦Xt−1 = k | Xt−1 = xt−1}

=
xt−1∑

k=0

bxt−1,1−θ(k)g(∆xt + k),

where ∆xt = xt − xt−1, and g(i) = 0 for i < 0. Under P1 we have Xt = µGt +
∑t

i=1 (εi − µG), and
P 1

xt−1,xt
= g(∆xt), xt−1, xt ∈ Z+. Hence, under P1, an INAR(1) process is nothing but a random walk

with drift.

The next proposition is basic, but often applied in the sequel.

Proposition 2.1 If σ2
G < ∞, we have, for h ≥ 0,

lim
n→∞

E1− h
n2

[
1
n2

n∑
t=1

Xt − µG

2

]2

= 0. (2)

If σ2
G < ∞, then we have, for α > 0 and every sequence (θn)n∈N in [0, 1],

lim
n→∞

1
n3+α

n∑
t=1

EθnX2
t = 0. (3)

Proof:

We obviously have, Var1 (
∑n

t=1 Xt) = O(n3) and limn→∞ n−2
∑n

t=1 E1Xt = µG/2, which yields (2) for
h = 0. Next, we prove (2) for h > 0. Straightforward calculations show, for θ < 1,

Eθ

n∑
t=1

Xt = µG

n∑
t=1

1− θt

1− θ
= µG

[
n

1− θ
− θ − θn+1

(1− θ)2

]
,

which yields

lim
n→∞

1
n2
E1− h

n2

n∑
t=1

Xt = lim
n→∞

µG

n2


 n

h/n2
−

1− h
n2 −

[
1− (n + 1) h

n2 + (n+1)n
2

h2

n4 + o
(

1
n2

)]

h2/n4


 =

µG

2
. (4)
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To treat the variance of n−2
∑n

t=1 Xt, we use the following simple relations, see also Ispány et al. (2003),
for 0 < θ < 1, s, t ≥ 1,

Covθ(Xt, Xs) = θ|t−s|Varθ Xt∧s,

Varθ Xt =
1− θ2t

1− θ2
σ2

G +
(θ − θt)(1− θt)

1− θ2
µG ≤ (σ2

G + µG)
1− θ2t

1− θ2
. (5)

From this we obtain

Var1− h
n2

(
1
n2

n∑
t=1

Xt

)
=

1
n4

n∑
t=1

(
1 + 2

n∑
s=t+1

(
1− h

n2

)s−t
)

Var1− h
n2

Xt

≤ 1
n

2n(σ2
G + µG)

1
n2

1

1− (
1− h

n2

)2

1
n

n∑
t=1

(
1−

(
1− h

n2

)2t
)
→ 0,

as n →∞. Together with (4) this completes the proof of (2) for h > 0.
To prove (3), note that Xt ≤

∑t
i=1 εi. Hence EθnX2

t ≤ E1X
2
t = σ2

Gt + µ2
Gt2, which yields the desired

conclusion. 2

Remark 1 Convergence in probability for the case h > 0 in (2) cannot be concluded from the convergence

in probability in (2) for h = 0 by contiguity arguments. The reason is (see Remark 2 after the proof of

Theorem 2.1) that P(n)
1−h/n2 is not contiguous with respect to P(n)

1 .

Next, we consider the thinning process (ϑ ◦ Xt−1)t≥1. Under P1−h/n2 , Xt−1 − ϑ ◦ Xt−1, conditional on
Xt−1, follows a Binomial(Xt−1, h/n2) distribution. So we expect that there do not occur many ‘deaths’ in
any time-interval (t−1, t]. The following proposition gives a precise statement, where we use the notation,
for h ≥ 0 and n ∈ N,

Ah
n =

{
z ∈ Z+

∣∣∣∣
h(z + 1)

n2
<

1
2

}
, Ah

n = {(X0, . . . , Xn−1) ∈ Ah
n × · · · ×Ah

n}. (6)

The reasons for the introduction of these sets are the following. By Proposition A.1 we have for x ∈ Ah
n∑x

k=r bx,h/n2(k) ≤ 2 bx,h/n2(r) for r = 2, 3 and terms of the form (1 − h
n2 )−2 can be bounded neatly,

without having to make statements of the form ‘for n large enough’, or having to refer to ‘upto a constant
depending on h’. Furthermore, recall the notation ∆Xt = Xt −Xt−1.

Proposition 2.2 Assume G satisfies σ2
G < ∞. Then we have for all sequences (θn)n∈N in [0, 1], h ≥ 0,

lim
n→∞

Pθn(Ah
n) = 1. (7)
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For h ≥ 0 we have,

lim
n→∞

P1− h
n2
{∃t ∈ {1, . . . , n} : Xt−1 − ϑ ◦Xt−1 ≥ 2} = 0. (8)

Proof:

For a sequence (θn)n∈N in [0, 1], (3) implies

Pθn

{
∃ 0 ≤ t ≤ n : Xt > n7/4

}
≤ 1

n7/2

n∑
t=1

EθnX2
t → 0 as n →∞. (9)

From this we easily obtain (7).
To obtain (8) note that, for Xt−1 ∈ Ah

n we have, using the bound (43),

P1− h
n2
{Xt−1 − ϑ ◦Xt−1 ≥ 2 | Xt−1} =

Xt−1∑

k=2

bXt−1, h
n2

(k) ≤ 2 bXt−1, h
n2

(2) ≤ h2X2
t−1

n4
.

By (3) this yields,

lim
n→∞

P1− h
n2

({∃t ∈ {1, . . . , n} : Xt−1 − ϑ ◦Xt−1 ≥ 2} ∩ Ah
n

) ≤ lim
n→∞

h2

n4

n∑
t=1

E1− h
n2

X2
t−1 = 0.

Since we already showed limn→∞ P1−h/n2(Ah
n) = 1, this yields (8). 2

Finally, we derive the limit distribution of the number of downward movements of X during [0, n]. The
probability that the Bernoulli variable 1{∆Xt < 0} equals one is small. Intuitively the dependence over
time of this indicator-process is not too strong, so it is not unreasonable to expect that a ‘Poisson law of
small numbers’ holds. As the following theorem shows, this is indeed the case.

Theorem 2.1 Assume that G satisfies σ2
G < ∞. Then we have, for h ≥ 0,

n∑
t=1

1{∆Xt < 0} d−→ Poisson
(

hg(0)µG

2

)
, under P1− h

n2
. (10)

Proof:

If g(0) = 0 then ∆Xt < 0 implies Xt−1 − ϑ ◦Xt−1 ≥ 2. Hence, (8) implies
∑n

t=1 1{∆Xt < 0} p−→ 0 under
P1−h/n2 . Since the Poisson distribution with mean 0 concentrates all its mass at 0, this yields the result.
The cases h = 0 or g(0) = 1 (since X0 = 0) are also trivial.
So we consider the case h > 0 and 0 < g(0) < 1. For notational convenience, abbreviate P1−h/n2 by Pn
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and E1−h/n2 by En. Put Zt = 1{∆Xt = −1, εt = 0}. From (8) it follows that

n∑
t=1

1{∆Xt < 0} −
n∑

t=1

Zt =
n∑

t=1

(1{∆Xt ≤ −2}+ 1{∆Xt = −1, εt ≥ 1}) p−→ 0, under Pn.

Thus it suffices to prove that
∑n

t=1 Zt
d−→ Poisson(hg(0)µG/2) under Pn. We do this by applying

Lemma A.1. Introduce random variables Yn, where Yn follows a Poisson distribution with mean λn =∑n
t=1 EnZt. And let Z follow a Poisson distribution with mean hg(0)µG/2. From Lemma A.1 we obtain

the bound

sup
A⊂Z+

∣∣∣∣∣Pn

{
n∑

t=1

Zt ∈ A

}
− Pr{Yn ∈ A}

∣∣∣∣∣ ≤
n∑

t=1

(EnZt)
2 +

n∑
t=1

En |En [Zt − EnZt | Z1, . . . , Zt−1]| .

If we prove that

(i)
n∑

t=1

(EnZt)
2 → 0, (ii)

n∑
t=1

EnZt → hg(0)µG

2
, (iii)

n∑
t=1

En |En [Zt − EnZt | Z1, . . . , Zt−1]| → 0,

all hold as n →∞, then the result follows since we then have, for all k ∈ Z+,

∣∣∣∣∣Pn

{
n∑

t=1

Zt = k

}
− Pr(Z = k)

∣∣∣∣∣ ≤
∣∣∣∣∣Pn

{
n∑

t=1

Zt = k

}
− Pr{Yn = k}

∣∣∣∣∣ + |Pr{Yn = k} − Pr(Z = k)| → 0.

First we tackle (i). Notice that, condition on Xt−1,

EnZt =
hg(0)
n2

EnXt−1

(
1− h

n2

)Xt−1−1

≤ hg(0)
n2

EnXt−1.

Then (i) is easily obtained using (3),

lim
n→∞

n∑
t=1

(EnZt)
2 ≤ lim

n→∞
h2g2(0)

n4

n∑
t=1

EnX2
t−1 = 0.

Next we consider (ii). If we prove the relation,

lim
n→∞

∣∣∣∣∣
1
n2

n∑
t=1

EnXt−1 − 1
n2

n∑
t=1

EnXt−1

(
1− h

n2

)Xt−1−1
∣∣∣∣∣ = 0,

it is immediate that (ii) follows from (2). To prove the previous display, we introduce Bn = {∀t ∈
{1, . . . , n} : Xt ≤ n7/4} with limn→∞ Pn(Bn) = 1 (see (9)). On the event Bn we have n−2Xt ≤ n−1/4 for
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t = 1, . . . , n. This yields

0 ≤ EnXt−1

(
1−

(
1− h

n2

)Xt−1−1
)
≤ EnXt−1

(
1−

(
1− h

n2

)Xt−1
)

1Bn
+ EnXt−11Bc

n

≤ En


1Bn

Xt−1

Xt−1∑

j=1

(
Xt−1

j

) (
h

n2

)j

 + EnXt−11Bc

n
≤ 1

n1/4
exp(h)EnXt−1 + EnXt−11Bc

n
.

Using Pn(Bn) → 1 and (2) we obtain,

lim
n→∞

1
n2

n∑
t=1

EnXt−11Bc
n
≤ lim

n→∞

√√√√En

(
1
n2

n∑
t=1

Xt−1

)2

Pn(Bc
n) =

√(µG

2

)2

· 0 = 0.

By (3) we have limn→∞ n−9/4
∑n

t=1 EnXt−1 = 0. Combination with the previous two displays yields the
result.
Finally, we prove (iii). Let Fε = (Fε

t )t≥1 and FX = (FX
t )t≥0 be the filtrations generated by (εt)t≥1 and

(Xt)t≥0 respectively. Note that we have, for t ≥ 2,

En |En [Zt − EnZt | Z1, . . . , Zt−1]| ≤ En

∣∣En

[
Zt − EnZt | Fε

t−1,FX
t−1

]∣∣

=
hg(0)
n2

En

∣∣∣∣∣Xt−1

(
1− h

n2

)Xt−1−1

− EnXt−1

(
1− h

n2

)Xt−1−1
∣∣∣∣∣ . (11)

Using the reverse triangle-inequality we obtain

∣∣∣∣∣En

∣∣∣∣∣Xt−1

(
1− h

n2

)Xt−1−1

− EnXt−1

(
1− h

n2

)Xt−1−1
∣∣∣∣∣− En |Xt−1 − EnXt−1|

∣∣∣∣∣

≤ En

∣∣∣∣∣Xt−1

(
1−

(
1− h

n2

)Xt−1−1
)
− EnXt−1

(
1−

(
1− h

n2

)Xt−1−1
)∣∣∣∣∣

≤ 2EnXt−1

(
1−

(
1− h

n2

)Xt−1−1
)

.

We have already seen in the proof of (ii) that

lim
n→∞

1
n2

n∑
t=1

EnXt−1

(
1−

(
1− h

n2

)Xt−1−1
)

= 0

9



holds. A combination of the previous two displays with (11) now easily yields the bound

n∑
t=1

En |En [Zt − EnZt | Z1, . . . , Zt−1]| ≤ o(1) +
hg(0)
n2

n∑
t=1

√
Varn Xt−1. (12)

From (5) we obtain, for θ < 1, Varθ Xt ≤
(
σ2

G + µG

)
(1 − θ2t)(1 − θ2)−1. And for 1 ≤ t ≤ n we have

0 ≤ 1− (
1− h/n2

)2t ≤ n−1 exp(2h). Now we easily obtain

1
n2

n∑
t=1

√
Varn Xt−1 ≤

√
σ2

G + µG

√
1
n2

1

1− (
1− h

n2

)2

1
n

n

√
exp(2h)

n
→ 0 as n →∞.

A combination with (12) yields (iii). This concludes the proof. 2

Remark 2 Since
∑n

t=1 1{∆Xt < 0} equals zero under P(n)
1 and converges in distribution to a non-

degenerated limit under P(n)
1−h/n2 (h > 0, 0 < g(0) < 1), we see that P(n)

1−h/n2 is not contiguous with respect

to P(n)
1 for h > 0.

3 The limit experiment: one observation from a Poisson distri-

bution

For easy reference, we introduce the following assumption.

Assumption 3.1 A probability distribution G on Z+ is said to satisfy Assumption 3.1 if one of the

following two condition holds.

(1) support(G) = {0, . . . , M} for some M ∈ N;

(2) support(G) = Z+, σ2
G < ∞ and g is eventually decreasing, i.e. there exists M ∈ N such that

g(k + 1) ≤ g(k) for k ≥ M .

The rest of this section is devoted to the following theorem.

Theorem 3.1 Suppose G satisfies Assumption 3.1. Then the limit experiment of (En(G))n∈N is given by

E(G) =
(
Z+, 2Z+ , (Qh | h ≥ 0)

)
,

with Qh = Poisson (hg(0)µG/2).

10



Notice that the likelihood-ratios for this Poisson limit experiment are given by,

dQh

dQh0

(Z) = exp
(
− (h− h0)g(0)µG

2

)(
h

h0

)Z

, (13)

for h ≥ 0, h0 > 0 and,
dQh

dQ0
(Z) = exp

(
−hg(0)µG

2

)
1{0}(Z), (14)

for h ≥ 0.

Proof:

To determine the limit-experiment we need to determine the limit-distribution of the log-likelihood ratios,
h, h0 ≥ 0,

Ln(h, h0) = log
dP(n)

1− h
n2

dP(n)

1− h0
n2

=
n∑

t=1

log
P

1− h
n2

Xt−1,Xt

P
1− h0

n2

Xt−1,Xt

,

under P1−h0/n2 . Notice that for h0 > 0 Ln(0, h0) = −∞, and thus dP(n)
0 / dP(n)

1−h0/n2 = 0, if
∑n

t=1 1{∆Xt <

0} > 0. Because Ln(h, h0) is complicated to analyze, we make an approximation of this object. Split the
transition-probability P

1−h/n2

xt−1,xt into a leading term,

Ln(xt−1, xt, h) =





∑−∆xt+1
k=−∆xt

bxt−1, h
n2

(k)g(∆xt + k) if ∆xt < 0,
∑1

k=0 bxt−1, h
n2

(k)g(∆xt + k) if ∆xt ≥ 0,

and a remainder term,

Rn(xt−1, xt, h) =





∑xt−1
k=−∆xt+2 bxt−1, h

n2
(k)g(∆xt + k) if ∆xt < 0,

∑xt−1
k=2 bxt−1, h

n2
(k)g(∆xt + k) if ∆xt ≥ 0.

We introduce a simpler version of Ln(h, h0) in which the remainder terms are removed,

L̃n(h, h0) =
n∑

t=1

log
Ln(Xt−1, Xt, h)
Ln(Xt−1, Xt, h0)

.

The difference between L̃n(h, h0) and Ln(h, h0) is negligible. To enhance readability we organize this result
and its proof in a lemma.

Lemma 3.1 We have, for h, h0 ≥ 0,

L̃n(h, h0) = Ln(h, h0) + o(P
1− h0

n2
; 1). (15)

11



Proof:

We obtain, for h > 0, h0 ≥ 0, using the inequality |log ((a + b)/(c + d))− log(a/c)| ≤ b/a+d/c for a, c > 0,
b, d ≥ 0, the bound

∣∣∣Ln(h, h0)− L̃n(h, h0)
∣∣∣ ≤

n∑
t=1

Rn(Xt−1, Xt, h)
Ln(Xt−1, Xt, h)

+
n∑

t=1

Rn(Xt−1, Xt, h0)
Ln(Xt−1, Xt, h0)

P
1− h0

n2
− a.s. (16)

It is easy to see that, for h0 > 0, Ln(0, h0) and L̃n(0, h0) both equal minus infinity if
∑n

t=1 1{∆Xt < 0} ≥ 1,
and for

∑n
t=1 1{∆Xt < 0} = 0 we have

∣∣∣Ln(0, h0)− L̃n(0, h0)
∣∣∣ ≤

n∑
t=1

Rn(Xt−1, Xt, h0)
Ln(Xt−1, Xt, h0)

P
1− h0

n2
− a.s.

Thus if we show that
n∑

t=1

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
p−→ 0, under P

1− h0
n2

,

holds for h′ = h and h′ = h0 the lemma is proved (exclude the case h′ = 0 and h0 > 0, which need not be
considered). We split the expression in the previous display into four nonnegative parts

n∑
t=1

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
=

∑

t: ∆Xt≤−2

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
+

∑

t: ∆Xt=−1

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)

+
∑

t: 0≤∆Xt≤M

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
+

∑

t: ∆Xt>M

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
.

Since ∆Xt ≤ −2 implies Xt−1 − ϑ ◦Xt−1 ≥ 2 (8) implies

∑

t: ∆Xt≤−2

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
p−→ 0, under P

1− h0
n2

.

Next we treat the terms for which ∆Xt = −1. If h0 = 0 we do not have such terms (under P1−h0/n2), and
remember that the case h′ = 0 and h0 > 0 need not be considered. So we only need to consider this term
for h′, h0 > 0. On the event Ah′

n (see (6) for the definition of this event), an application of (43) yields,

∑

t:∆Xt=−1

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
≤

∑

t:∆Xt=−1

∑Xt−1
k=3 bXt−1, h′

n2
(k)

g(0) bXt−1, h′
n2

(1)
≤ 2

n∑
t=1

X3
t−1
3!

h
′3

n6

(
1− h′

n2

)Xt−1−3

g(0)Xt−1
h′
n2

(
1− h′

n2

)Xt−1−1

≤ 4h
′2

3g(0)n4

n∑
t=1

X2
t−1,

12



since (1−h′/n2)−2 ≤ 4 by definition of Ah′
n (see (6) for the definition of this set). From (3) and (7) it now

easily follows that we have

∑

t:∆Xt=−1

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
p−→ 0, under P

1− h0
n2

.

Next, we analyze the terms for which 0 ≤ ∆Xt ≤ M . We have, by (43), on the event Ah′
n ,

∑

t: 0≤∆Xt≤M

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
≤

∑

t: 0≤∆Xt≤M

∑Xt−1
k=2 bXt−1, h′

n2
(k)g(∆Xt + k)

g(∆Xt) bXt−1, h′
n2

(0)
≤ 2

m∗
∑

t:0≤∆Xt≤M

bXt−1, h′
n2

(2)

bXt−1, h′
n2

(0)

≤ 4h
′2

m∗n4

n∑
t=1

X2
t−1,

where m∗ = min{g(k)|0 ≤ k ≤ M} > 0. Now (3), and (7) yield the desired convergence,

∑

t: 0≤∆Xt≤M

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
p−→ 0, under P

1− h0
n2

.

Finally, we discuss the terms for which ∆Xt > M . If the support of G was given by {0, . . . , M} there are no
such terms. So we only need to consider the case, where the support of G is Z+. Since g is non-increasing
on {M,M + 1, . . . }, we have, by (43),

Rn(Xt−1, Xt, h
′) ≤ 2g(∆Xt) bXt−1, h′

n2
(2), Xt−1 ∈ Ah′

n ,

which yields,

0 ≤ Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
≤

2g(∆Xt)
X2

t−1
2

h
′2

n4

(
1− h′

n2

)Xt−1−2

g(∆Xt)
(
1− h′

n2

)Xt−1
≤ 4h

′2

n4
X2

t−1, Xt−1 ∈ Ah′
n .

From (3), and (7) it now easily follows that we have

∑

t:∆Xt≥M

Rn(Xt−1, Xt, h
′)

Ln(Xt−1, Xt, h′)
p−→ 0, under P

1− h0
n2

.

This concludes the proof of the lemma. 2

Hence, the limit-distribution of the random vector (Ln(h, h0))h∈I , for a finite subset I ⊂ R+, is the same
as the limit-distribution of (L̃n(h, h0))h∈I . It easily follows, using (8), that L̃n(h, h0) can be decomposed

13



as

L̃n(h, h0) =
n∑

t=1

Xt−1 − 2
n2

log

(
1− h

n2

1− h0
n2

)n2

+ S+
n (h, h0) + S−n (h, h0) + o(P1−h0/n2 ; 1), (17)

where S+
n (h, h0) =

∑
t: ∆Xt≥0 W+

tn and S−n (h, h0) =
∑

t: ∆Xt=−1 W−
tn, are defined by (here

∑
t: ∆Xt=−1 is

shorthand for
∑

1≤t≤n: ∆Xt=−1, and for
∑

t: ∆Xt≥0 the same convention is used),

W+
tn = log

[
g(∆Xt)

(
1− h

n2

)2
+ Xt−1

h
n2

(
1− h

n2

)
g(∆Xt + 1)

g(∆Xt)
(
1− h0

n2

)2
+ Xt−1

h0
n2

(
1− h0

n2

)
g(∆Xt + 1)

]
,

and

W−
tn = log

[
Xt−1

h
n2

(
1− h

n2

)
g(0) + Xt−1(Xt−1−1)

2
h2

n4 g(1)

Xt−1
h0
n2

(
1− h0

n2

)
g(0) + Xt−1(Xt−1−1)

2
h2
0

n4 g(1)

]
.

First, we treat the first term in (17). By (2) we have,

log




(
1− h

n2

1− h0
n2

)n2
 1

n2

n∑
t=1

(Xt−1 − 2)
p−→ − (h− h0)µG

2
, under P

1− h0
n2

. (18)

Next, we discuss the behavior of S+
n (h, h0), the second term of (17). This is the content of the next lemma.

Lemma 3.2 We have, for h, h0 ≥ 0,

S+
n (h, h0)

p−→ (h− h0) (1− g(0))µG

2
, under P

1− h0
n2

. (19)

Proof:

We write,
S+

n (h, h0) =
∑

t: ∆Xt≥0

log
[
1 + U+

tn

]
,

where

U+
tn =

g(∆Xt)
[

h2−h2
0

n4 − 2h−h0
n2

]
+ Xt−1g(∆Xt + 1)

[
h−h0

n2 − h2−h2
0

n4

]

g(∆Xt)
(
1− h0

n2

)2
+ Xt−1g(∆Xt + 1)h0

n2

(
1− h0

n2

) .

14



Notice that, for n large enough,

U+2
tn ≤

2
(

g2(∆Xt)
[

h2−h2
0

n4 − 2h−h0
n2

]2

+ X2
t−1g

2(∆Xt + 1)
[

h−h0
n2 − h2−h2

0
n4

]2
)

g2(∆Xt)
(
1− h0

n2

)4 ≤ C

n4

(
X2

t−1 + 1
)
,

for some constant C, where we used that e 7→ g(e + 1)/g(e) is bounded. From (3) we obtain,

lim
n→∞

E
1− h0

n2

∑

t: ∆Xt≥0

U+2
tn ≤ 0 + lim

n→∞
E

1− h0
n2

C

n4

n∑
t=1

X2
t−1 = 0.

Hence ∑

t: ∆Xt≥0

U+2
tn

p−→ 0, under P1−h0/n2 , (20)

and

lim
n→∞

P
1− h0

n2

{
max

t: ∆Xt≥0
|U+

tn| ∈ [−1/2, 1/2]
}

= 1. (21)

Using the expansion log(1 + x) = x + r(x), where the remainder term r satisfies |r(x)| ≤ 2x2 for x ≥ 2−1,
we obtain from (20) and (21),

S+
n (h, h0) =

∑

t: ∆Xt≥0

log
[
1 + U+

tn

]
=

∑

t: ∆Xt≥0

U+
tn + o(P1−h0/n2 ; 1).

Thus the problem reduces to determining the asymptotic behavior of
∑

t: ∆Xt≥0 U+
tn. Note that,

∑

t: ∆Xt≥0

U+
tn =

∑

t: ∆Xt≥0

Xt−1g(∆Xt + 1)
[

h−h0
n2 − h2−h2

0
n4

]

g(∆Xt)
(
1− h0

n2

)2
+ Xt−1g(∆Xt + 1)h0

n2

(
1− h0

n2

) + o(P1−h0/n2 ; 1).

Using that e 7→ g(e + 1)/g(e) is bounded and (3), we obtain

∑

t: ∆Xt≥0

∣∣∣∣∣∣
Xt−1g(∆Xt + 1)

[
h−h0

n2 − h2−h2
0

n4

]

g(∆Xt)
(
1− h0

n2

)2
+ Xt−1g(∆Xt + 1)h0

n2

(
1− h0

n2

) −
(h− h0)

n2

Xt−1g(∆Xt + 1)
g(∆Xt)

∣∣∣∣∣∣

≤ C

n4

n∑
t=1

X2
t−1

p−→ 0, under P
1− h0

n2
.
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Thus the previous three displays and (8) yield

S+
n (h, h0) =

h− h0

n2

n∑
t=1

Xt−1
g(∆Xt + 1)

g(∆Xt)
1{∆Xt ≥ 0, Xt−1 − ϑ ◦Xt−1 ≤ 1}+ o(P1−h0/n2 ; 1).

Finally, we will show that

1
n2

n∑
t=1

Xt−1
g(∆Xt + 1)

g(∆Xt)
1{∆Xt ≥ 0, Xt−1 − ϑ ◦Xt−1 ≤ 1} p−→ (1− g(0))µG

2
, under P

1− h0
n2

, (22)

which will conclude the proof. For notational convenience we introduce

Zt =
g(∆Xt + 1)

g(∆Xt)
1{∆Xt ≥ 0, Xt−1 − ϑ ◦Xt−1 ≤ 1}

=
g(εt + 1)

g(εt)
1{Xt−1 − ϑ ◦Xt−1 = 0}+

g(εt)
g(εt − 1)

1{εt ≥ 1, Xt−1 − ϑ ◦Xt−1 = 1}.

Using that εt is independent of Xt−1 − ϑ ◦Xt−1 we obtain

E
1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1] = (1− g(0))1{Xt−1 − ϑ ◦Xt−1 = 0}

+ 1{Xt−1 − ϑ ◦Xt−1 = 1}E g(εt)
g(εt − 1)

1{εt ≥ 1},

where we used that Eg(ε1 + 1)/g(ε1) = 1 − g(0) and E1{ε1 ≥ 1}g(ε1)/g(ε1 − 1) < ∞, since we assumed
that g is eventually decreasing. So we have

Zt − E1− h0
n2

[Zt | Xt−1 − ϑ ◦Xt−1] =
(

g(εt + 1)
g(εt)

− Eg(εt + 1)
g(εt)

)
1{Xt−1 − ϑ ◦Xt−1 = 0}

+
(

g(εt)
g(εt − 1)

1{εt ≥ 1} − E g(εt)
g(εt − 1)

1{εt ≥ 1}
)

1{Xt−1 − ϑ ◦Xt−1 = 1}.

From this it is not hard to see that we have,

E
1− h0

n2
Xt−1

(
Zt − E1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1]

)
= 0,

for s < t,

E
1− h0

n2
Xt−1

(
Zt − E1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1]

)
Xs−1

(
Zs − E1− h0

n2
[Zs | Xs−1 − ϑ ◦Xs−1]

)
= 0.

and,

E
1− h0

n2

(
Zt − E1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1]

)2

≤ C, (23)

16



for C = 2(Var (g(ε1 + 1)/g(ε1)) + Var
(
1{εt≥1}g(ε1)/g(ε1 − 1)

)
. Thus, by (3), it follows that

E
1− h0

n2

(
1
n2

n∑
t=1

Xt−1

(
Zt − E1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1]

))2

=
1
n4

n∑
t=1

E
1− h0

n2
X2

t−1

(
Zt − E1− h0

n2
[Zt | Xt−1 − ϑ ◦Xt−1]

)2

≤ C

n4

n∑
t=1

E
1− h0

n2
X2

t−1 → 0.

Hence (22) is equivalent to,

1
n2

n∑
t=1

Xt−1E1− h0
n2

[Zt | Xt−1 − ϑ ◦Xt−1]
p−→ (1− g(0))µG

2
, under P

1− h0
n2

. (24)

Since, by (3),

1
n2

n∑
t=1

E
1− h0

n2
Xt−11{Xt−1 − ϑ ◦Xt−1 = 1} =

h0

n4

n∑
t=1

E
1− h0

n2
X2

t−1

(
1− h0

n2

)Xt−1−1

≤ h0

n4

n∑
t=1

E
1− h0

n2
X2

t−1 → 0,

we have, using (8),

∣∣∣∣∣
1
n2

n∑
t=1

Xt−1E1− h0
n2

[Zt | Xt−1 − ϑ ◦Xt−1]− 1− g(0)
n2

n∑
t=1

Xt−1

∣∣∣∣∣

≤
∣∣∣∣E

g(εt)
g(εt − 1)

1{εt ≥ 1} − (1− g(0))
∣∣∣∣

1
n2

n∑
t=1

Xt−11{Xt−1 − ϑ ◦Xt−1 = 1}

+
1− g(0)

n2

n∑
t=1

Xt−11{Xt−1 − ϑ ◦Xt−1 ≥ 2} p−→ 0, under P
1− h0

n2
,

we conclude (24), which finally concludes the proof of the lemma. 2

Finally, we discuss the term S−n (h, h0) in (17). Under P1 this term is not present, so we only need to
consider h0 > 0. We organize the result and its proof in the following lemma.

Lemma 3.3 We have, for h0 > 0, h ≥ 0,

S−n (h, h0) = log
[

h

h0

] n∑
t=1

1{∆Xt < 0}+ o(P1−h0/n2 ; 1), (25)

where we set log(0) = −∞ and −∞ · 0 = 0.

17



Proof:

First we consider h = 0. From the definition of S−n (0, h0) we see that S−n (0, h0) = 0 if
∑n

t=1 1{∆Xt < 0} = 0
(since an empty sum equals zero by definition). And if

∑n
t=1 1{∆Xt < 0} ≥ 1 we have S−n (0, h0) = −∞

(since W−
tn = −∞ for h = 0). This concludes the proof for h = 0.

So we now consider h > 0. We rewrite

W−
tn = log




h
h0

(
1− h

n2

1− h0
n2

)
+ Xt−1−1

2n2
h2g(1)

g(0)h0(1− h0
n2 )

1 + Xt−1−1
2n2

h0g(1)

g(0)(1− h0
n2 )


 .

By (8), the proof is finished, if we show that

∑

t: ∆Xt=−1

∣∣∣∣W−
tn − log

[
h

h0

]∣∣∣∣
p−→ 0, under P

1− h0
n2

.

Using the inequality | log((a + b)/(c + d))− log(a/c)| ≤ b/a + d/c for a, c > 0, b, d ≥ 0, we obtain

∣∣∣∣W−
tn − log

[
h

h0

]∣∣∣∣ ≤
∣∣∣∣∣W

−
tn − log

[
h

h0

(
1− h

n2

1− h0
n2

)]∣∣∣∣∣ + O(n−2)

≤ Xt−1 − 1
2n2


 h2g(1)

g(0)h0

(
1− h0

n2

)
(

h

h0

(
1− h

n2

1− h0
n2

))−1

+
h0g(1)

g(0)
(
1− h0

n2

)

 + O(n−2).

Hence, it suffices to show that

∑

t: ∆Xt=−1

Xt−1

n2

p−→ 0, under P
1− h0

n2
.

Note first that we have, by (8),

0 ≤ 1
n2

n∑
t=1

Xt−11{∆Xt = −1} =
1
n2

n∑
t=1

Xt−11{∆Xt = −1, εt = 0}+ o(P1−h0/n2 ; 1).

We show that the expectation of the first term on the right-hand side in the previous display converges
to zero, which will conclude the proof. We have, by (3),

lim
n→∞

1
n2

n∑
t=1

E
1− h0

n2
Xt−11{∆Xt = −1, εt = 0} = lim

n→∞
h0

n4

n∑
t=1

E
1− h0

n2
g(0)X2

t−1

(
1− h0

n2

)Xt−1−1

≤ lim
n→∞

h0g(0)
n4

n∑
t=1

E
1− h0

n2
X2

t−1 = 0,
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which concludes the proof of the lemma. 2

To complete the proof of the theorem, note that we obtain from Lemma 3.1, (17), (18), Lemma 3.2
and Lemma 3.3,

Ln(h, h0) = L̃n(h, h0) + o(P1−h0/n2 ; 1) = − (h− h0) g(0)µG

2
+ log

[
h

h0

] n∑
t=1

1{∆Xt < 0}+ o(P1−h0/n2 ; 1),

where we interpret log(0) = −∞, log(0) · 0 = 0 and log (h/0)
∑n

t=1 1{∆Xt < 0} = 0 when h0 = 0, h > 0.
Hence, Theorem 2.1 implies that, for a finite subset I ⊂ R+,

(Ln(h, h0))h∈I
d−→ dQh

dQh0

(Z), under P
1− h0

n2
,

which concludes the proof. 2

Remark 3 In the proof we have seen that,

log
dP(n)

1− h
n2

dP(n)

1− h0
n2

= − (h− h0) g(0)µG

2
+ log

[
h

h0

] n∑
t=1

1{∆Xt < 0}+ o(P1−h0/n2 ; 1).

So, heuristically, we can interpret
∑n

t=1 1{∆Xt < 0} as an ‘approximately sufficient statistic’.

Remark 4 It is straightforward to see that the experiments

B0
n =

(
Z+, 2Z+ ,

(
Binomial

(
n,

h

n

)
| h ≥ 0

))
, and B1

n =
(
Z+, 2Z+ ,

(
Binomial

(
n, 1− h

n

)
| h ≥ 0

))
,

n ∈ N, both converge to the Poisson experiment P =
(
Z+, 2Z+ , (Poisson(h) | h ≥ 0)

)
. Since the law of

Xt given Xt−1 is the convolution of a Binomial(Xt−1, θ) distribution with G, one might be tempted to

think that the convergence of experiments En(G) → E(G) somehow follows from the convergence B1
n → P.

However, a similar reasoning would yield that the sequence of experiments

E0
n(G) =

(
Zn+1

+ , 2Z
n+1
+ ,

(
P(n)

h√
n

| h ≥ 0
))

, n ∈ N,

converges to some Poisson experiment. This is not the case. As Proposition 4.6 shows, the sequence(E0
n(G)

)
n∈N converges to the normal location experiment (R,B(R), (N(h, τ) | h ≥ 0)), for some τ > 0.
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4 Applications

This section addresses the following applications. In Section 4.1 we discuss efficient estimation of h, the
deviation from a unit root, in the nearly unstable case for two settings. The first setting, discussed in
Section 4.1.1, treats the case that the immigration distribution G is completely known. And the second
setting, analyzed in 4.1.2, considers a semiparametric model, where hardly any conditions on G are im-
posed. In Section 4.2 we provide an efficient estimator of θ in the ‘global’ INAR model. Finally, we discuss
testing for a unit root in Section 4.3.

4.1 Efficient estimation of h in nearly unstable INAR models

4.1.1 G known

In this section G is assumed to be known. So we consider the sequence of experiments (En(G))n∈N. As
before, we denote the observation from the limit experiment E(G) by Z, and Qh = Poisson(hg(0)µG/2).

Since we have established convergence of (En(G))n∈N to E(G), an application of the Le Cam-Van der
Vaart Asymptotic Representation Theorem yields the following proposition.

Proposition 4.1 Suppose G satisfies Assumption 3.1. If (Tn)n∈N is a sequence of estimators of h in the

sequence of experiments (En(G))n∈N such that L(Tn | P1−h/n2) → Zh for all h ≥ 0, then there exists a

map t : Z+× [0, 1] → R such that Zh = L(t(Z, U) | Qh×Uniform[0, 1]) (i.e. U is distributed uniformly on

[0, 1] and independent of the observation Z from the limit experiment E(G)).

Proof:

Under the stated conditions the sequence of experiments (En(G))n∈N converges to the Poisson limit exper-
iment E(G) (by Theorem 3.1). Since this experiment is dominated by counting measure on Z+, the result
follows by applying the Le Cam-Van der Vaart Asymptotic Representation Theorem (see, for instance,
Theorem 3.1 in Van der Vaart (1991) or Theorem 9.3 in Van der Vaart (2000)). 2

Thus, to any set of limit-laws of an estimator there is a randomized estimator in the limit experiment
which has the same set of laws. If the asymptotic performance of an estimator is considered to be deter-
mined by its sets of limit laws, the limit experiment thus gives a lower bound to what is possible: along
the sequence of experiments you cannot do better than the best procedure in the limit experiment.

To discuss efficient estimation we need to prescribe what we judge to be optimal in the Poisson limit
experiment. Often a normal location experiment is the limit experiment. For such a normal location ex-
periment, i.e. estimate h on basis of one observation Y from N(h, τ) (τ known), it is natural to restrict to
location-equivariant estimators. For this class one has a convolution-property (see, e.g., Proposition 8.4
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in Van der Vaart (2000)): the law of every location-equivariant estimator T of h can be decomposed as
T

d= Y + V , where V is independent of Y . This yields, by Anderson’s lemma (see, e.g., Lemma 8.5 in
Van der Vaart (2000)), efficiency of Y (within the class of location-equivariant estimators) for all bowl-
shaped loss functions. More general, there are convolution-results for shift-experiments. However, the
Poisson limit experiment E(G) has not a natural shift structure. In such a Poisson setting it seems rea-
sonable to minimize variance amongst the unbiased estimators.

Proposition 4.2 Suppose G is such that 0 < g(0) < 1 and µG < ∞. In the experiment,

E(G) =
(
Z+, 2Z+ , (Qh = Poisson(hg(0)µG/2) | h ≥ 0)

)
,

the unbiased estimator 2Z/g(0)µG minimizes the variance amongst all randomized estimators t(Z, U) for

which Eht(Z,U) = h for all h ≥ 0, i.e.

Varh t(Z, U) ≥ Varh

(
2Z

g(0)µG

)
=

2h

g(0)µG
for all h ≥ 0.

Proof:

This is an immediate consequence of the Lehmann-Scheffé theorem. 2

A combination of this proposition with Proposition 4.1 yields a variance lower-bound to asymptotically
unbiased estimators in the sequence of experiments (En(G))n∈N.

Proposition 4.3 Suppose G satisfies Assumption 3.1. If (Tn)n∈N is an estimator of h in the sequence of

experiments (En(G))n∈N such that L(Tn|P1−h/n2) → Zh with
∫

z dZh(z) = h for all h ≥ 0, then we have

∫
(z − h)2 dZh(z) ≥ 2h

g(0)µG
, for all h ≥ 0. (26)

Proof:

By Proposition 4.1 there exists a randomized estimator t(Z, U) in the limit experiment such that Zh =
L(t(Z, U) | Qh×Uniform[0, 1]). Hence Eht(Z, U) = h and Varh t(Z, U) =

∫
(z−h)2 dZh(z). Now the result

follows from Proposition 4.2. 2

It is not unnatural to restrict to estimators that satisfy L(Tn | P1−h/n2) → Zh. We make the addi-
tional restriction that

∫
z dZh(Z) = h, i.e. the limit-distribution is unbiased. Now, based on the previous

proposition, it is natural to call an estimator in this class efficient if it attains the variance-bound (26).
To demonstrate efficiency of a given estimator, one only needs to show that it belongs to the class of
asymptotically unbiased estimators, and that it attains the bound.
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First we discuss the OLS estimator. Let θn = 1−h/n2. Rewriting Xt = ϑ◦Xt−1 +εt = µG +θnXt +ut for
ut = εt − µG + ϑ ◦Xt−1 − θnXt−1, we obtain the regression-equation Xt − µG = θnXt−1 + ut, which can
also be written as n2(Xt −Xt−1 − µG) = h(−Xt−1) + n2ut (note that indeed Eθnut = EθnXt−1ut = 0).
So the OLS estimator of θn is given by,

θ̂OLS
n =

∑n
t=1 Xt−1(Xt − µG)∑n

t=1 X2
t−1

, (27)

and the OLS estimator of h is given by,

ĥOLS
n = −n2

∑n
t=1 Xt−1(Xt −Xt−1 − µG)∑n

t=1 X2
t−1

= n2
(
1− θ̂OLS

n

)
.

Ispány et al. (2003) analyzed the asymptotic behavior of the OLS estimator under localizing rate n.
However, since the convergence of experiments takes place at rate n2, we analyze the behavior of the OLS
estimator also under localizing rate n2. The next proposition gives this behavior.

Proposition 4.4 If EGε4
1 < ∞, then we have, for all h ≥ 0,

∣∣∣ĥOLS
n

∣∣∣ p−→∞, under P1− h
n2

.

Proof:

Let h ≥ 0 and set θn = 1− h/n2, Pn = Pθn , and En (·) = Eθn (·). We have

n3/2
(
θ̂OLS

n − θn

)
=

n−3/2
∑n

t=1 Xt−1 (εt − µG + ϑ ◦Xt−1 − θnXt−1)
n−3

∑n
t=1 X2

t−1

.

We prove that,

n−3/2
n∑

t=1

Xt−1 (ϑ ◦Xt−1 − θnXt−1)
p−→ 0, under Pn, (28)

n−3
n∑

t=1

X2
t−1

p−→ µ2
G

3
, under Pn, (29)

n−3/2
n∑

t=1

Xt−1 (εt − µG) d−→ N
(

0,
σ2

Gµ2
G

3

)
, under Pn, (30)

all hold, which yields,

n3/2
(
θ̂OLS

n − θn

)
d−→ N

(
0,

3σ2
G

µ2
G

)
, under Pn, (31)
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which in turn will yield the result, since,

∣∣∣ĥOLS
n

∣∣∣ =
√

n

∣∣∣∣−n3/2
(
θ̂OLS

n − θn

)
+

h√
n

∣∣∣∣ .

First, we treat (28). Using the martingale structure and the fact that, conditional on Xt−1, ϑ ◦Xt−1 has
a Binomial(Xt−1, θn) distribution, we obtain,

En

(
1

n3/2

n∑
t=1

Xt−1 (ϑ ◦Xt−1 − θnXt−1)

)2

=
1
n3

n∑
t=1

EnX2
t−1 (ϑ ◦Xt−1 − θnXt−1)

2 ≤ h

n5

n∑
t=1

EnX3
t−1 → 0,

where the last step follows from EnX3
t ≤ EG(

∑t
i=1 εi)3 = O(t3).

Next, we discuss (29). Introduce St =
∑t

i=1 εi and Yt = St−Xt. Notice that Yt is nonnegative, Ys = Ys−1+
(Xs−1−ϑ◦Xs−1) for s ≥ 1, Y0 = 0, and thus Yt =

∑t
i=1(Xi−1−ϑ◦Xi−1). Decompose X2

t = Y 2
t +S2

t−2StYt.
It is straightforward to check that n−3

∑n
t=1 S2

t
p−→ µ2

G/3, under Pn. To obtain (29), it thus suffices to
prove that n−3

∑n
t=1 Y 2

t and n−3
∑n

t=1 StYt both converge to zero in probability under Pn. We have, use
that conditional on Xt, Xt − ϑ ◦Xt has a Binomial(Xt, h/n2) distribution,

EnY 2
t =

t∑

i=1

t∑

j=1

En(Xi−1 − ϑ ◦Xi−1)(Xj−1 − ϑ ◦Xj−1)

=
t∑

i=1

En(Xi−1 − ϑ ◦Xi−1)2 + 2
t∑

i=1

i−1∑

j=1

h

n2
En(Xj−1 − ϑ ◦Xj−1)Xi−1

≤
t∑

i=1

(
h

n2
EnXi−1 +

h2

n4
EnX2

i−1

)
+

2ch

n2

t∑

i=1

i−1∑

j=1

i2,

where we used the (very crude) bounds En(Xs−1 − ϑ ◦Xs−1)Xv−1 ≤ EGSs−1Sv−1 ≤ EGS2
v for s < v and

EGS2
v ≤ cv2 for some constant c > 0 (not depending on v). Since n−4

∑n
t=1

∑n
s=1 EnXsXt converges by

(2), we now easily obtain n−3
∑n

t=1 Y 2
t

p−→ 0, under Pn. Furthermore, we have,

1
n3

n∑
t=1

EnStYt ≤ 1
n3

n∑
t=1

√
EnS2

t EnY 2
t ≤

√
µ2 + σ2

n3

n∑
t=1

t
√
EnY 2

t

≤
√

µ2 + σ2

n3

√
n(2n + 1)(n + 1)

6

√√√√
n∑

t=1

EnY 2
t → 0,

which concludes the proof of (29).
Finally, we treat (30). By a martingale central limit theorem for arrays (see Theorem 3.2, Corollary 3.1
and the remark after that corollary in Hall and Heyde (1980)) we have (30), if the following two conditions

23



are satisfied,

1
n3

n∑
t=1

X2
t−1En

[
(εt − µG)2 | Xt−1

]
p−→ σ2

Gµ2
G

3
, under Pn, (32)

and for all ε > 0,

1
n3

n∑
t=1

X2
t−1En

[
(εt − µG)2 1{Xt−1|εt − µG| > εn3/2} | Xt−1

]
p−→ 0, under Pn. (33)

Since εt is independent of Xt−1 (32) immediately follows from (29). To see that the Lindeberg condition
(33) is satisfied, notice that, using the independence of εt and Xt−1, Cauchy-Schwarz, and Markov’s
inequality, we have

En

[
(εt − µG)2 1{Xt−1|εt − µG| > εn3/2} | Xt−1

]
≤

√
EG(ε1 − µG)4Pn

[
|εt − µG| > εn3/2

Xt−1
| Xt−1

]

≤ σGXt−1

εn3/2

√
EG (ε1 − µG)4,

which yields,

1
n3

n∑
t=1

X2
t−1En

[
(εt − µG)2 1{Xt−1|εt − µG| > εn3/2} | Xt−1

]
≤ σG

√
EG(ε1 − µG)4

εn9/2

n∑
t=1

X3
t−1

p−→ 0 under Pn,

since we noticed in the proof of (28) that n−(4+α)
∑n

t=1 X3
t−1

p−→ 0, under Pn, for α > 0. This concludes
the proof. 2

Thus the OLS estimator explodes. How should we estimate h then? Recall, that we interpreted
∑n

t=1 1{∆Xt <

0} as an approximately sufficient statistic for h. Hence, it is natural to try to construct an efficient estimator
based on this statistic. Using Theorem 2.1 we see that this is indeed possible.

Corollary 4.1 Let G satisfy Assumption 3.1. The estimator,

ĥn =
2

∑n
t=1 1{∆Xt < 0}

g(0)µG
, (34)

is an efficient estimator of h in the sequence (En(G))n∈N.
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4.1.2 A semiparametric model

So far we assumed that G is known. In this section, where we instead consider a semiparametric model, we
hardly impose conditions on G (see, for example, Wefelmeyer (1999) for an introduction to semiparametric
stationary Markov models). The dependence of Pθ upon G is made explicit by adding a subscript: Pθ,G.
Formally, we consider the sequence of experiments,

En =
(
Zn+1

+ , 2Z
n+1
+ ,

(
P(n)

1− h
n2 ,G

| (h,G) ∈ [0,∞)× G
))

, n ∈ N,

where G is the set of all distributions on Z+ that satisfy Assumption 3.1.

The goal is to estimate h efficiently. Here efficient, just as in the previous section, means asymptoti-
cally unbiased with minimal variance. Since the semiparametric model is more realistic, the estimation of
h becomes more difficult. As we will see, the situation for our semiparametric model is quite fortunate:
we can estimate h with the same asymptotic precision as in the case that G is known. In semiparametric
statistics this is called adaptive estimation.

The efficient estimator for the case that G is known cannot be used anymore, since it depends on g(0) and
µG. The obvious idea is to replace these objects by estimates. The next proposition provides consistent
estimators.

Proposition 4.5 Let h ≥ 0 and G satisfy σ2
G < ∞. Then we have,

ĝn(0) =
1
n

n∑
t=1

1{Xt = Xt−1} p−→ g(0) and µ̂G,n =
Xn

n

p−→ µG under P1− h
n2 ,G.

Proof:

Notice first that we have,

1
n

n∑
t=1

(Xt−1 − ϑ ◦Xt−1)
p−→ 0 under P1− h

n2 ,G, (35)

since, condition on Xt−1 and use (2),

0 ≤ 1
n

n∑
t=1

E1− h
n2 ,G (Xt−1 − ϑ ◦Xt−1) =

h

n3

n∑
t=1

E1− h
n2 ,GXt−1 → 0.
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Using that |1{Xt = Xt−1} − 1{εt = 0}| = 1 only if Xt−1 − ϑ ◦Xt−1 ≥ 1, we easily obtain, by using (35),

∣∣∣∣∣ĝn(0)− 1
n

n∑
t=1

1{εt = 0}
∣∣∣∣∣ ≤

1
n

n∑
t=1

1{Xt−1 − ϑ ◦Xt−1 ≥ 1} ≤ 1
n

n∑
t=1

(Xt−1 − ϑ ◦Xt−1)
p−→ 0.

Now the result for ĝn(0) follows by applying the weak law of large numbers to n−1
∑n

t=1 1{εt = 0}. Next,
consider µ̂G,n. We have, use (35) and the weak law of large numbers for n−1

∑n
t=1 εt,

µ̂G,n =
Xn

n
=

1
n

n∑
t=1

(Xt −Xt−1) =
1
n

n∑
t=1

εt − 1
n

n∑
t=1

(Xt−1 − ϑ ◦Xt−1)
p−→ µG under P1− h

n2 ,G,

which concludes the proof. 2

From the previous proposition it is obvious that the asymptotic behavior of ĥn, in (34), is identical
to the asymptotic behavior of,

h̃n =
2

∑n
t=1 1{∆Xt < 0}
ĝn(0)µ̂G,n

.

This implies that estimation of h in the semiparametric experiments (En)n∈N is not harder than estimation
of h in (En(G))n∈N. In semiparametric parlor: the semiparametric problem is adaptive to G. The precise
statement is given in the following corollary; the proof is trivial.

Corollary 4.2 If (Tn)n∈N is a sequence of estimators in the semiparametric sequence of experiments

(En)n∈N such that L (
Tn | P1−h/n2,G

) → Zh,G with
∫

z dZh,G(z) = h for all (h,G) ∈ [0,∞) × G, then we

have ∫
(z − h)2 dZh,G(z) ≥ 2h

g(0)µG
for all (h,G) ∈ [0,∞)× G.

The estimator h̃n satisfies the conditions and achieves the variance bound.

4.2 Efficient estimation in the global model in case G is known

For convenience we introduce Xn = Zn+1
+ and An = 2Z

n+1
+ , and the following assumption.

Assumption 4.1 A probability distribution G on Z+ is said to satisfy Assumption 4.1 if g(k) > 0 for

all k ∈ Z+, g is eventually decreasing, i.e. there exists M ∈ N such that g(k + 1) ≤ g(k) for k ≥ M and

EGε4
1 < ∞.

So far we considered nearly unstable INAR experiments. This section considers global experiments for the
case G known, i.e. Dn(G) =

(
Xn,An,

(
P(n)

θ | θ ∈ [0, 1]
))

, n ∈ N. The goal is to estimate the autoregression
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parameter θ efficiently.

The ‘stable’ sequence of experiments D(0,1)
n (G) =

(
Xn,An,

(
P(n)

θ | θ ∈ (0, 1)
))

, n ∈ N, is analyzed by
Drost et al. (2006). Under Assumption 4.1 it follows from their results that these experiments are of the
Local Asymptotic Normal form (at

√
n-rate). Recall that an estimator Tn of θ is regular if for all θ ∈ (0, 1)

there exists a law Lθ such that for all h ∈ R,

L
(√

n

(
Tn −

(
θ +

h√
n

))
| Pθ+h/

√
n

)
→ Lθ,

i.e. vanishing perturbations do not influence the limiting distribution (or more accurately: the associated
estimators in the local limit experiment are location-equivariant). For LAN experiments, the Hájek-Le
Cam convolution theorem tells us that for every regular estimator Tn of θ we have: Lθ = N(0, I−1

θ ) ⊕
∆θ,(Tn), where Iθ > 0 (which does not depend on the estimator, and thus is unavoidable noise) is the
Fisher-information (see Drost et al. (2006) for the formula). Since ∆θ,(Tn) is additional noise, one calls a
regular estimator efficient if ∆θ,(Tn) is degenerated at {0}. Drost et al. (2006) provide an (computationally
attractive) efficient estimator of θ by updating the OLS estimator into an efficient estimator. Let us recall
this estimator. Let θ̂∗n be a discretized version of θ̂OLS

n (for n ∈ N make a grid of intervals with lengths
1/
√

n, over R and, given θ̂OLS
n , define θ̂∗n to be the midpoint of the interval into which θ̂OLS

n falls). Then,

θ(0,1)
n = θ̂∗n +

1
n

n∑
t=1

Î−1
θ,n

˙̀
θ(Xt−1, Xt; θ̂∗n, G), (36)

where, for θ ∈ (0, 1),

˙̀
θ(xt−1, xt; θ, G) = Eθ,G

[
ϑ ◦Xt−1 − θXt−1

θ(1− θ)
| Xt = xt, Xt−1 = xt−1

]
=

∑xt−1
k=0 (k − θxt−1) bxt−1,θ(k)g(xt − k)

θ(1− θ)P θ
xt−1,xt

,

and,

În,θ =
1
n

n∑
t=1

˙̀2
θ(Xt−1, Xt; θ̂∗n, G),

is an efficient estimator of θ in the sequence of experiments D(0,1)
n (G), n ∈ N.

The difference between D(0,1)
n (G) and Dn(G) is that in Dn(G) the full parameter space is used. To consider

estimation in the full model, we also need to consider the local asymptotic structure of Dn(G) at θ = 0
and θ = 1. For θ = 1 we have already done this by determining the limit experiment of (En(G))n∈N. The
next proposition shows that for θ = 0 the situation is standard: we have the LAN-property.

Proposition 4.6 Suppose G satisfies Assumption 4.1. Then (Dn(G))n∈N has the LAN-property at θ = 0,
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i.e. for h ≥ 0 we have,

n∑
t=1

log
P

h/
√

n
Xt−1,Xt

P 0
Xt−1,Xt

=
n∑

t=1

log
P

h/
√

n
Xt−1,Xt

g(Xt)
= hS0

n −
h2

2
I0 + o(P0; 1), (37)

where,

I0 = (σ2
G + µ2

G)EG

(
g(ε1)− g(ε1 − 1)

g(ε1)

)2

,

S0
n =

1√
n

n∑
t=1

−Xt−1

(
g(Xt)− g(Xt − 1)

g(Xt)

)
d−→ N(0, I0) under P0.

Proof:

Note first that under P0 we have Xt = εt. Since we are localizing at θ = 0, the following representation
of the transition probabilities is convenient, P θ

xt−1,xt
=

∑xt−1
k=0 bxt−1,θ(k)g(xt − k). Using the inequality

log((a + b)/c)− log(a/c) ≤ b/a for a, c > 0, b ≥ 0 we obtain, for h > 0,

log
dP(n)

h√
n

dP(n)
0

= log
P

h/
√

n
Xt−1,Xt

g(Xt)
− log

∑2
k=0 bXt−1, h√

n
(k)g(Xt − k)

g(Xt)
≤ Rt =

∑Xt−1
k=3 bXt−1, h√

n
(k)g(Xt − k)

∑2
k=0 bXt−1, h√

n
(k)g(Xt − k)

.

On the event An = {∀t ∈ {1, . . . , n} : hεt <
√

n} we have for some constant K ≥ 0, using (43) and the
assumption that G is eventually decreasing,

Rt ≤
2K bXt−1, h√

n
(3)

(
1− h√

n

)Xt−1
≤ Kh3X3

t−1

3n
√

n
(
1− h√

n

)3 .

Using EGε3
1 < ∞ and Markov’s inequality, it is easy to see that limn→∞ P0(Ac

n) = 0. From this it easily
follows that

∑n
t=1 Rt

p−→ 0 under P0. We decompose,

Ltn = log

∑2
k=0 bXt−1, h√

n
(k)g(Xt − k)

g(Xt)
= (Xt−1 − 2) log

(
1− h√

n

)
+ log (1 + An + Btn + Ctn) ,

where,

An = − 2h√
n

+
h2

n
, Btn =

h√
n

Xt−1

(
1− h√

n

)
g(Xt − 1)

g(Xt)
, Ctn =

Xt−1(Xt−1 − 1)
2

h2

n

g(Xt − 2)
g(Xt)

.
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From here on the proof continues in the classical way. Using the Taylor expansion log(1+x) = x−x2/2+
x2r(x), where r satisfies r(x) → 0 as x → 0, we make the decomposition,

log(1 + An + Btn + Ctn) = An + Btn + Ctn − 1
2

(
A2

n + B2
tn + C2

tn + 2AnBtn + 2AnCtn + 2BtnCtn

)
+ Rtn,

where Rtn = (An + Btn + Ctn)2 r(An+Btn+Ctn). It is easy to see that the terms
∑n

t=1 C2
tn,

∑n
t=1 BtnCtn

and
∑n

t=1 AnCtn are all o(P0; 1). Furthermore, we have,

n∑
t=1

{
(Xt−1 − 2) log

(
1− h√

n

)
+ An − 1

2
A2

n

}
= − h√

n

n∑
t=1

Xt−1 − h2

2n

n∑
t=1

Xt−1 + o(P0; 1),

and,

− h√
n

n∑
t=1

Xt−1 +
n∑

t=1

Btn = hS0
n −

h2

n

n∑
t=1

Xt−1
g(Xt − 1)

g(Xt)
.

Combining the previous displays we obtain,

Ltn = hS0
n +

n∑
t=1

{
Ctn − 1

2
B2

tn −AnBtn − h2

2n
Xt−1 − h2

n
Xt−1

g(Xt − 1)
g(Xt)

}
+ Rtn + o(P0; 1).

By the law of large numbers we have (note that E0g(Xt− i)/g(Xt) = 1, i = 1, 2), under P0,
∑n

t=1 Ctn
p−→

h2
(
σ2

G + µ2
G − µG

)
/2,

∑n
t=1 AnBtn

p−→ −2h2µG, (1/n)
∑n

t=1 Xt−1
p−→ µG, (1/n)

∑n
t=1 Xt−1g(Xt −

1)/g(Xt)
p−→ µG, and

∑n
t=1 B2

tn
p−→ h2(σ2

G + µ2
G)EG(g2(ε1 − 1)/g2(ε1)). Thus, once we show that∑n

t=1 Rtn = o(P0; 1) the proposition is proved. Using the inequality (x + y + z)2 ≤ 9(x2 + y2 + z2)
we easily obtain

∑n
t=1(An + Btn + Ctn)2 = O(P0; 1). And using Markov’s inequality it is easy to see

that, for ε > 0, P0{max1≤t≤n |An + Btn + Ctn| > ε} ≤ ∑n
t=1 P0 {|An + Btn + Ctn| > ε} → 0. Thus∑n

t=1(An + Btn + Ctn)2r(An + Btn + Ctn)
p−→ 0 under P0, which concludes the proof. 2

Remark 5 (i) The meaning of this LAN-result is that the sequence,
(
Xn,An,

(
P(n)

h/
√

n
| h ≥ 0

))
, n ∈ N,

of local experiments, converges to the experiment
(
(R,B(R),

(
N

(
h, I−1

0

) | h ≥ 0
))

. (ii) Note that we are

dealing here with a ‘one-sided’ LAN-result, i.e. we only consider h positive. As a consequence, it is not

possible to apply the standard results for experiments with the LAN-structure directly (this, since these are

formulated for interior points of the parameter space). Since we do not want to discuss this issue further,

we consider asymptotically centered estimators with minimal asymptotic variance as a best estimator at

θ = 0 (see below). (iii) The ‘information-loss principle’, which is used in Drost et al. (2006) to establish

the LAN-property for θ ∈ (0, 1), cannot be used here since the score of a Binomial distribution does not

exist (in the usual sense) at θ = 0.
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Now we completed the picture of the local asymptotic structures of (Dn(G))n∈N we can discuss efficient
estimation. First, we describe the class of estimators in which we are interested. We consider estimators
Tn that satisfy,

(i) (θ = 0) for all h ≥ 0,

L
(√

n

(
Tn − h√

n

)
| Ph/

√
n

)
→ Lh, with

∫
z dLh(z) = 0, (38)

(ii) (0 < θ < 1) Tn is regular, i.e. for all h ∈ R,

L
(√

n

(
Tn −

(
θ +

h√
n

))
| Pθ+h/

√
n

)
→ Lθ, (39)

(ii) (θ = 1) for all h ≥ 0,

L
(

n2

(
Tn −

(
1− h

n2

))
| P1−h/n2

)
→ Rh with

∫
z dRh(z) = 0. (40)

So for θ ∈ (0, 1) we ask for regularity which we discussed earlier. For θ = 0 and θ = 1 we only ask for
a limiting distribution with mean zero. For any such estimator we have (the first inequality follows by
arguments completely analogue to the derivation of the third inequality, we already discussed the second
statement, and the third follows from Proposition 4.3 by taking ĥn = n2(1− Tn) as estimator of h),

∫
z2 dLh(z) ≥ I−1

0 , Lθ = N(0, I−1
θ )⊕∆θ,(Tn),

∫
z2 dRh(z) ≥ 2h

g(0)µG
for all h ≥ 0, θ ∈ (0, 1). (41)

Hence it is natural to call an estimator in the global model efficient if it satisfies (38)-(40) with Lθ =
N(0, I−1

θ ),
∫

z2 dLh(z) = I−1
0 , and

∫
z2 dRh(z) = 2h/g(0)µG for all h ≥ 0, θ ∈ (0, 1).

Proposition 4.7 Suppose G satisfies Assumption 4.1. Let α, β ∈ (0, 1/2), and cα, cβ > 0. The estimator,

θ̂n = θ0
n1

{∣∣∣θ̂OLS
n

∣∣∣ ≤ cαn−α
}

+ θ(0,1)
n 1

{∣∣∣θ̂OLS
n

∣∣∣ > cαn−α, |θ̂OLS
n − 1| > cβn−β

}
+ θ1

n1
{
|θ̂OLS

n − 1| ≤ cβn−β
}

,

where θ
(0,1)
n is defined in (36) and,

θ0
n =

1√
n

I−1
0 S0

n, θ1
n = 1− 2

∑n
t=1 1{∆Xt < 0}
n2g(0)µG

,

is an efficient estimator of θ in the sequence of experiments (Dn(G))n∈N.
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Proof:

From Le Cam’s third lemma and Proposition 4.6 it easily follows that θ0
n satisfies (38) and attains its vari-

ance lower-bound in (41). Since θ
(0,1)
n is an efficient estimator in the ‘stable experiments’ (D(0,1)

n (G))n∈N
it follows, by definition, that θ

(0,1)
n satisfies (39) and attains the convolution lower-bound in (41). And

it is also clear (from Proposition 4.1) that θ1
n satisfies (40) and attains its variance lower-bound in (41).

Thus it suffices to show that
√

n
(
θ̂n − θ0

n

)
p−→ 0 under Ph/

√
n for all h ≥ 0,

√
n

(
θ̂n − θ

(0,1)
n

)
p−→ 0 under

Pθ+h/
√

n for all θ ∈ (0, 1), h ∈ R, and n2
(
θ̂n − θ1

n

)
p−→ 0 under P1−h/n2 for all h ≥ 0. It is an easy exercise,

using a martingale central limit theorem, to show that
√

n
(
θ̂OLS

n − (θ + h/
√

n)
)

converges to a normal
distribution under Pθ+h/

√
n for all θ ∈ [0, 1) and h ∈ R (for θ = 0 we only consider h ≥ 0). And from (31)

we have that n3/2(θ̂OLS
n − (1 − h/n2)) converges to a normal distribution under P1−h/n2 for h ≥ 0. This

implies that nαθ̂OLS
n

p−→ 0 under Ph/
√

n and Ph/
√

n

{∣∣∣θ̂OLS
n − 1

∣∣∣ ≤ cβn−β
}
→ 0 for h ≥ 0, nαθ̂OLS

n
p−→ ∞

and nβ
∣∣∣θ̂OLS

n − 1
∣∣∣ p−→ ∞ under Pθ+h/

√
n, for θ ∈ (0, 1), h ∈ R, and we have nβ

(
θ̂OLS

n − 1
)

p−→ 0 under

P1−h/n2 and P1−h/n2

{∣∣∣θ̂OLS
n

∣∣∣ ≤ cαn−α
}
→ 0 for h ≥ 0. This concludes the proof. 2

4.3 Testing for a unit root

This section discusses testing for a unit root in an INAR(1) model. We consider the case that G is known
and satisfies Assumption 3.1.

In the global experiments Dn(G) = (Xn,An, (P(n)
θ | θ ∈ [0, 1])), n ∈ N, we want to test the hypothesis

H0 : θ = 1 versus H1 : θ < 1. In other words, we want to test the null hypothesis of a unit root. Hellström
(2001) considered this problem, from the perspective that one wants to use standard (that is, OLS) soft-
ware routines in the testing. He derives, by Monte Carlo simulations, the finite sample null-distributions
for a Dickey-Fuller test of a random walk with Poisson distributed errors. This (standard) Dickey-Fuller
test statistic is given by the usual (i.e. non-corrected) t-test that the slope parameter equals 1, i.e.

τn =
θ̂OLS

n − 1√
σ2

G

(∑n
t=1 X2

t−1

)−1
,

where θ̂OLS
n is given by (27). Under H0, i.e. under P1, we have (we are now dealing with a random walk with

drift), τn
d−→ N(0, 1). Hence, the size α ∈ (0, 1) Dickey-Fuller test rejects H0 if and only if τn < Φ−1(α).

To analyze the performance of a test, one needs to consider the local asymptotic behavior of the test.
Since En(G) → E(G) we should consider the performance of τn along the sequence En(G). The following
proposition shows, however, that the asymptotic probability that the null hypothesis is rejected equals α

for all alternatives. Hence, the standard Dickey-Fuller test has no power.
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Proposition 4.8 If EGε4
1 < ∞ we have for all h ≥ 0,

τn
d−→ N(0, 1), under P1− h

n2
,

which yields

lim
n→∞

P1− h
n2

(reject H0) = α.

Proof:

From (29) and (31) the result easily follows. 2

So the standard Dickey-Fuller test for a unit root does not behave well in the nearly unstable INAR(1)
setting. In our sequence of experiments En(G), n ∈ N, we propose the intuitively obvious tests

ψn(X0, . . . , Xn) =

{
α, if

∑n
t=1 1{∆Xt < 0} = 0,

1, if
∑n

t=1 1{∆Xt < 0} ≥ 1,

i.e. reject H0 if the process ever moves down and reject H0 with probability α if there are no downward
movements. We will see that this obvious test is in fact efficient.

To discuss efficiency of tests, we recall the implication of the Le Cam-Van der Vaart asymptotic rep-
resentation theorem to testing (see Theorem 7.2 in Van der Vaart (1991)). Let α ∈ (0, 1) and φn be a
sequence of tests in (En(G))n∈N such that lim supn→∞ E1φn (X0, . . . , Xn) ≤ α. Then we have

lim sup
n→∞

E1− h
n2

φn(X0, . . . , Xn) ≤ sup
φ∈Φα

Ehφ(Z) for all h > 0,

where Φα is the collection of all level α tests for testing H0 : h = 0 versus H1 : h > 0 in the Poisson limit
experiment E(G). If we have equality in the previous display, it is natural to call a test φn efficient. It is
obvious that the uniform most powerful test in the Poisson limit experiment is given by

φ(Z) =

{
α, if Z = 0,

1, if Z ≥ 1.

Its power function is given by E0φ(Z) = α and Ehφ(Z) = 1−(1−α) exp(−hg(0)µG/2). Using Theorem 2.1
we find

lim
n→∞

E1ψn(X0, . . . , Xn) = α, and lim
n→∞

E1− h
n2

ψn(X0, . . . , Xn) = 1− (1− α) exp
(
−hg(0)µG

2

)
for h > 0.

We conclude that the test ψn is efficient.
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A Auxiliaries

The following result is basic (see, for instance, Feller (1968) pages 150-151), but since it is heavily applied,
we state it here for convenience.

Proposition A.1 Let m ∈ N, p ∈ (0, 1). If r > mp, we have

m∑

k=r

bm,p(k) ≤ bm,p(r)
r(1− p)
r −mp

. (42)

So, if 1 > mp, we have for r = 2, 3,
m∑

k=r

bm,p(k) ≤ 2 bm,p(r). (43)

For convenience we recall Theorem 1 in Serfling (1975).

Lemma A.1 Let Z1, . . . , Zn (possibly dependent) 0-1 valued random variables and set Sn =
∑n

t=1 Zt.

Let Y be Poisson distributed with mean
∑n

t=1 EZt. Then we have

sup
A⊂Z+

|P {Sn ∈ A} − P{Y ∈ A}| ≤
n∑

t=1

(EZt)
2 +

n∑
t=1

E |E [Zt | Z1, . . . , Zt−1]− EZt| .
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