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Fixed tree games with repeated players

S. Miquel a B. van Velzen b, c H. Hamers b H. Norde b

Abstract

This paper introduces fixed tree games with repeated players (FRP
games) which are a generalization of standard fixed tree games. This
generalization consists in allowing players to be located in more than
one vertex. As a consequence, these players can choose among several
ways of connection with the root.

In this paper we show that FRP games are balanced. Moreover, we
prove that the core of an FRP game coincides with the core of a related
concave fixed tree game. We show how to find the nucleolus and we
characterize the orders which provide marginal vectors in the core of
an FRP game.

Classification: C71
Keywords: Cooperative game, fixed tree game, core.

1 Introduction

In this paper we consider a generalization of the fixed tree problem, introduced
by Megiddo (1978). In a fixed tree problem a rooted tree Γ and a set of agents
N is given, each agent being located at precisely one vertex of Γ and each
vertex containing precisely one agent. Megiddo (1978) associates with such a
problem a cooperative cost game (N, c), a fixed tree game, where, for every
coalition S ⊆ N , c(S) denotes the minimal cost needed to connect all members
of S to the root via a subtree of Γ.

Fixed tree games and variants of fixed tree games have also been studied
in Galil (1980), Maschler et al. (1995), Granot et al. (1996), Koster (1999),
Van Gellekom (2000) and Koster et al. (2001). The special case where the
tree is a chain corresponds to airport games, which have been considered in
Littlechild (1974), Littlechild and Owen (1977) and Littlechild and Thompson

aDepartament de Matemàtiques, Universitat de Lleida, Spain. Financial support by
Universitat de Lleida.

bCentER and Department of Econometrics and OR, Tilburg University, P.O.Box 90153,
5000 LE Tilburg, The Netherlands.

cCorresponding author. Email: s.vanvelzen@uvt.nl
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(1977). Variants of fixed tree games, where it is allowed that one vertex is
occupied by more players or by no player, are considered in e.g. Koster (1999)
and Van Gellekom (2000). However, in these variants it is still required that
every player occurs in precisely one vertex.

In this paper we generalize the model of Megiddo (1978) in the sense that
players may occur repeatedly, i.e. in more than one vertex of the given tree.
As a motivation for this generalized model one can consider for example the
following irrigation problem. Consider a set of parcels in a desert environment
which need to be irrigated from a well. For that reason, a network has been
designed which allows the transportation of water from the well to at least
one of the corners of each parcel. Consider, for example, the situation with
eight parcels in Figure 1.
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Figure 1: An irrigation problem with eight parcels.

Bold lines indicate the network that has already been constructed. The
players are facing the problem of dividing the maintenance costs of this net-
work, so they are facing a fixed tree problem where the tree is as depicted in
Figure 2.

With this fixed tree we can associate in a natural way a cooperative cost
game (N, c). For every coalition S ⊆ N the number c(S) denotes the minimal
cost needed to connect all members of S at least once to the root via a subtree.
This leads to the class of fixed tree games with repeated players.

Standard fixed tree games and the variants of these games are known to
be concave. We will show that this needs not be true for fixed tree games
with repeated players. However, we will show that these games are balanced,
by showing that the core of a fixed tree game with repeated players coincides
with the core of some related standard fixed tree game. Moreover, we analyze
which marginal vectors provide core elements.

This paper is organized as follows. In Section 2 we recall some notions
from graph theory and cooperative game theory. In Section 3 we formally
introduce fixed tree games with repeated players and in Section 4 we focus on
the structure of the core of these games.
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Figure 2: Fixed tree of the problem in Figure 1.

2 Preliminaries

In this section we recall some notions of graph theory and cooperative game
theory.

A tree Γ = (V,E) is an undirected connected graph without cycles, with
set of vertices V and set of edges E. The set V contains a vertex which has a
special meaning. We denote this vertex by 0 and refer to it as the root. For
each vertex v ∈ V there is a unique path from the root to vertex v, which we
denote by P (v).

The precedence relation (V,�) on V is defined by v � v′ if and only if
v ∈ P (v′). Analogously we define the precedence relation (E,�) on the set of
edges. A trunk of (V,E) is a set of vertices T ⊆ V containing the root which
is closed under the precedence relation (V,�), i.e. if v ∈ T and v ′ � v, then
v′ ∈ T . Hence, the subtree corresponding to this set of vertices T is connected.
The set of followers of a vertex v is the set F (v) = {v ′ ∈ V |v � v′}. A vertex
v is called a leaf if F (v) = {v}. Analogously we define the set of edges F (e)
following an edge e. Note that it holds that e ∈ F (e).

A cooperative (cost) game is a tuple (N, c) where N = {1, 2, ..., n} is the
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set of players, and c : 2N → R is its characteristic (cost) function, in which,
c(S) is interpreted as the total cost of coalition S. By convention, c(∅) = 0.

The core of a cost game (N, c) is the set

C(c) := {x ∈ R
N |

∑

i∈N

xi = c(N) and
∑

i∈S

xi ≤ c(S) for all S ⊆ N}.

If x ∈ C(c), then no coalition S ⊆ N has an incentive to split off from the
grand coalition N if x is the proposed vector of cost shares. A game (N, c)
is called balanced if it has a nonempty core and totally balanced if the core
of every subgame is nonempty, where the subgame corresponding to some
coalition T ⊆ N , T 6= ∅, is the game (T, cT ) with cT (S) = c(S) for all S ⊆ T .

An order on the players is a bijection θ : N → {1, . . . , n}, where θ(i) = j
means that player i is at position j. For every order θ : N → {1, . . . , n} we
define the marginal vector mθ(c) by

mθ
k(c) = c({l ∈ N |θ(l) ≤ θ(k)}) − c({l ∈ N |θ(l) < θ(k)})

for every k ∈ N .
A game (N, c) is called monotone if for every S, T ∈ 2N with S ⊆ T , we

have c(S) ≤ c(T ). Moreover, for a balanced monotonic game (N, c) it holds
that xi ≥ 0 for every x ∈ C(c).

A game (N, c) is concave if for every i ∈ N and every S ⊆ T ⊆ N\{i},
we have c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ). Hence, for concave games the
marginal contribution of a player to any coalition is larger than his marginal
contribution to a larger coalition. It is a well known result that a cost game
is concave if and only if all marginal vectors are core elements (cf. Shapley
(1971) and Ichiishi (1981)). Hence, concave cost games are balanced.

3 Model and game

In this section we introduce fixed tree problems with repeated players and its
associated cooperative games.

Definition 1. A fixed tree problem with repeated players, FRP problem for
short, is a 5-tuple

Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E)

where

1. N = {1, 2, ..., n} is a finite set of players;

2. (V,E) is a tree with vertex set V and edge set E;

3. 0 is a special element of V , called the root of the tree;
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4. S(v) ⊆ N is, for every v ∈ V , a (possibly empty) subset of players
occupying vertex v;

5. a(e) > 0 is, for every edge e ∈ E, the cost associated with edge e;

which satisfies the following assumptions

(A1) for every i ∈ N there is a v ∈ V with i ∈ S(v);

(A2) for each leaf t ∈ V , there is an i ∈ N such that i ∈ S(t) and
i /∈ S(v) for every v ∈ V \{t}.

Assumption (A1) states that every player should occupy at least one vertex
in the tree. Assumption (A2) states that the tree (V,E) is “optimal” for the
grand coalition N , in the sense that no proper subtree of (V,E) provides at
least one connection with the root for every i ∈ N .

Players who occupy at least two vertices are called repeated players. Play-
ers who occupy precisely one vertex are called essential players. If an FRP
problem does not have repeated players, then it is called a standard FRP.

1,31,2 2,3

3 5 6

1,31,2 2,3

41,5 6

3 5 6

1 1 1

Figure 3: Two trees which depict cost sharing problems.

Example 1. In Figure 3 two cost sharing problems are depicted.
We can easily see that the tree on the left does not correspond to an FRP

problem because after removing one of the edges, all three players remain
connected to the root. Hence, Assumption (A2) is violated.

The tree on the right, on the contrary, corresponds to an FRP problem. It
has three leaves and each of them is occupied by one essential player. Never-
theless, this is not a standard tree problem as defined in Megiddo (1978) since
each of the players 1, 2 and 3 is located in more than one vertex.

For an FRP problem we can define a corresponding cost game.

Definition 2. Let Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E) be an FRP prob-
lem. The corresponding fixed tree game with repeated players, FRP game for
short, is the cost game (N, c) defined by
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c(S) = min
TS∈AS

{

∑

e∈TS

a(e)

}

for every S ⊆ N, S 6= ∅

c(∅) = 0

where AS is the collection of admissible subtrees for coalition S. A subtree is
admissible for coalition S ⊆ N if it provides at least one connection with the
root for every i ∈ S.

In the following example we illustrate the concepts of FRP games and
admissible trees.

1,31,2

3 5

A

B C

Figure 4: An FRP problem.

Example 2. In Figure 4 an FRP problem is depicted. The set of admissible
trees for player 1 is A{1} = {{(A,B)}, {(A,C)}, {(A,B), (A,C)}}. It now
holds that c({1}) = min{3, 5, 3 + 5} = 3.

From the definition of FRP games it easily follows that FRP games are
monotonic games since for every S ⊆ T ⊆ N , we have AS ⊇ AT .

Note that in the tree on the right depicted in Figure 3, the position of
player 1 in the vertex with player 5 seems irrelevant since the path from the
root to this vertex contains another vertex occupied by player 1. We formalize
this idea below.

Given an FRP problem

Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E)

we define the reduced problem

Γred = (N, (V,E), 0, (Sred(v))v∈V , (a(e))e∈E)

where for every v ∈ V

Sred(v) = {i ∈ S(v) : there is no v′ ∈ P (v), v′ 6= v with i ∈ S(v′)}.

That is, from the set of players occupying vertex v, those which also occupy
a preceding vertex are dropped. Observe that the essential players remain in
their initial vertex. The cost game associated with the reduced problem will
be denoted by (N, cred). This reduction is illustrated in Example 3.
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Figure 5: An FRP problem Γ and the corresponding reduced problem Γred.

Example 3. In Figure 5 an FRP problem Γ is depicted and its corresponding
reduced problem Γred. In the first tree, player 7 is located in four different
vertices. So player 7 can choose among four different paths to be connected
to the root. However, the path that ends in the vertex occupied by players 6
and 7 is part of the path that ends in the vertex occupied by players 2, 6 and
7. Therefore player 7 will never choose this second path to connect himself to
the root, since this path yields a higher cost. Therefore we can delete player
7 from the vertex occupied by players 2, 6 and 7 without changing the game.

Proceeding in this way we obtain the reduced problem Γred which is de-
picted in the second tree of Figure 5.

The proof of the following proposition is straightforward and therefore
omitted.

Proposition 1. Let (N, c) be an FRP game corresponding to an FRP problem
and let (N, cred) be the game corresponding to its associated reduced FRP
problem. Then (N, c) and (N, cred) coincide.

Henceforth we assume in the sequel of this paper, without loss of generality,
that an FRP problem is reduced.

4 The core

In this section we show that FRP games are balanced and we focus on the
structure of the core.

Standard fixed tree games are known to be concave. Hence, it follows
that these games are balanced. The following example illustrates that this
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argument can not be used for FRP games, since these games need not be
totally balanced, and therefore not concave.

Example 4. Let (N, c) be the FRP game obtained from the second FRP
problem depicted in Figure 3. The characteristic function of the subgame
restricted to coalition {1, 2, 3} is the following

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
c{1,2,3}(S) 3 3 5 3 5 6 8

Now suppose that C(c{1,2,3}) 6= ∅. Then there is an x ∈ C(c{1,2,3}). It
follows that x1 + x2 ≤ c{1,2,3}({1, 2}) = 3. Similarly we have that x1 + x3 ≤
c{1,2,3}({1, 3}) = 5 and x2 + x3 ≤ c{1,2,3}({2, 3}) = 6. Adding these three
expressions yields 2(x1 + x2 + x3) ≤ 14, or equivalently x1 + x2 + x3 ≤ 7.
However, since x ∈ C(c{1,2,3}) it holds that x1 + x2 + x3 = 8. Because of this
contradiction we conclude that C(c{1,2,3}) = ∅, and therefore that (N, c) is not
totally balanced.

Next we will show that FRP games have a nonempty core. In order to do
so we will show that the core of an FRP game coincides with the core of a
related standard FRP game. Since this standard FRP game is concave and
thus balanced, we then conclude that FRP games are balanced as well.

Consider the FRP problem Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E). We
obtain the related standard FRP problem Γst by relocating the repeated play-
ers. In particular, each repeated player gets relocated to precisely one vertex.
This new situation is defined by the 5-tuple

Γst = (N, (V,E), 0, (S̄(v))v∈V , (a(e))e∈E),

where S̄(v) is obtained from S(v) as follows.
If player i ∈ N is a repeated player in Γ, then there is more than one path

connecting him with the root. Since (V,E) is a tree, the common part of all
these paths is again a path. Let v∗ ∈ V be the furthest vertex from the root
on this common path, then in the new problem, player i is located only in
vertex v∗.

If player i ∈ N is essential in Γ then in Γst this player remains in the same
vertex. That is, if i is an essential player in Γ and i ∈ S(v), then i ∈ S̄(v).

In the following example the construction of Γst is illustrated.

Example 5. Consider the FRP problem Γ corresponding to the tree depicted
in Figure 6.

From Γ we obtain Γst by changing only the position of the repeated players.
For example player 4 can choose between two paths in order to be connected
to the root. The intersection of these two paths is the path which contains
the root and the vertex occupied by player 6. In Γst, player 4 occupies the
furthest vertex from the root on this intersection path. Note that repeated
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Figure 6: An FRP problem and the corresponding standard fixed tree problem.

players 4, 7 and 9, also move to vertices which are closer to the root. Observe
that player 7 is reallocated to the root. Meanwhile all essential players remain
in the same vertex.

Granot et al. (1996) show that standard fixed tree games are concave.
The following proposition weakly generalizes this result and can be proved in
a similar way. Therefore the proof is omitted.

Proposition 2. Cost games corresponding to standard FRP’s are concave.

In the following theorem we show that the cores of the cost games cor-
responding to an FRP problem and its associated standard FRP problem
coincide.

Theorem 1. Let Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E) be an FRP problem
and let Γst = (N, (V,E), 0, (S̄(v))v∈V , (a(e))e∈E) be the corresponding stan-
dard FRP problem. Let (N, c) and (N, cst) be the corresponding cost games.
Then it holds that C(c) = C(cst).

Proof. First note that cst(S) ≤ c(S) for every S ⊆ N and cst(N) = c(N). As
a consequence we get C(cst) ⊆ C(c).

Now we show that C(c) ⊆ C(cst). Let x ∈ C(c). From the monotonicity
of (N, c) it follows that x ≥ 0. We need to show that for every S ⊆ N it holds
that x(S) ≤ cst(S), or equivalently that x(N\S) ≥ c(N) − cst(S).

Let S ⊂ N , and let VS be the set of vertices in which the members of S
are located in the standard FRP problem, i.e. VS = {v ∈ V |S̄(v) ∩ S 6= ∅}.
Let TS be the smallest trunk containing VS, and let ES be the subset of
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edges corresponding to this trunk. By definition of TS it holds that cst(S) =
∑

e∈ES

a(e).

Now let OS denote the set of outgoing edges of TS, i.e. OS =
{(i, j) ∈ E|i ∈ TS and j /∈ TS}. Furthermore let, for all e ∈ OS, Ve be the

set of vertices corresponding to edges of F (e)\{e}. Finally, let I c
e =

⋃

v/∈Ve

S(v)

and let Ie = N\Ic
e . In other words, Ie are those players which appear only in

vertices of Ve, and Ic
e is its complement. Because of assumption (A2) it follows

that Ie 6= ∅ for each e ∈ OS.
Let e ∈ OS. Since each member of Ic

e appears at least once in a vertex of
V \Ve, the edges in F (e) are not needed to connect the members of I c

e to the
root.

Hence, c(Ic
e) ≤

∑

f∈E
f 6∈F (e)

a(f) and therefore x(Ic
e) ≤

∑

f∈E
f 6∈F (e)

a(f). From the

efficiency of x we deduce that

x(Ie) ≥ c(N) −
∑

f∈E
f 6∈F (e)

a(f) =
∑

f∈F (e)

a(f). (1)

Hence, the players which appear only in one branch of the tree pay the
entire cost of that branch.

If j ∈ S, then it follows that j 6∈ Ie for every e ∈ OS. Therefore,∪e∈OS
Ie ⊂

N\S. By definition of Ie it follows that Ie ∩ Iē = ∅ for all e, ē ∈ OS, e 6= ē.
That is, the Ie’s are pairwise disjoint. Hence,

∑

e∈OS

∑

f∈F (e)

a(f) ≤
∑

e∈OS

x(Ie) = x(∪e∈OS
Ie) ≤ x(N\S),

where the first inequality follows from (1), and the second from x ≥ 0. It
also holds that

∑

e∈OS

∑

f∈F (e)

a(f) =
∑

f∈E

a(f) −
∑

f∈ES

a(f) = c(N) − cst(S).

We conclude that x(N\S) ≥ c(N) − cst(S).

The following corollary is an immediate consequence of Theorem 1 and the
fact that concave games have a nonempty core.

Corollary 1. The core of an FRP game is nonempty.

Theorem 1 also enables us to obtain the nucleolus of an FRP game. The
nucleolus is a well known one-point solution concept introduced by Schmeidler
(1969). The nucleolus has the property that it is a core element whenever the
core is nonempty. Potters and Tijs (1994) showed that if two games have
the same core, with one of the games being concave, then both games have
the same nucleolus as well. Hence, we conclude using Theorem 1 that the
nucleolus of an FRP game coincides with the nucleolus of its associated stan-
dard FRP game. In Megiddo (1978) it is proved that the nucleolus of a fixed
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tree game can be computed within O(n3) operations. Later on, Galil (1980)
reduced the complexity of determining the nucleolus to O(n log n). Another
algorithm, presented by Granot et al. (1996), has a complexity of O(n2), and
in some trees only O(n). In Maschler et al. (1995) other algorithms are given,
and also a painting story that shows monotonicity properties of the nucleolus
in a fixed tree game.

The last part of this section is dedicated to marginal vectors. We will char-
acterize the marginal vectors that are core elements. First we need some
definitions.

Let Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E) be an FRP problem and Γst =
(N, (V,E), 0, (S̄(v))v∈V , (a(e))e∈E) be the corresponding standard FRP prob-
lem. For every i ∈ N we define

Ni = {j ∈ N | there exists v, v′ ∈ V with v′ ∈ F (v), i ∈ S(v), j ∈ S̄(v′)}.

Note that for every essential player we have i ∈ Ni. A coalition S ⊆ N
is called proper if for every i ∈ S there exists a player j ∈ S ∩ Ni. These
definitions are illustrated in Example 6.

Example 6. Consider the FRP problem Γ depicted in Figure 6. Player 4 is a
repeated player who appears in two different vertices, say v1 and v2. Consider
now these two vertices v1 and v2 in Γst and the corresponding sets of vertices
F (v1) and F (v2). The set of players located in these sets of vertices in Γst is
N4. More precisely, N4 = {1, 8} ∪ {3, 9, 10, 5} = {1, 3, 5, 8, 9, 10}.

Consider now coalition S = {4, 6}. We can easily see that N4 ∩ S = ∅.
Therefore coalition S is not proper. On the contrary, coalition T = {1, 4, 6}
is proper. Since, 1 and 6 are both essential it holds that 1 ∈ N1 ∩ T and
6 ∈ N6 ∩ T . It is also obvious that 1 ∈ N4 ∩ T .

The following lemma states that proper coalitions have the same cost in
the FRP game and in its associated standard FRP game, while non proper
coalitions have a strictly larger cost in the FRP game than in its associated
standard FRP game.

Lemma 1. Let Γ = (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E) be an FRP problem
and let Γst = (N, (V,E), 0, (S̄(v))v∈V , (a(e))e∈E) be the corresponding stan-
dard FRP problem. Let (N, c) and (N, cst) be the corresponding cost games.
Then the following holds:

(i) c(S) = cst(S) for all proper S ⊆ N ,
(ii) c(S) > cst(S) for all non proper S ⊆ N .

Proof. Let S ⊆ N . Let T ∗ be the optimal tree for S in Γst and let V (T ∗)
be the vertex set corresponding to this tree. Since for every T ∈ AS(Γ) we
have T ∗ ⊆ T , it holds that c(S) ≥ cst(S). Moreover, c(S) = cst(S) if and only
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if T ∗ ∈ AS(Γ). Hence we only need to prove that S is proper if and only if
T ∗ ∈ AS(Γ).

First assume that S is proper. Let i ∈ S and let j ∈ Ni ∩ S. There are
v, v′ ∈ V with v′ ∈ F (v), i ∈ S(v) and j ∈ S̄(v′). Since T ∗ is optimal for S in
Γst and j ∈ S̄(v′), it must hold that v′ ∈ V (T ∗). Since v′ ∈ F (v) this implies
that v ∈ V (T ∗). We conclude that T ∗ connects all i ∈ S to the root in Γ.
Therefore we have that T ∗ ∈ AS(Γ).

To show the reverse, assume that T ∗ ∈ AS(Γ). We want to show that S is
proper. Let i ∈ S. Since T ∗ is admissible for S in Γ there is a v ∈ V (T ∗) with
i ∈ S(v). Because T ∗ is optimal for S in Γst, there is a j ∈ S and a v′ ∈ V (T ∗)
with v′ ∈ F (v) and j ∈ S̄(v′). Thus j ∈ S ∩ Ni. Hence S is proper.

The next theorem characterizes those orders that provide marginal vectors
that are core elements.

Theorem 2. Let (N, (V,E), 0, (S(v))v∈V , (a(e))e∈E) be an FRP problem, (N, c)
the corresponding FRP game and θ : N → {1, . . . , n} an ordering of the set
of players. Then mθ(c) ∈ C(c) if and only if for every i ∈ N there exists a
j ∈ Ni such that θ(j) ≤ θ(i).

Proof. Let (N, (V,E), 0, (S̄(v))v∈V , (a(e))e∈E) be the associated standard FRP
problem, and (N, cst) its corresponding game. First we show the “if” part.
Assume that θ : N → {1, . . . , n} is such that for every player i ∈ N there
exists a player j ∈ Ni such that θ(j) ≤ θ(i). Now let k ∈ N . By assumption
it holds that for all i ∈ {l ∈ N |θ(l) ≤ θ(k)} there is a j ∈ Ni with θ(j) ≤ θ(i).
Hence, j ∈ {l ∈ N |θ(l) ≤ θ(k)} and we conclude that {l ∈ N |θ(l) ≤ θ(k)} is
proper. This implies that for all S ⊆ N it holds that

∑

k∈S

mθ
k(c) =

∑

k∈S

[c({l ∈ N |θ(l) ≤ θ(k)}) − c({l ∈ N |θ(l) < θ(k)})]

=
∑

k∈S

[cst({l ∈ N |θ(l) ≤ θ(k)}) − cst({l ∈ N |θ(l) < θ(k)})]

=
∑

k∈S

mθ
k(c

st)

≤ cst(S) ≤ c(S),

where the second equality follows by Lemma 1 and the fact that {l ∈
N |θ(l) ≤ θ(k)} and {l ∈ N |θ(l) < θ(k)} are proper, the first inequality by the
concavity of (N, cst) and the last inequality again by Lemma 1. As a result
we have that mθ(c) ∈ C(c).

Second we show the “only if” part. Assume θ : N → {1, . . . , n} is such that
there exists a player i ∈ N such that for any j ∈ Ni it holds that θ(j) > θ(i).
Let i∗ be the first player in the order θ with this property. Consider now
coalition S = {i ∈ N |θ(i) ≤ θ(i∗)}. Then, by Lemma 1, c(S) > cst(S).
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Figure 7: A fixed tree problem.

Since
∑

i∈S mθ
i (c) = c(S), it follows that

∑

i∈S mθ
i (c) > cst(S), and therefore

mθ(c) /∈ C(cst). Hence, by Theorem 1 we have mθ(c) /∈ C(c).

Every extreme point of C(cst) coincides with a marginal vector of (N, cst).
The following example shows that this need not hold for C(c), i.e. there are
extreme points in C(c) that do not coincide with marginal vectors of (N, c).

Example 7. Consider the FRP problem depicted in Figure 7.
Then C(c) = C(cst) = Co{(3, 0, 5, 6), (0, 0, 8, 6), (0, 0, 5, 9), (0, 3, 5, 6)}. It

is straightforward that there is no θ : N → {1, . . . , n} such that mθ(c) =
(0, 3, 5, 6). Moreover, not all marginal vectors of (N, c) are core elements. For
instance, mθ(c) = (0, 8, 0, 6) /∈ C(c) where θ = (3, 4, 1, 2).
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