

No. 2004–44

A LAGRANGEAN RELAXATION BASED ALGORITHM FOR
SOLVING SET PARTITIONING PROBLEMS

By M.G.C. van Krieken, H.A. Fleuren, M.J.P. Peeters

April 2004

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

A Lagrangean Relaxation Based Algorithm for Solving

Set Partitioning Problems

M.G.C. van Krieken*, H.A. Fleuren, M.J.P. Peeters

Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
*
 Corresponding author, email: M.G.C.vanKrieken@uvt.nl

Manuscript version 27-04-2004

$EVWUDFW�

In this paper we discuss a solver that is developed to solve set partitioning problems. The methods

used include problem reduction techniques, lagrangean relaxation and primal and dual heuristics. The

optimal solution is found using a branch and bound approach. In this paper we discuss these

techniques. Furthermore, we present the results of several computational experiments and compare the

performance of our solver with the well-known mathematical optimization solver Cplex.

���������
	��

��

Integer programming, Set partitioning, Branch and bound, Lagrangean relaxation

���,QWURGXFWLRQ�

����7KH�VHW�SDUWLWLRQLQJ�SUREOHP�

Given a collection of subsets of a certain ground set and costs associated to these subsets, the set

partitioning problem is the problem of finding a minimum costs partition of the ground set (Atamtürk

et al, 1996). Formally, we can write the set partitioning problem as follows:

∑
∈

⋅=
Jj

jjSP xcminz [1]

Subject to: ∑
∈

=⋅
Jj

jrj 1xa r∈R [2]

{ }1,0x j ∈ j∈J [3]

Here, R is the set of FRQVWUDLQWV or URZV (ground set) and J is the collection of VXEVHWV or FROXPQV. The

matrix A = { rja } is defined such that rja is equal to 1 if subset j contains row r and 0 otherwise. The

 2

costs of a subset j are given by jc . Furthermore, we define R(j) as the set of rows that are contained in

subset j and J(r) as the collection of subsets that contain row r. Without loss of generality we assume

that the costs vector c is integer.

����3UDFWLFDO�DSSOLFDWLRQV�

Due to the special structure of the set partitioning problem, it is possible to solve to optimality large

problems in a reasonable amount of time. Therefore, much research has been focused on the

application of set partitioning problems in real-life situations. Nawijn (1987) discusses an application

of the set partitioning problem to optimize the performance of a blood analyzer. Baldacci et al. (2002)

describe an approach to solve capacitated location problems using set partitioning. Another field in

which set partitioning has been applied successfully is that of vehicle routing, see Le Blanc et al.

(2004) and Fleuren (1988). The most famous application of set partitioning problems described in

literature is crew scheduling, see for example Mingozzi et al. (1999) and Hoffman and Padberg

(1993).

����0RWLYDWLRQ�

Solving set partitioning problems has been a subject of research for decades. However, to our

knowledge, Hoffman and Padberg (1993) were the first to discuss an algorithm that was able to solve

large set partitioning problems to proven optimality. Since then, other researchers have reported on

successful algorithms for solving large set partitioning problems to optimality, see for example

Borndörfer (1998). However, the algorithms that are fast and able to solve very large problems are all

linear programming (LP) based methods. Since the LP relaxations of large set partitioning problems

are highly degenerate and hard to solve, a high quality LP solver is needed to solve these relaxations.

Hoffman and Padberg (1993) as well as Borndörfer (1998) use Cplex to solve the relaxations. Since

this type of high quality LP solver is expensive, the goal of our research is to examine whether we can

achieve the same performance on solving set partitioning problems without using any other

mathematical programming solver.

����2XWOLQH�RI�WKH�SDSHU�

Section 2 is devoted to the use of preprocessing in solving set partitioning problems. First, an

overview of the literature on preprocessing will be given. Next we discuss the techniques that are used

in the solver.

Section 3 deals with finding lower bounds for the set partitioning problem. We will give a brief

overview of the literature and discuss the Lagrangean relaxation approach and the dual heuristics that

are used in the solver.

 3

Section 4 covers the search for solutions for set partitioning problems. Again we start with an

overview of the literature, followed by the discussion of the primal heuristic and branch and bound

algorithm used in the solver.

Section 5 describes the actual composition of the solver, i.e. how the methods are used in the solver.

Section 6 discusses the performance of the solver. We use a common test set to compare our solver to

results in the literature and to the well-known mathematical programming solver Cplex.

Finally, in Section 7, we will conclude and give some recommendations for further research.

���3UHSURFHVVLQJ�

Preprocessing is a generic term for all techniques that are designed to improve the formulation of

linear or integer programs, such that they can be solved faster by some solution method. Mostly, these

techniques use logical implication to simplify a problem in an automated way. In general, this results

in a reduction in the number of rows and/or columns of the problem.

����/LWHUDWXUH�

Preprocessing set partitioning problems has received much attention in literature. Already in 1976,

Balas and Padberg report on the “equal columns” and “contained rows” preprocessing rules (Balas and

Padberg, 1976). More recently, Atamtürk, Nemhauser and Savelsbergh (Atamtürk et al, 1996) pay

attention to preprocessing and probing techniques for set partitioning problem. Borndörfer

(Borndörfer, 1998) gives an overview of all preprocessing techniques for set partitioning problems that

appear in the literature up to 1998. Finally, Van Krieken, Fleuren and Peeters (Van Krieken et al.,

2003) present two new preprocessing techniques for set partitioning, the cut rule and the row

combination heuristic, and give extensive computational results for these and other preprocessing

techniques.

����3UHSURFHVVLQJ�LQ�WKH�VROYHU�

In this section, we will briefly discuss the preprocessing techniques that are used in the solver. For

more information and computational results concerning these techniques see Van Krieken et al.

(2003).

33�� (TXDO�&ROXPQV� If column j is equal to column k, i.e. R(j) = R(k), with cj ≥ ck, then column j

can be removed from the problem.

33�� &RQWDLQHG�5RZV� If row r is contained in row s, i.e. C(r) ⊆ C(s), then all columns that are in

C(s), but not in C(r) and row s can be removed from the problem.

33�: &OLTXH� If all columns that cover row r have one or more elements in common with a column j

that does not cover row r, then we can remove column j.

 4

33���(TXDO�5RZV� If row r is equal to row s, i.e. J(r) = J(s), than row s can be removed from the

problem.

33�� &XW� If there is a set of three rows {r,s,t} and a row w, for which holds that row w is only

covered by columns that cover at least two of the rows r, s and t, then we can remove all columns that

cover at least two of the rows r, s and t, but not row w.

33�� 5RZ�FRPELQDWLRQV� If for two rows r and s, we add combinations of all columns that cover only

one of these rows to the problem, we can subsequently remove all columns that cover only one of

these rows. Furthermore, we can remove one of the rows. This is particularly interesting for pairs of

rows that differ only on a few elements. The technique that we implemented to make row

combinations works as follows:

1. Max_growth =
100

p
 ⋅ number of columns.

2. For each r1, r2 ∈ R we define:

() () (){ }2121 rJj|rJjr,rC ∉∈= and

 () () () () ()1221122121 r,rCr,rCr,rCr,rCr,rf −−⋅=

This function gives an upperbound on the increase in number of columns when rows

r1 and r2 are combined. Now let {s,t} be the set of rows for which f(r1, r2) is minimal.

If (f(V, W) > Max_growth) then stop.

3. Combine rows V and W. Now delete all columns N () (){ }tJj|sJj ∉∈∈ and all

columns P� () (){ }sJj|tJj ∉∈∈ . Go to step 2.

This implementation uses the parameter p, a percentage that denotes the maximal allowed growth in

the number of columns. In the solver, we apply the row combination technique with p = 0.5, a value

that is determined by extensive testing. For more information on row combinations, see Van Krieken

et al. (2003).

���/RZHU�ERXQGV�

In methods that use branch and bound or branch and cut to solve set partitioning problems to

optimality, a good lower bound is of great value. This section discusses methods for determining

lower bounds for the set partitioning problem. A brief overview of literature is given, followed by a

discussion of the methods used in the solver

����/LWHUDWXUH�

Most attention in literature on solving set partitioning problems has been on branch and cut solvers

that use the linear programming relaxation to determine a lower bound. Examples can be found in

Hofmann and Padberg (1993) and Borndörfer (1998), where in both cases a commercial software

 5

package is used to solve the linear programming problem. An alternative to the use of linear

programming relaxations is Lagrangean relaxation, which will be discussed in the next paragraph.

This method can also be found in literature, for example Fleuren (1988) applies Lagrangean relaxation

to determine lower bounds for set partitioning problems. Beasley and Cao (1996) apply Lagrangean

relaxation to the more general crew scheduling problem. The Lagrangean relaxation method that is

used in the solver is based partly on Held et al. (1974) and Hunting (1998).

����/DJUDQJHDQ�UHOD[DWLRQ�

To obtain the Lagrangean relaxation model (LR) of the set partitioning problem, we relax the equality

constraints of the problem. The constraints are taken into the objective with a so-called Lagrangean

multiplier λr:

() ∑∑ ∑ λ+⋅





λ⋅−=λ

r
rj

j r
rrjjLR xac minz [4]

subject to [3]

Define the Lagrangean costs of a column j to be:

∑
∈

λ⋅−=
Rr

rrjjj accl [5]

Now the solution to the relaxed problem, given vector λ, is given by:



 ≤

=
otherwise 0

0cl if 1
x

j
j [6]

The best lower bound we can thus find with this relaxation is given by:

()λ=
λ LRz maxLB [7]

It is shown by Geoffrion (1974) that the value of the solution to this maximization problem equals the

value of the solution to the linear programming relaxation of the original problem. Since the

maximization problem given by [7] is too time-consuming to solve to optimality, it is common

practice to use heuristic methods to find a good value of the vector λ. In our solver, we use a

subgradient search method, which is discussed in the next paragraph.

����6XEJUDGLHQW�VHDUFK�

The goal of the subgradient search method is to determine a sequence of vectors λ0, λ1,..., λk that

converges to the optimal vector that gives the lower bound [7]. To this end, the following iteration

scheme is used:

()∑
∈

∈
=λ

Rt
tj

j

rJj

0
r

a

c
min [8]

k
r

kk
r

1k
r grstepsize ⋅+λ=λ + [9]

 6

Here, the vector grk represents the vector of subgradients and stepsizek the stepsize used in the kth

iteration of the algorithm:

∑ ⋅−=
j

k
jrj

k
r xa1gr Rr ∈ [11]

and

()2

r

k
r

kk

gr

C
stepsize

∑
= [12]

Ck is determined by:

() 0
k

k CC ⋅α= [13]

The subgradient search algorithm uses two parameters C0 and α. C0 is a large number and α is a

number between 0 and 1, close to 1. This means that we start with a C0 that we expect to be far from

the optimal value, but by multiplying Ck with α in every iteration, we come closer to the optimal

value. In our implementation, we start with values C0 = 100000 and α = 0.95. The closer the value of

α is to 1, the smaller the steps that we take in our convergence sequence, and the closer we converge

to the optimum. Therefore, we adjust the value of α twice during the subgradient search. This is done

in the following way:

If
() ()

() 5.0
z

zz
1k

LR

k
LR

1k
LR ≤

λ
λ−λ

+

+

 we set α = 0.975. [14]

If
() ()

() 25.0
z

zz
1k

LR

k
LR

1k
LR ≤

λ
λ−λ

+

+

we set α = 0.99875 [15]

The algorithm is stopped when zLR(λk+1) = zLR(λk).

Since the speed of the subgradient search depends on the number of columns, we do not take all the

columns into account at the start of the search. Instead, we only take the Nr columns with the lowest

costs for every row. For this set of columns we perform the subgradient search. If the resulting λ gives

the same lower bound for the whole set of columns as for the subset of columns, we keep this λ as the

final solution. If this is not the case, we take a larger set of columns and start again.

The maximum number of columns taken into account per row is given by:

()
















⋅=
∑∑
∈ ∈

rJ ,
J

a

QminN
Rs Jj

sj

r [16]

At the start Q = 25, and every time that we restart the subgradient search, this value is multiplied by 2.

����'XDO�IHDVLELOLW\�

The dual of the linear programming relaxation of the set partitioning problem is given by:

 7

∑=
r

rDLP umaxz [17]

subject to:

∑ ∈∀≤⋅
r

jrrj Jj cua [18]

Rr edunrestrict u r ∈∀ [19]

If a dual feasible vector u* is available, a lower bound for the set partitioning problem is given by:

() ∑
∈

=
Rr

*
r

* uu,J,RLB [20]

For every partial problem with R’ ⊆ R and C’ ⊆ C we can also define a lower bound by:

() ∑
∈

=
’Rr

*
r

* uu,’J,’RLB [21]

This property of dual feasible solutions has the advantage that we have lower bounds for every partial

problem that we encounter during the branch and bound procedure. However, the Lagrangean vector λ

that results from our subgradient search does not necessarily have to be dual feasible. Therefore we

add a step to the algorithm to make the resulting vector λ dual feasible. In this step, we sort the

columns on increasing costs and for every column j with negative Lagrangean costs clj, we find the

first row r that this column covers and add –clj to the Lagrangean multiplier λr of this row. When

applied to the instances in the test set discussed in Paragraph 6.1, it appeared that the value of the

lower bound is hardly affected by this adjustment.

����'XDO�KHXULVWLFV

Starting with a dual feasible vector λ, we apply two dual heuristics to raise the value of the lower

bound, while attaining a dual feasible solution.

'+���6LPSOH�XSGDWLQJ�KHXULVWLF� If all columns that cover row r have a positive Lagrangean costs,

then we can raise λr with:

() j
rJj

cl min
∈

=∆ [22]

After this step, the vector λ still satisfies the constraints in [16] and the lower bound, given by the sum

of λr, is higher.

'+����237��The idea for this heuristic stems from Fisher and Kedia (1986). The 3-opt heuristic is a

local improvement heuristic that begins with a dual feasible solution and tries to improve this solution

by simultaneously changing three ur – values. Let ur1, ur2 and ur3 be these three values. We now want to

increase the value of the lower bound by simultaneously decreasing ur1 and increasing ur2 and ur3, all

by the same amount ∆. This will increase the value of the lower bound by ∆. This concept is

implemented as follows.

Let Jb be the collection of the columns for which the restrictions of the dual problem are binding:

 8

{ }0cl|JjJ j
b =∈= [23]

We now have to make sure that two conditions are met to ensure feasibility of the resulting vector u:

1. 1a then 1aor 1a if :Jj jrjrjr
b

132
===∈∀ [24]

2. 0aa :Jj jrjr
b

32
=⋅∈∀ [25]

Note that the proposed improvement is allowed if and only if these two conditions are met. If we have

found three rows r1, r2 and r3 for which the conditions hold, we determine the maximum allowed value

of ∆ such that the constraints in [16] hold for all columns.

The heuristic consists of a complete search of all combinations of three rows in the problem. Although

further improvements are possible when this method is applied iteratively, we apply it only once for

every possible combination of three rows.

���8SSHU�ERXQGV�DQG�VROXWLRQV�

In this paper we describe an algorithm that is aimed at finding an optimal solution to a set partitioning

problem. This algorithm uses a greedy primal heuristic that is designed to find a solution quickly and

use this as the starting point of the branch and bound procedure. In this section, we first pay some

attention to the literature on algorithms that are directed at finding solutions to set partitioning

problems. Then we describe the primal heuristic and the branch and bound method used in our solver.

����/LWHUDWXUH�

While technological and theoretical progress has been immense in the last decades, it is now possible

to solve fairly large set partitioning problems to optimality in a reasonable amount of time. Hoffman

and Padberg (1993) describe a successful branch and cut algorithm, that is enhanced by Borndörfer

(1998). Ryan (1992) and Fleuren (1988) describe implementations of branch and bound algorithms.

Many of the exact methods discussed in literature incorporate a (greedy) primal heuristic to find an

upper bound to the problem, see for example Hoffman and Padberg (1993). A successful

implementation of a stand-alone heuristic that finds nearly optimal solutions for set partitioning

problems can be found in Atamtürk et al. (1996).

����3ULPDO�KHXULVWLF�

Before the start of the branch and bound algorithm, we apply a greedy primal heuristic to find an

upper bound to the problem. This upper bound can be used to restrict the number of columns that have

to be considered during the branching process. If we have a dual feasible vector λ and a corresponding

lower bound, given by [18], we can disregard all columns j for which clj > upper bound – lower bound.

 9

The greedy primal heuristic extends a partial solution with the column with the lowest Lagrangean

costs that covers a particular uncovered row. This implies that we consider the rows in a certain order.

We consider three different row orderings:

• The rows are sorted on decreasing dual values λr. This row ordering is based on the perception

that rows with a high dual value have great influence on the objective value of the problem

and thus are considered first.

• The rows are ordered on increasing number of non-zeros. This row ordering is based upon the

idea that rows with a small number of non-zeros are more difficult to cover and thus can be

best considered in the beginning of the heuristic.

• The rows are ordered on cover frequency. The cover frequency of row r with row s, cf(r,s) is

the number of times that row s is covered by the columns that cover row r and can be seen as a

measure for the overlap between rows r and s. The ordering is created as follows:

1. row_order[0] = first row of problem
]}0[order_row{’R =

 i = 1
2. row_order[i] = ()r 1],-irow_order[cf maxarg

’R\Rr∈

]}i[order_row{ ’R’R ∪=
 i = i + 1

3. If R’ = R then stop, else go to 2

For every row ordering, we perform 200 iterations. In every iteration, we consider the rows in the

given sequence and add the column with the lowest Lagrangean costs that covers the next row to the

partial solution. The iteration ends if either the problem becomes infeasible or we find a feasible

solution. In the first case, the first row in the ordering that cannot be covered is put in front of the

sequence and the next iteration is started. In the second case, the row that is in the middle of the

ordering is put in front and the next iteration is started. If the primal heuristic does not find a solution

to the problem, the upper bound is set to infinity.

����%UDQFK�DQG�ERXQG�

Given the dual feasible vector λ, the lower bound given by [18], the Lagrangean costs vector given by

[5] and the upper bound resulting from the primal heuristic, a branch and bound procedure is used to

find the optimal solution. In every node of the branch and bound tree, a column is added to a partial

solution. In contrast to most linear programming based algorithms, we do not branch on a variable

basis, but on a row basis. In every node of the tree, we choose the row with the least number of active

elements and branch on the active columns that cover this row. A column j is inactive if either it has

nonzero’s in common with one or more columns in the partial solution, or if for the Lagrangean costs

clj and the partial solution vector x it holds that:

 10

∑∑ ⋅−λ−>
k

kk
r

rj xcl bound uppercl [27]

When a partial solution is fathomed, we remove the last added column from the partial solution. There

are two reasons why we can fathom a certain node:

1. The problem is infeasible because there is a row r that is only covered by inactive columns.

2. All rows are covered and the partial solution is a feasible solution to the problem.

Obviously, the speed of the branch and bound procedure depends heavily on the quality of the lower

and upper bounds.

���6ROYHU�FRPSRVLWLRQ�

The sequence in which methods are applied can have a large influence on the performance of the

solver. For example, when the row combination technique is applied, the knowledge of a lower- and

upper bound can speed up the process, since columns j for which [24] holds do not have to be added to

the problem. Examples of the interdependencies between preprocessing rules can be found in Van

Krieken et al. (2003).

The composition of our solver is given below. A schematic overview is given in Figure 1.

1. Preprocessing techniques PP1, PP2, PP3 and PP4

2. Lagrangean relaxation and subgradient search

3. Dual heuristics DH1 and DH2

4. Primal heuristic

5. Preprocessing techniques PP6 and PP1

6. Lagrangean relaxation and subgradient search

7. Dual heuristics DH1 and DH2

8. Primal heuristic

9. Preprocessing techniques PP5, PP3 and PP4

10. Branch and bound

In step 2, parameter α is not adjusted in the way that is given by [14] and [15], but kept constant at

0.95, such that a lower bound is found very quickly. In step 6, we do the more sophisticated

subgradient search to find a higher lower bound. In the next section, we discuss the performance of the

algorithm.

���&RPSXWDWLRQDO�H[SHULPHQWV�

In this section, we discuss the performance of the solver. For a test set of 60 problems we show the

performance in terms of the lower- and upperbound compared to the optimal values and the

computational times compared to the time of the well-known Cplex solver. The computational

 11

experiments are performed with a code that is written entirely in C++ and is tested on a normal

desktop computer, running on MS Windows XP with a 2.4 Ghz Pentium processor and 1536 MB

RAM.

����7KH�WHVW�VHW�

The test set that we use consists of 60 problems. From this set, 55 instances are real-life set

partitioning problems that stem from the OR-library of Beasley (Beasley, 1990). This is the same set

as is used in Hoffman & Padberg (1993) and Borndörfer (1998). The other 5 problems are set

partitioning formulations of puzzles. Three of them, Heart, Meteor and Delta, are parts of the well-

known Eternity puzzle (http://www.eternity-puzzle.co.uk). A description of the Bill’s snowflake

puzzle can be found at http://www.johnrausch.com/PuzzleWorld/puz/bills_snowflake.htm. Finally, the

Exotic Fives puzzle is described at http://www.puzzles.force9.co.uk/gall2/exotic5.htm. Interested

readers are invited to contact the authors to obtain the instances used in the experiments.

These puzzles are modeled as set partitioning problems as follows. The compartments of the puzzle

are represented by the rows of the set partitioning problem. Every piece of the puzzle has several

columns in the set partitioning tableau, representing the different ways that piece can be placed in the

puzzle. The constraints make that no more than one piece covers each compartment. Moreover, we

add one constraint for every piece to make sure that this piece is not used more than once.

To solve a puzzle, we just need a feasible solution to this problem. This is modeled by giving all the

columns equal costs, such that we minimize the number of pieces used. This number is equal for all

feasible solutions, since we have to use all the pieces.

The problem characteristics of the 60 instances are given in Table 1, where the density of a problem

denotes the percentage of nonzero’s in the constraint matrix

����5HVXOWV�

We first note that we leave two problems out of consideration at this point, aa01 and aa04. We deal

with these problems in Paragraph 6.4. The results of the solver on the remaining 58 problem instances

are given in Table 2. The columns ‘lower’ and ‘upper’ denote the lower- and upper bounds before

branch and bound. Furthermore, ‘time lower’ denotes the time used to determine the lower bound, i.e.

the time needed for the subgradient search and the dual heuristics. The last three columns of Table 2

show the total time needed by the solver to solve the problem, the total time needed by Cplex and the

number of nodes used in the branch and bound tree before the optimal solution was found. For 27 out

of the 58 problems, the optimal solution is found before the start of the branch and bound procedure.

On average, the time needed to determine the lower bound of a problem is about one-third of the total

time needed to solve the problem. The number of nodes in the branch and bound tree grows fast when

the gap between lower- and upper bound increases. We cannot generally say that the time needed to

solve the problems grows with the number of rows or columns, although the results do show a trend in

 12

that direction. The most remarkable exceptions are the puzzles, whose results we will discuss in more

detail in the next paragraph.

����&RPSDULVRQ�ZLWK�&SOH[�

Table 3 gives a summary of the comparison between our solver and Cplex. The total time of Cplex

over the 58 problems is 627 seconds, while our solver takes 188 seconds, a difference of 439 seconds

or 70%. The maximum time benefit of our solver on one instance is 140 seconds, while the maximum

time difference in the advantage of Cplex is only 3 seconds. As can be seen by the results in Table 2,

the difference in time between our solver and Cplex on the puzzle-instances is remarkable. As

discussed in Paragraph 6.1, these problems are essentially feasibility problems and not optimization

problems, meaning that a fast branching procedure is much more effective than a good lower bound.

In the Cplex MIP solver, the accent is much more on lower bound determination than in our solver,

while our solver takes advantage of the set partitioning structure in the branch and bound procedure.

Note that, when we disregard the puzzle-instances, the time benefit is still over 50%.

The relative performance of the two solvers is illustrated by the performance profile in Figure 2. The

concept of performance profiles to compare optimization methods is discussed in Dolan and Moré

(2002). The profile shows that the set partitioning solver is faster than Cplex on 80% of the problems

in the test set. Moreover, it shows that the calculation time of the set partitioning solver is within a

factor two of the time of the best solver for all problems. On the other hand, the solution time of Cplex

is within a factor two of the time of the best solver for about 60% of the problems. The profile

indicates that the performance of the set partitioning solver is better than the performance of Cplex on

this test set.

����3UREOHPDWLF�LQVWDQFHV�

The two instances that are left out of consideration in the above comparison, aa01 and aa04, are much

more difficult to solve. This observation can also be found in literature, for example Hoffman and

Padberg (1993) say that they “require significantly more computational effort than the rest” and refer

to them as “problem children”. Borndörfer (1998) refers to them as “hard problems” and also gives an

argument why these problems are more difficult: “closing the gap from the dual side seems to be what

makes the instances (…) aa04 and aa01 hard”. Hoffman and Padberg (1993) report that they solve

aa01 in 4.01 hours and aa04 in 38.7 hours, while Borndörfer (1998) solves both problems in less than

10 minutes. Unfortunately, we were not able to solve both problems within a period of 24 hours with

our solver. For aa04, we do find a solution, however the value of the solution is more than 10% away

from the optimal solution. For aa01, we do not find a solution within 24 hours.

 13

���&RQFOXVLRQV�DQG�IXUWKHU�UHVHDUFK�

This paper discusses a solver that is developed by the authors to solve set partitioning problems. The

solver uses Lagrangean relaxation and dual heuristics to determine a lower bound, a primal heuristic to

determine an upper bound, preprocessing to reduce the size of the problem and branch and bound to

find the optimum. Apart from two hard cases, the solver performs very well on the test set of 60

problems. While the total time of the mathematical programming solver Cplex is 627 seconds, the

time of the solver of the authors is only 188 seconds, a difference of 439 seconds, or 70%. The large

gap between the calculation times of these solvers indicate that the development of specific solvers for

set partitioning problems is worthwhile. Moreover, these results show that, with current technology, it

is possible to solve large set partitioning problems to proven optimality in a reasonable amount of

time. Comparable conclusions were taken in the past considering algorithms that use very fast

commercial solvers to solve linear programming problems in a branch and cut setting. The solver

discussed in this paper does not make use of any other mathematical programming solvers.

Further research is recommended on the two problem instances discussed in this paper that cannot be

solved in a reasonable amount of time by our solver. Since several branch and cut solvers are able to

solve these problems, more insight in the difficulty of these problems is desirable.

Most methods discussed in this paper can be applied to more general problems. We therefore

recommend further research in the application of the methods discussed here, and extended versions of

these methods, to more general problems. One can think of mixed set packing/set partitioning

problems, but also problems that have constraints with low-integer coefficients and right-hand sides.

 14

5HIHUHQFHV�

Atamtürk, A., G.L. Nemhauser and M.W.P. Savelsbergh (1995) A combined Lagrangian, linear

programming, and implication heuristic for large-scale set partitioning problems. Journal of heuristics,

1: 247-259.

Balas, E. and M.W. Padberg (1976) Set partitioning: A survey. SIAM Review, 18: 710-760.

Baldacci, R., E. Hadjiconstantinou, V. Maniezzo and A. Mingozzi. (2002) A new method for solving

capacitated location problems based on a set partitioning approach. Computers & Operations

Research, 29: 365-386.

Beasley, J.E. and B. Cao (1996) A tree search algorithm for the crew scheduling problem. European

Journal of Operations Research, 94: 517-526.

Borndörfer, R. (1998) Aspects of set packing, partitioning and covering. Dissertation, Technical

University of Berlin, Germany.

Dolan, E.D. and J.J. Moré (2002) Benchmarking optimization software with performance profiles.

Mathematical Programming, 91: 201-213.

Fisher, M.L. and P. Kedia. (1990) Optimal solutions of set covering/partitioning problems using dual

heuristics. Management Science, 36: 674-688.

Fleuren, H.A (1988) A computational study of the set partitioning approach for vehicle routing and

scheduling problems. Dissertation, University of Twente, The Netherlands.

Geoffrion, A.M. (1974) Lagrangean relaxation for integer programming. Mathematical programming

study, 2: 82-114.

Held, M., P.Wolfe and H.P. Crowder (1974) Validation of the subgradient approach. Mathematical

Programming, 6: 62-88.

Hoffman, K.L and M. Padberg (1993) Solving airline crew scheduling problems by branch-and-cut.

Management Science, 39: 657-682.

 15

Hunting, M. (1998) Relaxation techniques for discrete optimization problems. Dissertation, University

of Twente, The Netherlands.

Le Blanc, H.M., M.G.C. van Krieken, H.A. Fleuren and H.R. Krikke (2004) Collector Managed

Inventory, a proactive planning approach to the collection of liquids coming from end-of-life vehicles.

CentER Discussion Paper 2004-22.

Mingozzi, A., M.A. Boschetti, S. Ricciardelli and L. Bianco (1999) A set partitioning approach to the

crew scheduling problem. Operations Research, 47: 873-888.

Nawijn, W.M. (1987) Optimizing the performance of a blood analyser: Application of the set

partitioning problem. University of Twente Memorandum 626.

Ryan, D.M. (1992) The solution of massive generalized set partitioning problems in aircrew rostering.

Operational Research Society, 43: 459-467.

Van Krieken, M.G.C., H.A. Fleuren and M.J.P. Peeters (2003) Problem reduction in set partitioning

problems. CentER Discussion Paper 2003-80.

 16

)LJXUH����6ROYHU�FRPSRVLWLRQ�

Preprocessing:
PP1, PP2, PP3, PP4

Lagrangean
Relaxation

Dual heuristics:
DH1, DH2

Preprocessing:
PP6, PP1

Preprocessing:
PP5, PP3, PP4

Primal heuristic
First time?

Branch and
Bound

67$57

Yes

No

62/87,21

�

 17

)LJXUH����3HUIRUPDQFH�SURILOH�WKH�633�VROYHU�DQG�&SOH[�

�

������������������� �"!��#�%$���& '(���)'�����$+*($-,/.#& ��021 ,/�#3%4�5 ���)6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
7

89:
; <
=>
?@ A
=BC:
; <
=D
=>
E >
?@ A
=B
F G
H

Cplex

SPP solver

 18

7DEOH����3UREOHP�FKDUDFWHULVWLFV�

I#JLKNM
O P�Q R�KNO S
QUT V WXKZY�V [)O P�QUP�T \ V]XP�T
V�^ \ _
nw41 197 17 740 22%
nw32 294 19 1357 24%
nw40 404 19 2069 27%
nw08 434 24 2332 22%
nw15 467 31 2830 20%
nw21 577 25 3591 25%
nw22 619 23 3399 24%
nw12 626 27 3380 20%
nw39 677 25 4494 27%
nw20 685 22 3722 25%
nw23 711 19 3350 25%
nw37 770 19 3778 26%
nw26 771 23 4215 24%
nw10 853 24 4336 21%
nw34 899 20 5045 28%
Heart 926 180 8334 5%
nw43 1072 18 4859 25%
nw42 1079 23 6533 26%
Delta 1194 126 10746 7%
nw28 1210 18 8553 39%
nw25 1217 20 7341 30%
nw38 1220 23 9071 32%
nw27 1355 22 9395 32%
nw24 1366 19 8617 33%
nw35 1709 23 10494 27%
nw36 1783 20 13160 37%
Bill’s snowflake 2300 585 103938 8%
Exotic fives 2440 72 14640 8%
Meteor 2464 60 14784 10%
nw29 2540 18 14193 31%
nw30 2653 26 20436 30%
nw31 2662 26 19977 29%
nw19 2879 40 25193 22%
nw33 3068 23 21704 31%
nw09 3103 40 20111 16%
nw07 5172 36 41187 22%
aa02 5198 531 36359 1%
nw06 6774 50 61555 18%
aa04 7195 426 52121 2%
aa06 7292 646 51728 1%
kl01 7479 55 56242 14%
aa05 8308 801 65953 1%
aa03 8627 825 70806 1%
nw11 8820 39 57250 17%
aa01 8904 823 72965 1%
nw18 10757 124 91028 7%
us02 13635 100 192716 14%
nw13 16043 51 104541 13%
us04 28016 163 297538 7%
kl02 36699 71 212536 8%
nw03 43749 59 363939 14%
nw01 51975 135 410894 6%
us03 85552 77 1211929 18%
nw04 87482 36 636666 20%
nw02 87879 145 721736 6%
nw17 118607 61 1010039 14%
nw14 123409 73 904910 10%
nw16 148633 139 1501820 7%
nw05 288507 71 2063641 10%
us01 1053137 145 13636541 9%

 19

�

7DEOH����5HVXOWV�VROYHU�

I#JLKNM
O P�Q `�a \ ^ QUS
Q b)KZY�P�J cXa
a
P�J d)^ QUP�O KZY�P�J d�^ QUP�\ KZ\ e�O d�^ Q�P+R�a
O PLf gXKNh
P�V
nw41 11307 11307.00 11307 0.000 0.000 0.020 0
nw32 14877 14569.96 14877 0.016 0.030 0.030 6
nw40 10809 10657.06 10848 0.015 0.015 0.020 3
nw08 35894 35894.00 35894 0.030 0.030 0.030 0
nw15 67743 67743.00 67743 0.000 0.000 0.110 0
nw21 7408 7408.00 7408 0.016 0.016 0.030 0
nw22 6984 6984.00 6984 0.000 0.000 0.030 0
nw12 14118 14118.00 14118 0.000 0.000 0.030 0
nw39 10080 9868.50 10410 0.015 0.015 0.060 6
nw20 16812 16624.72 16965 0.060 0.060 0.060 11
nw23 12534 12317.00 12534 0.031 0.031 0.060 14
nw37 10068 10068.00 10068 0.000 0.000 0.030 0
nw26 6796 6796.00 6796 0.000 0.000 0.050 0
nw10 68271 68271.00 68271 0.015 0.109 0.050 0
nw34 10488 10453.50 10488 0.015 0.015 0.050 4
heart 180 179.54 inf 0.546 0.610 95.330 853
nw43 8904 8904.00 8904 0.000 0.015 0.050 0
nw42 7656 7484.94 7832 0.047 0.063 0.090 21
delta 126 126.00 inf 0.313 0.359 2.000 1981
nw28 8298 8298.00 8298 0.000 0.000 0.060 0
nw25 5960 5852.00 5960 0.032 0.032 0.080 5
nw38 5558 5552.00 5630 0.047 0.062 0.080 8
nw27 9933 9933.00 9933 0.000 0.000 0.060 0
nw24 6314 6314.00 6314 0.000 0.000 0.080 0
nw35 7216 7216.00 7216 0.016 0.016 0.060 0
nw36 7314 7259.96 7328 0.078 0.109 0.280 27
Bill’s snowflake 34 11.96 inf 6.297 17.719 94.300 42734
Exotic fives 12 11.93 inf 0.922 0.969 73.980 47
meteor 60 60.00 inf 0.405 0.453 15.560 286
nw29 4274 4189.80 4344 0.093 0.093 0.160 12
nw30 3942 3942.00 3942 0.016 0.016 0.160 0
nw31 8038 7980.00 8046 0.110 0.110 0.190 11
nw19 10898 10898.00 10898 0.016 0.032 0.130 0
nw33 6678 6678.00 6678 0.000 0.031 0.160 0
nw09 67760 67760.00 67760 0.016 0.313 0.130 0
nw07 5476 5476.00 5476 0.016 0.031 0.200 0
aa02 30494 30494.00 30494 0.844 1.297 0.510 0
nw06 7810 7639.72 8706 0.468 0.562 1.020 100
aa06 27040 26973.26 27129 1.751 5.812 3.160 286049
kl01 1086 1083.45 1087 0.172 0.234 0.940 489
aa05 53839 53721.42 53949 1.703 5.954 5.360 366307
aa03 49649 49607.10 49649 1.468 3.156 3.020 2125
nw11 116256 112403.86 116256 0.314 1.156 0.410 214073
nw18 340160 329099.16 342998 1.469 4.000 1.530 236132
us02 5965 5965.00 5965 0.141 0.453 0.760 0
nw13 50146 50131.67 50206 0.751 1.078 0.810 66
us04 17854 17722.04 17854 0.359 1.031 1.450 79
kl02 219 215.05 219 3.390 4.093 4.130 119380
nw03 24492 24447.00 24759 1.468 1.984 3.890 45
nw01 114852 114852.00 114852 2.657 4.187 3.340 0
us03 5338 5338.00 5338 0.406 3.750 5.640 0
nw04 16862 16310.18 17264 3.610 5.140 15.050 9115
nw02 105444 105444.00 105444 1.781 4.187 6.520 0
nw17 11115 10874.03 11481 1.126 2.078 13.130 157
nw14 61844 61844.00 61844 2.687 7.547 7.590 0
nw16 1181590 1181590.00 1181590 2.625 10.594 18.990 0
nw05 132878 132878.00 132878 6.469 12.656 19.280 0
us01 10036 9960.58 10056 14.844 86.000 226.340 386

 20

7DEOH����&RPSDULVRQ�VROYHU�ZLWK�&SOH[�

Number of instances 58
Number of instances time solver <= time Cplex 48
Total time solver 188.303
Total time Cplex 626.670
Time benefit solver 438.367
Percentage time benefit solver 70%
Minimum time benefit solver -2.652
Maximum time benefit solver 140.340
�

