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Sequencing games with repeated players.

Arantza Estévez-Fernández1,2, Peter Borm1, Pedro Calleja3,4 and Herbert Hamers1

Abstract:

Two classes of one machine sequencing situations are considered in which each job corresponds to exactly
one player but a player may have more than one job to be processed, so called RP(repeated player)
sequencing situations. In max-RP sequencing situations it is assumed that each player’s cost function is
linear with respect to the maximum completion time of his jobs, whereas in min-RP sequencing situations
the cost functions are linear with respect to the minimum completion times. For both classes, following
explicit procedures to go from the initial processing order to an optimal order for the coalition of all
players, equal gain splitting rules are defined. It is shown that these rules lead to core elements of the
associated RP sequencing games. Moreover, it is seen that min-RP sequencing games are convex.

Keywords: cooperative game theory, sequencing, equal gain splitting, core, convexity.
JEL classification: C71

1 Introduction

Scheduling problems were first studied from an interactive cooperative point of view by Curiel,
Pederzoli and Tijs (1989) in the framework of one-machine sequencing with an initial processing
order on the jobs. Identifying jobs with players and introducing cost functions for the players
dependent on the completion time of their jobs, an associated cooperative game is defined in
which the value of the coalition reflects the maximum cost savings this coalition can achieve by
reordering their jobs from their initial position to a feasible, optimal one. Different types of se-
quencing games have been studied in the literature depending on the structure of the underlying
cost functions, the number of machines, further restrictions such as ready times and due dates
etc. For a survey we refer to Curiel, Hamers and Klijn (2002). The common feature in this stream
of literature is the assumption that each job is of interest to exactly one player and that each
player has exactly one job to be processed.

An exception is the recent contribution of Calleja, Estévez-Fernández, Borm and Hamers
(2004). Here the latter assumption is dropped, so a job may correspond to several players and
a player may have interest in more than one job. It is shown that the corresponding sequencing
games are balanced if the underlying cost functions satisfy a specific type of additivity relative to
the initial order. In the current paper we focus on the specific subclass of RP (repeated players)
sequencing situations in which (just as in the classical approach) each job corresponds to exactly
one player, but a player may have more than one job to be processed. Moreover we restrict at-
tention to two types of RP sequencing situations and their related games. In max-RP sequencing
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situations it is assumed that each player’s cost function is linear with respect to the maximum
completion time of his jobs, whereas in min-RP sequencing situations the cost function of a
player is linear with respect to the minimum completion time of his jobs. It was already pointed
out in Calleja et al. (2004) that both types of cost functions satisfy the additivity condition, so
the corresponding games are balanced. Next, we offer two motivating examples for these types
of cost functions.

In a garage, a car may need more than one reparation (change of tires, of oil, etc). Here, it
seems reasonable to assume that each repair job not only has a certain fixed cost but the owner
also incurs variable costs that are proportional to the total time that the car has to spend in
the garage, i.e. to the completion time of the last reparation carried out in the car. Note that
the reparations in the car are complementary since the car can not leave the garage until it is
completely repaired.

The classrooms of a faculty are equipped with an overhead projector and a beamer. If one
of the devices breaks down, lecturers have to report to the maintenance service for the device(s)
to be repaired, incurring a fixed cost for each reparation. A lecturer needs at least one of the
devices to start the lesson. Hence, when both devices are out of order, there is an extra variable
cost which is proportional to the time that she has to wait until she can start her lecture, i.e.
until one of the devices is fixed. Note that the reparations in this setting are substitutes since
the lecturer can start her lecture as soon as one of the reparations is carried out.

The contributions of the current paper are the following. For both max-RP and min-RP
sequencing situations explicit procedures are devised to go from the initial order on all jobs to
an optimal one. Following the steps of this procedure an EGS (equal gain splitting) mechanism
is adopted to construct an allocation rule for the maximal cost savings of the grand coalition.
It is shown that this EGS-allocation is in the core of the associated game, and that it in fact is
PMAS-extendable (cf. Sprumont (1990)). In particular this implies that for calculating a core al-
location one does not need the data on all coalitional values. In addition it is shown that min-RP
sequencing games are convex.

The structure of the paper is as follows. Section 2 recalls some basic game theoretic notions
and provides the formal definition of RP sequencing situations and related games. Section 3 con-
siders max-RP sequencing whereas Section 4 analyzes min-RP sequencing. An appendix contains
the lemmas used in the proofs of the main results.

2 Preliminaries

A cooperative TU-game in characteristic function form is an ordered pair (N, v) where N is
a finite set (the set of players) and v : 2N → R satisfies v(∅) = 0. The core of a cooperative
TU-game (N, v) is defined by

Core(v) = {x ∈ RN |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N},

i.e. the core is the set of efficient allocations of v(N) such that there is no coalition with an
incentive to split off. A game is said to be balanced (see Bondareva (1963) and Shapley (1967))
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if the core is nonempty.
An important subclass of balanced games is the class of convex games (Shapley (1971)). A

game (N, v) is said to be convex if

v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S)

for every i ∈ N and for every S ⊂ T ⊂ N \ {i}.

A sequencing situation is a 4-tuple (N, σ0, p, c), where N = {1, . . . , n} is the set of players
(or jobs), σ0 : N → {1, . . . , n} is a bijection that represents the initial order on the jobs (job i
is in position σ0(i)), p ∈ RN is the vector of processing times of the jobs and c = (ci)i∈N ∈ RN

is the vector of cost functions of the players depending on the completion time of their jobs, so
ci : [0, +∞) → R. Costs are assumed to be linear, i.e. ci(t) = αit with αi > 0. Alternatively, a
sequencing situation (N, σ0, p, c) is denoted by (N, σ0, p, α) with α ∈ RN

++. Let Π(N) denote the
set of all possible orders of the jobs. Given an order σ ∈ Π(N) the jobs will be processed in a
semi-active way, i.e. there will not exist a job that could be processed earlier without altering
the processing order. Therefore, the completion time of player i is given by Cσ

i =
∑

j∈N :σ(j)≤σ(i)

pj .

For simplicity we denote ci(Cσ
i ) by ci(σ).

Given a sequencing situation the associated sequencing game, (N, vC), is defined by

vC(S) = max
σ∈F(S)

(cS(σ0)− cS(σ))

for every S ⊂ N , where, for all σ ∈ Π(N), cS(σ) =
∑

i∈S

ci(σ) and F(S) is the set of feasible orders

for coalition S. An order σ ∈ Π(N) is said to be feasible for S if Pi(σ) = Pj(σ0) for all i, j ∈ N ,
where Pi(σ) = {k ∈ N | σ(k) < σ(i)} is the set of predecessors of i with respect to σ. Note
that feasible orders will only allow reordering within connected components of S with respect
to σ0. The set of connected components of S with respect to σ0 is denoted S/σ0. Assuming
σ0 = (12 . . . n) the associated coalitional values can be expressed as

vC(S) =
∑

T∈S/σ0

∑

i,j∈T : i<j

gij

for every S ⊂ N , where gij = max{0, αjpi − αipj} is the cost savings that players i and j can
achieve by means of a neighbour switch when i is in front of j (cf. Curiel et al. (1989)).

Since an optimal order for the grand coalition can be derived from the initial order by non-
negative neighbour switches, a natural allocation rule in sequencing situations is provided by the
equal gain splitting rule or EGS rule introduced in Curiel et al. (1989), where the cost savings
attained by neighbour switches are divided equally among the players involved. Formally,

EGSi(N,σ0, p, α) =
1
2

i−1∑

j=1

gji +
1
2

n∑

j=i+1

gij

for every i ∈ N .
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Sequencing games are convex and the EGS rule provides a core allocation.

An RP (repeated players) sequencing situation is a 6-tuple (N, M, J, σ0, p, c), where N =
{1, . . . , n} is the set of players, M is the finite set of jobs, J : N ³ M is a correspondence where
J(i) denotes the non-empty set of jobs in which player i is involved with the extra condition that⋃

i∈N

J(i) = M and J(i) ∩ J(j) = ∅ for all i, j ∈ N , i 6= j, σ0 : M → {1, . . . , |M |} is a bijection

representing the initial order on the jobs, p ∈ RM is the vector of processing times of the jobs
and c = (ci)i∈N ∈ RN is the vector of cost functions associated to the players. Let Π(M) denote
the set of all bijections σ : M → {1, . . . , |M |}. Given an order σ ∈ Π(M) it is assumed that the
jobs will be processed in a semi-active way.
Given an RP sequencing situation (N, M, J, σ0, p, c) the associated RP sequencing game (N, v)
is defined by

v(S) = max
σ∈A(S)

(cS(σ0)− cS(σ))

for every S ⊂ N , where for all σ ∈ Π(M), cS(σ) =
∑

i∈S

ci(σ) and A(S) is the set of admis-

sible orders for coalition S. An order σ ∈ Π(M) is said to be admissible for S if Pd(σ) =
Pd(σ0) for all d /∈

⋃

i∈S

J(i), where Pd(σ) = {e ∈ M | σ(e) < σ(d)} is the set of predecessors of job

d with respect to σ. Note that if an order is admissible for S, the completion time of each job
belonging to a player in N \S does not change. Moreover, only within connected components of⋃

i∈S

J(i) w.r.t. σ0, jobs can be reordered.

It has been shown in Calleja et al. (2004) that RP sequencing games are balanced if the cost
functions of the players are “additive relative to the initial order”.

3 Max-RP sequencing

In this section we will consider max-RP sequencing situations and associated games.

A max-RP sequencing situation is an RP sequencing situation where ci(σ) = αi max
d∈J(i)

{Cσ
d }

for some αi > 0, for every i ∈ N and all σ ∈ Π(M). Usually, a max-RP sequencing situation
like this will be described by (N, M, J, σ0, p, α) with α ∈ RN

++. It has been pointed out in Calleja
et al. (2004) that the above type of cost functions satisfies the additivity condition needed for
balancedness of the associated sequencing game.

Given an order σ ∈ Π(M), we denote by lσi ∈ M the job of i ∈ N that is processed in last
position according to σ, i.e. σ(lσi ) ≥ σ(d) for all d ∈ J(i). Note that an order σ ∈ Π(M) induces
an order σ̄ ∈ Π(N) on the players in the following way: σ̄(i) < σ̄(j) if and only if σ(lσi ) < σ(lσj ).
Throughout this section we will assume w.l.o.g. that σ0 ∈ Π(M) is such that σ̄0 = (12 . . . n) and
we will write li = lσ0

i . Hence, i < j if and only if σ0(li) < σ0(lj).

We say that the jobs of player i are clustered according to an order σ ∈ Π(M) if they are
processed consecutively, i.e. if d1, d2 ∈ J(i) and σ(d1) < σ(e) < σ(d2) imply that e ∈ J(i). It is
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easy to see that all jobs of a player will be clustered in an optimal order for max-RP sequencing
situations. To derive an optimal order on all jobs we next turn to classical sequencing: the optimal
order of the clusters will be in non-decreasing order of urgencies (cf. Smith (1956)). Here, the
urgency of a cluster obviously will be the quotient of cost coefficient αi of the corresponding
player while the processing time of the cluster is given by

∑

d∈J(i)

pd.

An explicit procedure to derive an optimal order for M from the initial order σ0 by non-
negative switches is described in the following way.

First, we put all the jobs of player n at the back of the queue5. After this, all jobs of player
n− 1 are clustered in front of jobs of player n, and so on. Note that the cost savings induced on
i by clustering the jobs of j (i < j) during this step are given by: bN

ij = αi

∑

e∈J(j): σ0(e)<σ0(li)

pe.

Second, consider the (remaining) classical sequencing situation (on the constructed clusters)
given by (N, σ̄0, q, α) with q ∈ RN such that qi =

∑

d∈J(i)

pd. The cost savings in this step can

be obtained by non-negative (cluster) neighbour switches and equal
∑

i,j∈N : i<j

gN
ij with gN

ij =

max{0, αjqi − αiqj}.

Summarizing, the total maximal cost savings v(N) are given by
n−1∑

i=1

n∑

j=i+1

r(i, j, N), where

r(i, j, N) := bN
ij + gN

ij

for all i, j ∈ N with i < j.

Adopting the equal gain splitting mechanism in the procedure above we can define the
max-EGS rule in the following way:

max-EGSi(N, M, J, σ0, p, α) =
1
2

n∑

j=i+1

r(i, j, N) +
1
2

i−1∑

j=1

r(j, i, N).

We will show that the max-EGS rule leads to core elements of the associated max-RP se-
quencing game. With this purpose, we first will give an explicit construction and expression for
the coalitional values in a max-RP sequencing game similar to the derivation of v(N) provided
above.

For this, we need some notation. Given S ⊂ N let [J(S)/σ0] = {U1, . . . , Uu} be the set of
maximal connected components of the set of jobs J(S) such that Ur ∩ {li}i∈S 6= ∅ for all r. The
collection {U1, . . . , Uu} is called the induced job partition of S by σ0 . Associated to each Ur we
define Sr by Sr := {i ∈ S | li ∈ Ur}. Observe that {S1, . . . , Su} is a partition of S. We call this
partition the induced partition of S by σ0 .

Now, consider i ∈ Sr and j ∈ S with i < j. We denote by bSr
ij the cost savings in-

duced on i when moving the jobs of player j that are in Ur to be clustered to the back, i.e.
bSr
ij = αi

∑

e∈J(j)∩Ur

σ0(e)<σ0(li)

pe.

5Remember that we assume that σ0(ln) > σ0(li) for all i ∈ N , i 6= n.
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Moreover, with i, j ∈ Sr and i < j we denote by gSr
ij the cost savings obtainable by

means of a neighbour switch between the clusters corresponding to i and j within Ur, i.e.
gSr
ij = max{0, αj

∑

d∈J(i)∩Ur

pd − αi

∑

e∈J(j)∩Ur

pe}.

For i, j ∈ S with i < j we define

r(i, j, S) =

{
bSr
ij + gSr

ij , if i, j ∈ Sr;

bSr
ij , if i ∈ Sr, j 6∈ Sr.

It is readily established that the coalitional value v(S) in the corresponding max-RP sequenc-
ing game is given by

v(S) =
∑

i∈S

∑

j∈S: i<j

r(i, j, S)

Theorem 3.1. For any max-RP sequencing game, the max-EGS rule provides a core element.

Proof: Let (N,M, J, σ0, p, α) be a max-RP sequencing situation and let (N, v) be the asso-
ciated max-RP sequencing game.

Efficiency holds by definition. Next, we will show that the rule is stable. Let S ⊂ N , then

∑

i∈S

max-EGSi(N, M, J, σ0, p, α) =
∑

i∈S

[1
2

n∑

j=i+1

r(i, j, N) +
1
2

i−1∑

j=1

r(j, i, N)
]

=
∑

i∈S

∑

j∈S: i<j

r(i, j,N) +
1
2

∑

i∈S

∑

j∈N\S: i<j

r(i, j, N)

+
1
2

∑

i∈S

∑

j∈N\S: j<i

r(j, i, N)

≥
∑

i∈S

∑

j∈S: i<j

r(i, j,N)

≥
∑

i∈S

∑

j∈S: i<j

r(i, j, S) = v(S),

where the last inequality holds by Lemma A.1. 2

We want to note that in fact the max-EGS core allocation is PMAS extendable (cf. Sprumont
(1990)) by considering the max-EGS allocations for all subgames, and the use of Lemma A.1.

The following example provides a non-convex max-RP sequencing game.

Example 3.2. Let (N, M, J, σ0, p, c) be a max-RP sequencing situation with N = {1, 2, 3, 4, 5},
M = {A,B, C, D, E, F, G} and J(1) = {B}, J(2) = {C}, J(3) = {A,E}, J(4) = {F},
J(5) = {D, G}. Let σ0 = (A,B, C, D, E, F, G), p = (3, 1, 6, 1, 1, 1, 1), and α = (10, 6, 4, 1, 1).
Note that σ̄0 = (12345) This situation is depicted below:
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3 1 2 5 3 4 5

A B C D E F G

0 3 4 10 11 12 13 14

Let S = {2, 3}, T = {1, 2, 3}, and i = 5. It is readily checked that the optimal order for coalition
S is σ0 and consequently v(S) = 0, the optimal order for coalition S ∪ {i} is A-B-E-C-D-F-G
and v(S ∪ {i}) = 22, the optimal order for coalition T is B-C-A-D-E-F-G and v(T ) = 48, while
finally, the optimal order for coalition T ∪{i} is B-C-A-E-D-F-G and v(T ∪{i}) = 52. Therefore,
v(T ∪ {i})− v(T ) = 4 < 22 = v(S ∪ {i})− v(S) and the game is not convex. 2

4 Min-RP sequencing

In this section we will analyze min-RP sequencing situations and related games.

A min-RP sequencing situation is an RP sequencing situation where ci(σ) = αi min
d∈J(i)

{Cσ
d }

for some αi > 0, for every i ∈ N and all σ ∈ Π(M). Usually, a min-RP sequencing situation like
this will be described by (N, M, J, σ0, p, α) with α ∈ RN

++. It has been pointed out in Calleja
et al. (2004) that also this type of cost functions satisfy the additivity condition needed for bal-
ancedness of the associated sequencing game.

Given an order σ ∈ Π(M), we denote by fσ
i ∈ M the job of i ∈ N that is processed in first po-

sition according to σ, i.e. σ(fσ
i ) ≤ σ(d) for all d ∈ J(i). Note that an order σ on the jobs induces

an order σ̃ ∈ Π(N) on the players in the following way: σ̃(i) < σ̃(j) if and only if σ(fσ
i ) < σ(fσ

j ).
Throughout this section we will assume w.l.o.g. that σ0 is such that σ̃0 = (12 . . . n) and we will
write fi = fσ0

i . Hence, i < j if and only if σ0(fi) < σ0(fj).

It is easy to see that for min-RP sequencing situations in every optimal order on M the first
n jobs will belong to different players. Moreover, these jobs will have minimum processing time
among the jobs of the corresponding player and they will be processed in decreasing order with
respect to their urgencies.

An optimal order can be constructed from σ0 by non-negative switches in the following way.
First, we put all the jobs of player 1 that are not f1 and are in front of fn at the back of the
queue6. After this, we do the same with all the jobs of player 2 that are not f2 and are in front of
fn, and so on. Once we finish this step, the first n jobs of the queue belong to different players.
Observe that the cost savings induced on j by moving jobs of players i (i < j) to the back are
given by: γN

ij = αj

∑

d∈J(i)\{fi}: σ0(d)<σ0(fj)

pd.

Next, we switch fi
7 with the job of player i that has shortest processing time, if necessary, in

the order 1, 2, . . . , n. The cost savings induced on j by the internal job switch of i (with i ≤ j)
6Remember that we have assumed that σ0(f1) < σ0(fj) for all j ∈ N , j 6= 1.
7Note that for the order σ ∈ Π(M) derived of the first step we have that fi = fσ

i for all i ∈ N .
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in this step are: δN
ij = αj(pfi

− min
d∈J(i)

{pd}).
Now, consider the (remaining) classical sequencing situation (on these first n jobs) given by

(N, σ̃0, q, α) with q ∈ RN such that qi = min
d∈J(i)

pd. Clearly, the maximal cost savings in this third

step equal
∑

i,j∈N : i<j

gN
ij with gN

ij = max{0, αjqi − αiqj}.

Summarizing, the total maximal cost savings v(N) are given by
n−1∑

i=1

n∑

j=i+1

s(i, j, N)+
n∑

i=1

s(i,N),

where
s(i,N) = δN

ii

and
s(i, j,N) = γN

ij + δN
ij + gN

ij

for all i, j ∈ N with i < j.

Adopting the equal gain splitting mechanism in the procedure above we can define the
min-EGS rule in the following way

min-EGSi(N, M, J, σ0, p, α) =
1
2

i−1∑

j=1

s(j, i,N) +
1
2

n∑

j=i+1

s(i, j, N) + s(i,N).

It will be shown that the min-EGS rule leads to core allocations of the associated min-RP
sequencing games. With this purpose, we first will give an explicit construction and expression
for the coalitional values in a min-RP sequencing game similar to max-EGS games.

For this, we introduce first some notation. Given S ⊂ N let [J(S)/σ0] = {U1, . . . , Uu} be
the set of maximal connected components of J(S) such that Ur ∩ {fi}i∈S 6= ∅ for all r. The
collection {U1, . . . , Uu} is called the induced job partition of S by σ0 . Associated to each Ur

we define Sr by Sr := {i ∈ S | fi ∈ Ur}. Observe that {S1, . . . , Su} is a partition of S. We
call this partition the induced partition of S by σ0 . Note that {U1, . . . , Uu} and {S1, . . . , Su}
have a different interpretation than in max-RP sequencing situations, although we use the same
notation.

Now, consider i ∈ Sr, j ∈ S with i < j. We will denote by γSr
ij the cost savings that player j

obtains when the jobs of player i within Ur (unequal to fi) that are in front of fj are moved to
the back of Ur, i.e. γSr

ij = αj

∑

d∈(J(i)\{fi})∩Ur

σ0(d)<σ0(fj)

pd.

Next, consider i, j ∈ Sr with i ≤ j. With δSr
ij we symbolize the cost savings that player j

obtains when player i (i ≤ j) switches its first job with the one with minimum processing time
in Ur, i.e. δSr

ij = αj(pfi − min
d∈J(i)∩Ur

{pd}).
Finally, take i, j ∈ Sr with i < j. By gSr

ij we denote the cost savings obtainable by means of
a neighbour switch between the two jobs of players i and j within Ur with shortest processing
times, i.e. gSr

ij = max{0, αj min
d∈J(i)∩Ur

{pd} − αi min
e∈J(j)∩Ur

{pe}}.
Now consider S ⊂ N . For i, j ∈ S and i < j define

s(i, j, S) =

{
γSr

ij + δSr
ij + gSr

ij , if i, j ∈ Sr;
γSr

ij , if i ∈ Sr, j 6∈ Sr;
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and for i ∈ S,
s(i, S) = δSr

ii

if i ∈ Sr.
Then, it readily follows that the coalitional value v(S) in the corresponding min-RP sequenc-

ing game is given by
v(S) =

∑

i∈S

∑

j∈S:i<j

s(i, j, S) +
∑

i∈S

s(i, S).

Theorem 4.1. For any min-RP sequencing game, the min-EGS rule provides a core element.

Proof: Let (N, M, J, σ0, p, α) be a min-RP sequencing situation and let (N, v) be the asso-
ciated min-RP sequencing game.

Efficiency holds by definition. Next, it will be shown that the rule is stable. Let S ⊂ N , then

∑

i∈S

min-EGSi(N, M, J, σ0, p, α) =
∑

i∈S

[1
2

i−1∑

j=1

s(j, i, N) +
1
2

n∑

j=i+1

s(i, j, N) + s(i,N)
]

=
∑

i∈S

∑

j∈S: j<i

s(j, i,N) +
1
2

∑

i∈S

∑

j∈N\S: j<i

s(j, i, N)

+
1
2

∑

i∈S

∑

j∈N\S: i<j

s(i, j,N) +
∑

i∈S

s(i,N)

≥
∑

i∈S

∑

j∈S: j<i

s(j, i,N) +
∑

i∈S

s(i,N)

≥
∑

i∈S

∑

j∈S: j<i

s(j, i, S) +
∑

i∈S

s(i, S) = v(S),

where the second inequality holds by Lemma A.2 and Lemma A.3. 2

Also here, note that in fact the min-EGS core allocation is PMAS extendable by considering
the min-EGS allocations for all subgames and the use of Lemma A.2 and Lemma A.3.

Moreover, we have that min-RP sequencing games are convex.

Theorem 4.2. Min-RP sequencing games are convex.

Proof: Let (N, M, J, σ0, p, α) be a min-RP sequencing situation and let (N, v) be the asso-
ciated min-RP sequencing game. Note that the characteristic function of the game can be written
as the sum of two characteristic functions: v(S) = w(S) + u(S) with w(S) =

∑

i∈S

∑

j∈S:i<j

s(i, j, S)

and u(S) =
∑

i∈S

s(i, S). We will show that both (N, u) and (N, w) are convex and therefore that

(N, v) is convex.

9



First, we will prove that (N, u) is convex. We have to show that

u(S ∪ {j})− u(S) ≤ u(T ∪ {j})− u(T )

for every j ∈ N and every S ⊂ T ⊂ N \ {j}.
Let S ⊂ T and take j ∈ N \ T . Since,

u(S ∪ {j})− u(S) =
∑

k∈S

(
s(k, S ∪ {j})− s(k, S)

)
+ s(j, S ∪ {j})

and
u(T ∪ {j})− u(T ) =

∑

k∈T

(
s(k, T ∪ {j})− s(k, T )

)
+ s(j, T ∪ {j})

it is sufficient to show that the following three inequalities hold:

s(k, S ∪ {j})− s(k, S) ≤ s(k, T ∪ {j})− s(k, T ) for every k ∈ S, (1)
0 ≤ s(k, T ∪ {j})− s(k, T ) for every k ∈ T \ S, (2)

s(j, S ∪ {j}) ≤ s(j, T ∪ {j}) (3)

Statement (1) is true by convexity of s(∗, ·) (Lemma A.4) and statements (2) and (3) are true
by monotonicity of s(∗, ·) (Lemma A.2).

Secondly, we will show that (N, w) is convex. We have to show that

w(S ∪ {j})− w(S) ≤ w(T ∪ {j})− w(T )

for every j ∈ N and every S ⊂ T ⊂ N \ {j}.
Let S ⊂ T and take j ∈ N \ T . Since

w(S ∪ {j})− w(S) =
∑

k∈S

∑

i∈S:k<i

(
s(k, i, S ∪ {j})− s(k, i, S)

)

+
∑

k∈S:k<j

s(k, j, S ∪ {j}) +
∑

i∈S:j<i

s(j, i, S ∪ {j})

and

w(T ∪ {j})− w(T ) =
∑

k∈T

∑

i∈T :k<i

(
s(k, i, T ∪ {j})− s(k, i, T )

)

+
∑

k∈T :k<j

s(k, j, T ∪ {j}) +
∑

i∈T :j<i

s(j, i, T ∪ {j})

it is sufficient to show that

s(k, i, S ∪ {j})− s(k, i, S) ≤ s(k, i, T ∪ {j})− s(k, i, T ) for every k, i ∈ S, with k < i, (4)
0 ≤ s(k, i, T ∪ {j})− s(k, i, T ) for every k ∈ T \ S, i ∈ T or k ∈ S, i ∈ T \ S, with k < i, (5)

s(k, j, S ∪ {j}) ≤ s(k, j, T ∪ {j}) for every k ∈ S, k < j, (6)
s(j, i, S ∪ {j}) ≤ s(j, i, T ∪ {j}) for every i ∈ S, j < i, (7)

0 ≤ s(k, j, T ∪ {j}) for every k ∈ T \ S, k < j, (8)
0 ≤ s(j, i, T ∪ {j}) for every i ∈ T \ S, j < i, (9)

Statement (4) is true by convexity of s(∗, ∗, ·) (Lemma A.5). Statements (5), (6), and (7) are
true by monotonicity of s(∗, ∗, ·) (Lemma A.3). Finally, statements (8) and (9) follow from the
definition of s(∗, ∗, ·). 2
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Appendix

Lemma A.1. Let S ⊂ T ⊂ N . For every i, j ∈ S with i < j, r(i, j, S) ≤ r(i, j, T ).

Proof: Let (N,M, J, σ0, p, α) be a max-RP sequencing situation and take i, j ∈ S with
i < j. Let i ∈ Sr ⊂ Tρ, with Sr and Tρ components within the induced partition of S and
T , respectively. Moreover, let Ur, Vρ be the correspondent components within the job partition
associated to Sr and Tρ, respectively. Note that Ur ⊂ Vρ. We will distinguish two cases.
Case 1: j 6∈ Sr. Here,

r(i, j, S) = bSr
ij = αi

∑

e∈J(j)∩Ur

σ0(e)<σ0(li)

pe ≤ αi

∑

e∈J(j)∩Vρ

σ0(e)<σ0(li)

pe = b
Tρ

ij ≤ r(i, j, T ),

where the first inequality holds because Ur ⊂ Vρ and the second inequality holds by definition of
r(i, j, T ).
Case 2: j ∈ Sr. Here, two subcases will be distinguished.

Subcase 2.1: gSr
ij = 0. Then

r(i, j, S) = bSr
ij + gSr

ij = αi

∑

e∈J(j)∩Ur

σ0(e)<σ0(li)

pe ≤ αi

∑

e∈J(j)∩Vρ

σ0(e)<σ0(li)

pe = b
Tρ

ij ≤ r(i, j, T ).

Subcase 2.2: gSr
ij > 0. Then li, lj ∈ Ur and gSr

ij = αj

∑

d∈J(i)∩Ur

pd − αi

∑

e∈J(j)∩Ur

pe. We will

distinguish two new subcases.

Subcase 2.2.1: g
Tρ

ij = 0. Hence, by definition of g
Tρ

ij it holds

αj

∑

d∈J(i)∩Vρ

pd − αi

∑

e∈J(j)∩Vρ

pe ≤ 0. (10)

Therefore,

r(i, j, T ) = b
Tρ

ij + g
Tρ

ij = b
Tρ

ij − gSr
ij + gSr

ij

= αi

∑

e∈J(j)∩Vρ

σ0(e)<σ0(li)

pe − (αj

∑

d∈J(i)∩Ur

pd − αi

∑

e∈J(j)∩Ur

pe) + gSr
ij

= αi

∑

e∈J(j)∩Ur

σ0(e)<σ0(li)

pe + αi

∑

e∈J(j)∩(Vρ\Ur)

pe − αj

∑

d∈J(i)∩Ur

pd + αi

∑

e∈J(j)∩Ur

pe + gSr
ij

= bSr
ij + αi

∑

e∈J(j)∩Vρ

pe − αj

∑

d∈J(i)∩Ur

pd + gSr
ij

≥ bSr
ij + αi

∑

e∈J(j)∩Vρ

pe − αj

∑

d∈J(i)∩Vρ

pd + gSr
ij

≥ bSr
ij + gSr

ij = r(i, j, S),
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where the fourth equality holds because li, lj ∈ Ur, σ0(li) < σ0(lj) and then
{e ∈ J(j) ∩ (Vρ \ Ur) | σ0(e) < σ0(li)} = J(j) ∩ (Vρ \ Ur). Last inequality follows from (10).

Subcase 2.2.2: g
Tρ

ij > 0. Hence, g
Tρ

ij = αj

∑

d∈J(i)∩Vρ

pd − αi

∑

e∈J(j)∩Vρ

pe by definition. Then

r(i, j, T ) = b
Tρ

ij + g
Tρ

ij = αi

∑

e∈J(j)∩Vρ

σ0(e)<σ0(li)

pe + αj

∑

d∈J(i)∩Vρ

pd − αi

∑

e∈J(j)∩Vρ

pe

= αi

∑

e∈J(j)∩Ur

σ0(e)<σ0(li)

pe + αi

∑

e∈J(j)∩(Vρ\Ur)

pe + αj

∑

d∈J(i)∩Vρ

pd

− αi

∑

e∈J(j)∩Ur

pe − αi

∑

e∈J(j)∩(Vρ\Ur)

pe

= bSr
ij + αj

∑

d∈J(i)∩Vρ

pd − αi

∑

e∈J(j)∩Ur

pe

≥ bSr
ij + αj

∑

d∈J(i)∩Ur

pd − αi

∑

e∈J(j)∩Ur

pe

= bSr
ij + gSr

ij = r(i, j, S).

where the third equality holds because li, lj ∈ Ur, σ0(li) < σ0(lj) and then
{e ∈ J(j) ∩ (Vρ \ Ur) | σ0(e) < σ0(li)} = J(j) ∩ (Vρ \ Ur). 2

Lemma A.2. Let S ⊂ T ⊂ N . For every i ∈ S, s(i, S) ≤ s(i, T ).

Proof: Let (N,M, J, σ0, p, α) be a min-RP sequencing situation and let i ∈ S. Let i ∈ Sr ⊂
Tρ, with Sr and Tρ components within the induced partition of S and T , respectively. Moreover,
let Ur, Vρ be the components within the job partition associated to Sr and Tρ, respectively. Note
that Ur ⊂ Vρ. Hence,

s(i, S) = δSr
ii = αi(pfi − min

e∈J(i)∩Ur

{pe}) ≤ αi(pfi − min
e∈J(i)∩Vρ

{pe}) = δ
Tρ

ii = s(i, T ).

2

Lemma A.3. Let S ⊂ T ⊂ N . For every i, j ∈ S with i < j, s(i, j, S) ≤ s(i, j, T ).

Proof: Let (N,M, J, σ0, p, α) be a min-RP sequencing situation and let i, j ∈ S. Let
i ∈ Sr ⊂ Tρ, with Sr and Tρ components within the induced partition of S and T , respectively.
Moreover, let Ur, Vρ be the components within the job partition associated to Sr and Tρ, res-
pectively. Note that Ur ⊂ Vρ.

Case 1: j 6∈ Sr. In this case s(i, j, S) = γSr
ij .

s(i, j, S) = γSr
ij = αj

∑

e∈J(i)∩(Ur\{fi})
σ0(e)<σ0(fj)

pe ≤ αj

∑

e∈J(i)∩(Vρ\{fi})
σ0(e)<σ0(fj)

pe = γ
Tρ

ij ≤ s(i, j, T ).
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Case 2: j ∈ Sr ⊂ Tρ. Here, s(i, j, S) = γSr
ij + δSr

ij + gSr
ij and s(i, j, T ) = γ

Tρ

ij + δ
Tρ

ij + g
Tρ

ij . We
will distinguish two subcases.

Subcase 2.1: gSr
ij = 0. Hence,

s(i, j, S) = γSr
ij + δSr

ij + gSr
ij = γSr

ij + δSr
ij

= αj

∑

e∈J(i)∩(Ur\{fi})
σ0(e)<σ0(fj)

pe + αj(pfi − min
e∈J(i)∩Ur

{pe})

≤ αj

∑

e∈J(i)∩(Vρ\{fi})
σ0(e)<σ0(fj)

pe + αj(pfi − min
e∈J(i)∩Vρ

{pe})

= γ
Tρ

ij + δ
Tρ

ij ≤ γ
Tρ

ij + δ
Tρ

ij + g
Tρ

ij = s(i, j, T ).

Subcase 2.2: gSr
ij > 0. In this case, gSr

ij = αj min
e∈J(i)∩Ur

{pe} − αi min
d∈J(j)∩Ur

{pd} by definition.

Here, two new cases are needed.
Subcase 2.2.1: g

Tρ

ij = 0. Hence, by definition of g
Tρ

ij it holds

αj min
e∈J(i)∩Vρ

{pe} − αi min
d∈J(j)∩Vρ

{pd} ≤ 0. (11)

It will be shown that s(i, j, T )− s(i, j, S) ≥ 0.

s(i, j, T )− s(i, j, S) = (γTρ

ij + δ
Tρ

ij + g
Tρ

ij )− (γSr
ij + δSr

ij + gSr
ij )

= αj

∑

e∈J(i)∩(Vρ\Ur)
σ0(e)<σ0(fj)

pe − αj min
e∈J(i)∩Vρ

{pe}+ αi min
d∈J(j)∩Ur

{pd}

≥ αj

∑

e∈J(i)∩(Vρ\Ur)
σ0(e)<σ0(fj)

pe − αj min
e∈J(i)∩Vρ

{pe}+ αi min
d∈J(j)∩Vρ

{pd}

≥ 0,

where the equality holds by definition and the second inequality holds by equation (11) and
because αj

∑

e∈J(i)∩(Vρ\Ur)
σ0(e)<σ0(fj)

pe ≥ 0.

Subcase 2.2.2: g
Tρ

ij > 0. Hence, g
Tρ

ij = αj min
e∈J(i)∩Vρ

{pe}−αi min
d∈J(j)∩Vρ

{pd} by definition. There-

fore,

s(i, j, S) = γSr
ij + δSr

ij + gSr
ij

= αj

∑

e∈J(i)∩(Ur\{fi})
σ0(e)<σ0(fj)

pe + αjpfi − αi min
d∈J(j)∩Ur

{pd}

≤ αj

∑

e∈J(i)∩(Vρ\{fi})
σ0(e)<σ0(fj)

pe + αjpfi
− αi min

d∈J(j)∩Vρ

{pd}

= γ
Tρ

ij + δ
Tρ

ij + g
Tρ

ij = s(i, j, T ).
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where the first and second equalities hold by definition. 2

Lemma A.4. Let S ⊂ T ⊂ N . For every j ∈ N \ T and every i ∈ S,

s(i, S ∪ {j})− s(i, S) ≤ s(i, T ∪ {j})− s(i, T ).

Proof: Let (N,M, J, σ0, p, α) be a min-RP sequencing situation. Let i ∈ S and j ∈ N \ T .
Let i ∈ Sr ⊂ Tρ, with Sr and Tρ components within the induced partition of S and T , respec-
tively. Moreover, let Ur, Vρ be the components within the job partition associated to Sr and Tρ,
respectively. Let i ∈ S

(j)
t ⊂ T

(j)
τ , with S

(j)
t and T

(j)
τ components within the induced partition

of S ∪ {j} and T ∪ {j}, respectively. Besides, let U
(j)
t , V

(j)
τ be the components within the job

partition associated to S
(j)
t and T

(j)
τ , respectively. Note that Sr ⊂ S

(j)
t ⊂ T

(j)
τ , Sr ⊂ Tρ ⊂ T

(j)
τ ,

Ur ⊂ U
(j)
t ⊂ V

(j)
τ and Ur ⊂ Vρ ⊂ V

(j)
τ .

Define fol(Ur) to be the job that is processed in position max
e∈Ur

{σ0(e)}+ 1. Note that fol(Ur)

may not exist. We will distinguish three cases.

Case 1: fol(Ur) either belongs to a player in N \ (T ∪ {j}) or fol(Ur) does not exist. Here, we
face the following situation:

i m i m m
fi fol(Ur)

where m ∈ S and the grid job either belongs to a player in N \ (T ∪ {j}) or represents the end
of the queue. In this case, J(i)∩Ur = J(i)∩Vρ = J(i)∩U

(j)
t = J(i)∩V j

τ and the inequality holds.

Case 2: fol(Ur) belongs to j. In this case, we face the following situation:

i m i m m j
fi fol(Ur)

where m ∈ S. As a result, J(i) ∩ Ur = J(i) ∩ Vρ and the inequality boils down to
s(i, S ∪ {j}) ≤ s(i, T ∪ {j}), which holds by Lemma A.2.

Case 3: fol(Ur) belongs to a player in T \ S. In this case we face the following situation:

i m i m m l
fi fol(Ur)

where m ∈ S and l ∈ T \ S. Here, J(i) ∩ Ur = J(i) ∩ U
(j)
t and the inequality comes down to

0 ≤ s(i, T ∪ {j})− s(i, T ), which is true by Lemma A.2. 2

Lemma A.5. Let S ⊂ T ⊂ N . For every k ∈ N \ T and every i, j ∈ S with i < j,

s(i, j, S ∪ {k})− s(i, j, S) ≤ s(i, j, T ∪ {k})− s(i, j, T ).
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Proof: Let (N,M, J, σ0, p, α) be a min-RP sequencing situation. Let k ∈ N \ T and i, j ∈ S
with i < j. Let i ∈ Sr ⊂ Tρ, with Sr and Tρ components within the induced partition of S
and T , respectively. Moreover, let Ur, Vρ be the components within the job partition associated
to Sr and Tρ, respectively. Let i ∈ S

(k)
t ⊂ T

(k)
τ , with S

(k)
t and T

(k)
τ components within the in-

duced partition of S ∪ {k} and T ∪ {k}, respectively. Besides, let U
(k)
t , V

(k)
τ be the components

within the job partition associated to S
(k)
t and T

(k)
τ , respectively. Note that Sr ⊂ S

(k)
t ⊂ T

(k)
τ ,

Sr ⊂ Tρ ⊂ T
(k)
τ , Ur ⊂ U

(k)
t ⊂ V

(k)
τ and Ur ⊂ Vρ ⊂ V

(k)
τ .

In order to show the statement, we will study two cases.

Case 1: j ∈ Sr. Define fol(Ur) to be the job that is processed in position max
e∈Ur

{σ0(e)} + 1.

Note that fol(Ur) may not exist. We will distinguish three subcases.

Subcase 1.1: fol(Ur) either belongs to a player in N \ (T ∪ {k}) or fol(Ur) does not exist. In
this case we face the following situation:

i m i j m j m
fi fj fol(Ur)

where m ∈ S and the grid job either belongs to a player in N \ (T ∪ {k}) or represents the end
of the queue. Here, J(i) ∩ Ur = J(i) ∩ Vρ = J(i) ∩ U

(k)
t = J(i) ∩ V

(k)
τ and the inequality holds.

Subcase 1.2: fol(Ur) belongs to k. In this case we face the following situation:

i m i j m j m k
fi fj fol(Ur)

where m ∈ S. As a result, J(i) ∩ Ur = J(i) ∩ Vρ and the inequality boils down to
s(i, j, S ∪ {k}) ≤ s(i, j, T ∪ {k}), which is true by Lemma A.3.

Subcase 1.3: fol(Ur) belongs to a player in T \S. In this case we face the following situation:

i m i j m j m l
fi fj fol(Ur)

where m ∈ S and l ∈ T \ S. In this case, J(i)∩Ur = J(i)∩U
(k)
t and the inequality comes down

to 0 ≤ s(i, j, T ∪ {k})− s(i, j, T ), which holds by Lemma A.3.

Case 2: j 6∈ Sr, j ∈ Sr∗ ⊂ Tρ∗ (j ∈ S
(k)
t∗ ⊂ T

(k)
τ∗ ).

Define pred(Ur∗) to be the job that is processed in position min
e∈Ur∗

{σ0(e)} − 1. Note that

pred(Ur∗) may not exist. We will distinguish three subcases.

Subcase 2.1: pred(Ur∗) either belongs to a player in N \(T ∪{k}) or pred(Ur∗) does not exist.
In this case we face the following situation:

m j m j m
fjpred(Ur∗)
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where m ∈ S and the grid job either belongs to a player in N \ (T ∪ {k}) or represents the
beginning of the queue. Here, {e ∈ J(i) ∩ Ur∗ : e < fj} = {e ∈ J(i) ∩ Vρ∗ : e < fj} =
{e ∈ J(i) ∩ U

(k)
t∗ : e < fj} = {e ∈ J(i) ∩ V

(k)
τ∗ : e < fj} and the inequality holds.

Subcase 2.2: pred(Ur∗) belongs to k. In this case we face the following situation:

k m j m j m
fjpred(Ur∗)

where m ∈ S. As a result, {e ∈ J(i)∩Ur∗ : e < fj} = {e ∈ J(i)∩Vρ∗ : e < fj} and the inequality
boils down to s(i, j, S ∪ {k}) ≤ s(i, j, T ∪ {k}), which is true by Lemma A.3.

Subcase 2.3: pred(Ur∗) belongs to a player in T \S. In this case we face the following situation:

l m j m j m
fjpred(Ur∗)

where m ∈ S and l ∈ T \ S. In this case, {e ∈ J(i) ∩ Ur∗ : e < fj} = {e ∈ J(i) ∩ U
(k)
t∗ : e < fj}

and the inequality comes down to 0 ≤ s(i, j, T ∪ {k}) − s(i, j, T ), which holds by Lemma A.3.
2
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